File: qseq.py

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (281 lines) | stat: -rw-r--r-- 10,094 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
r"""
QSeq format (:mod:`skbio.io.format.qseq`)
=========================================

.. currentmodule:: skbio.io.format.qseq

The QSeq format (`qseq`) is a record-based, plain text output format produced
by some DNA sequencers for storing biological sequence data, quality scores,
per-sequence filtering information, and run-specific metadata.

Format Support
--------------
**Has Sniffer: Yes**

+------+------+---------------------------------------------------------------+
|Reader|Writer|                          Object Class                         |
+======+======+===============================================================+
|Yes   |No    |generator of :mod:`skbio.sequence.Sequence` objects            |
+------+------+---------------------------------------------------------------+
|Yes   |No    |:mod:`skbio.sequence.Sequence`                                 |
+------+------+---------------------------------------------------------------+
|Yes   |No    |:mod:`skbio.sequence.DNA`                                      |
+------+------+---------------------------------------------------------------+
|Yes   |No    |:mod:`skbio.sequence.RNA`                                      |
+------+------+---------------------------------------------------------------+
|Yes   |No    |:mod:`skbio.sequence.Protein`                                  |
+------+------+---------------------------------------------------------------+

Format Specification
--------------------
A QSeq file is composed of single-line records, delimited by tabs. There are
11 fields in a record:

- Machine name
- Run number
- Lane number (positive int)
- Tile number (positive int)
- X coordinate (integer)
- Y coordinate (integer)
- Index
- Read number (1-3)
- Sequence data (typically IUPAC characters)
- Quality scores (quality scores encoded as printable ASCII)
- Filter boolean (1 if sequence has passed CASAVA's filter, 0 otherwise)

For more details please refer to the CASAVA documentation [1]_.

.. note:: When a QSeq file is read into a scikit-bio object, the object's
   `metadata` attribute is automatically populated with data corresponding
   to the names above.

.. note:: `lowercase` functionality is supported when reading QSeq files.
   Refer to specific object constructor documentation for details.

.. note:: scikit-bio allows for the filter field to be ommitted, but it is not
   clear if this is part of the original format specification.

Format Parameters
-----------------
The following parameters are the same as in FASTQ format
(:mod:`skbio.io.format.fastq`):

- ``variant``: see ``variant`` parameter in FASTQ format
- ``phred_offset``: see ``phred_offset`` parameter in FASTQ format

The following additional parameters are the same as in FASTA format
(:mod:`skbio.io.format.fasta`):

- ``constructor``: see ``constructor`` parameter in FASTA format
- ``seq_num``: see ``seq_num`` parameter in FASTA format

Generators Only
^^^^^^^^^^^^^^^
- ``filter``: If `True`, excludes sequences that did not pass filtering
  (i.e., filter field is 0). Default is `True`.

Examples
--------
Suppose we have the following QSeq file::

    illumina	1	3	34	-30	30	0	1	ACG....ACGTAC	ruBBBBrBCEFGH	1
    illumina	1	3	34	30	-30	0	1	CGGGCATTGCA	CGGGCasdGCA	0
    illumina	1	3	35	-30	30	0	2	ACGTA.AATAAAC	geTaAafhwqAAf	1
    illumina	1	3	35	30	-30	0	3	CATTTAGGA.TGCA	tjflkAFnkKghvM	0

Let's define this file in-memory as a ``StringIO``, though this could be a real
file path, file handle, or anything that's supported by scikit-bio's I/O
registry in practice:

>>> from io import StringIO
>>> fs = '\n'.join([
...     'illumina\t1\t3\t34\t-30\t30\t0\t1\tACG....ACGTAC\truBBBBrBCEFGH\t1',
...     'illumina\t1\t3\t34\t30\t-30\t0\t1\tCGGGCATTGCA\tCGGGCasdGCA\t0',
...     'illumina\t1\t3\t35\t-30\t30\t0\t2\tACGTA.AATAAAC\tgeTaAafhwqAAf\t1',
...     'illumina\t1\t3\t35\t30\t-30\t0\t3\tCATTTAGGA.TGCA\ttjflkAFnkKghvM\t0'
... ])
>>> fh = StringIO(fs)

To iterate over the sequences using the generator reader, we run:

>>> import skbio.io
>>> for seq in skbio.io.read(fh, format='qseq', variant='illumina1.3'):
...     seq
...     print('')
Sequence
--------------------------------------
Metadata:
    'id': 'illumina_1:3:34:-30:30#0/1'
    'index': 0
    'lane_number': 3
    'machine_name': 'illumina'
    'read_number': 1
    'run_number': 1
    'tile_number': 34
    'x': -30
    'y': 30
Positional metadata:
    'quality': <dtype: uint8>
Stats:
    length: 13
--------------------------------------
0 ACG....ACG TAC
<BLANKLINE>
Sequence
--------------------------------------
Metadata:
    'id': 'illumina_1:3:35:-30:30#0/2'
    'index': 0
    'lane_number': 3
    'machine_name': 'illumina'
    'read_number': 2
    'run_number': 1
    'tile_number': 35
    'x': -30
    'y': 30
Positional metadata:
    'quality': <dtype: uint8>
Stats:
    length: 13
--------------------------------------
0 ACGTA.AATA AAC
<BLANKLINE>

Note that only two sequences were loaded because the QSeq reader filters out
sequences whose filter field is 0 (unless ``filter=False`` is supplied).

References
----------
.. [1] http://biowulf.nih.gov/apps/CASAVA_UG_15011196B.pdf

"""

# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

from skbio.io import create_format, QSeqFormatError
from skbio.io.format._base import _decode_qual_to_phred, _get_nth_sequence
from skbio.sequence import Sequence, DNA, RNA, Protein

_default_phred_offset = None
_default_variant = None
_will_filter = True

qseq = create_format('qseq')


@qseq.sniffer()
def _qseq_sniffer(fh):
    empty = True
    try:
        for _, line in zip(range(10), fh):
            _record_parser(line)
            empty = False
        return not empty, {}
    except QSeqFormatError:
        return False, {}


@qseq.reader(None)
def _qseq_to_generator(fh, constructor=Sequence, filter=_will_filter,
                       phred_offset=_default_phred_offset,
                       variant=_default_variant, **kwargs):
    for line in fh:
        (machine_name, run, lane, tile, x, y, index, read, seq, raw_qual,
         filtered) = _record_parser(line)
        if not filter or not filtered:
            phred = _decode_qual_to_phred(raw_qual, variant, phred_offset)
            seq_id = '%s_%s:%s:%s:%s:%s#%s/%s' % (
                machine_name, run, lane, tile, x, y, index, read)
            yield constructor(seq, metadata={'id': seq_id,
                                             'machine_name': machine_name,
                                             'run_number': int(run),
                                             'lane_number': int(lane),
                                             'tile_number': int(tile),
                                             'x': int(x),
                                             'y': int(y),
                                             'index': int(index),
                                             'read_number': int(read)},
                              positional_metadata={'quality': phred},
                              **kwargs)


@qseq.reader(Sequence)
def _qseq_to_sequence(fh, seq_num=1, phred_offset=_default_phred_offset,
                      variant=_default_variant, **kwargs):
    return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
                             phred_offset=phred_offset, variant=variant,
                             constructor=Sequence, **kwargs), seq_num)


@qseq.reader(DNA)
def _qseq_to_dna(fh, seq_num=1, phred_offset=_default_phred_offset,
                 variant=_default_variant, **kwargs):
    return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
                             phred_offset=phred_offset, variant=variant,
                             constructor=DNA, **kwargs),
                             seq_num)


@qseq.reader(RNA)
def _qseq_to_rna(fh, seq_num=1, phred_offset=_default_phred_offset,
                 variant=_default_variant, **kwargs):
    return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
                             phred_offset=phred_offset, variant=variant,
                             constructor=RNA, **kwargs),
                             seq_num)


@qseq.reader(Protein)
def _qseq_to_protein(fh, seq_num=1, phred_offset=_default_phred_offset,
                     variant=_default_variant, **kwargs):
    return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
                             phred_offset=phred_offset, variant=variant,
                             constructor=Protein, **kwargs),
                             seq_num)


def _record_parser(line):
    fields = line.rstrip('\n')
    if fields:
        fields = fields.split('\t')
    else:
        raise QSeqFormatError('Found blank line.')
    f_len = len(fields)
    if not (10 <= f_len <= 11):
        raise QSeqFormatError('Expected 10 or 11 fields, found %d.' % f_len)
    # If the filter field was ommitted, assume that it passed filtering:
    if f_len == 10:
        fields.append('1')

    (machine, run, lane, tile, x, y, index, read, seq, raw_qaul,
     filter) = fields

    _test_fields([('filter', filter)], lambda x: x in '01',
                 "0 or 1")

    _test_fields([('read', read)], lambda x: x in '123',
                 "in the range [1, 3]")

    _test_fields([('x', x), ('y', y)], lambda x: int(x) is not None,
                 "an integer")

    _test_fields([('lane', lane), ('tile', tile)], lambda x: int(x) >= 0,
                 "a positive integer")

    return (machine, run, lane, tile, x, y, index, read, seq, raw_qaul,
            filter == '0')


def _test_fields(iterkv, test, efrag):
    try:
        for k, v in iterkv:
            if not test(v):
                raise ValueError()
    except ValueError:
        raise QSeqFormatError('Field %r is not %s.' % (k, efrag))