1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
r"""
QSeq format (:mod:`skbio.io.format.qseq`)
=========================================
.. currentmodule:: skbio.io.format.qseq
The QSeq format (`qseq`) is a record-based, plain text output format produced
by some DNA sequencers for storing biological sequence data, quality scores,
per-sequence filtering information, and run-specific metadata.
Format Support
--------------
**Has Sniffer: Yes**
+------+------+---------------------------------------------------------------+
|Reader|Writer| Object Class |
+======+======+===============================================================+
|Yes |No |generator of :mod:`skbio.sequence.Sequence` objects |
+------+------+---------------------------------------------------------------+
|Yes |No |:mod:`skbio.sequence.Sequence` |
+------+------+---------------------------------------------------------------+
|Yes |No |:mod:`skbio.sequence.DNA` |
+------+------+---------------------------------------------------------------+
|Yes |No |:mod:`skbio.sequence.RNA` |
+------+------+---------------------------------------------------------------+
|Yes |No |:mod:`skbio.sequence.Protein` |
+------+------+---------------------------------------------------------------+
Format Specification
--------------------
A QSeq file is composed of single-line records, delimited by tabs. There are
11 fields in a record:
- Machine name
- Run number
- Lane number (positive int)
- Tile number (positive int)
- X coordinate (integer)
- Y coordinate (integer)
- Index
- Read number (1-3)
- Sequence data (typically IUPAC characters)
- Quality scores (quality scores encoded as printable ASCII)
- Filter boolean (1 if sequence has passed CASAVA's filter, 0 otherwise)
For more details please refer to the CASAVA documentation [1]_.
.. note:: When a QSeq file is read into a scikit-bio object, the object's
`metadata` attribute is automatically populated with data corresponding
to the names above.
.. note:: `lowercase` functionality is supported when reading QSeq files.
Refer to specific object constructor documentation for details.
.. note:: scikit-bio allows for the filter field to be ommitted, but it is not
clear if this is part of the original format specification.
Format Parameters
-----------------
The following parameters are the same as in FASTQ format
(:mod:`skbio.io.format.fastq`):
- ``variant``: see ``variant`` parameter in FASTQ format
- ``phred_offset``: see ``phred_offset`` parameter in FASTQ format
The following additional parameters are the same as in FASTA format
(:mod:`skbio.io.format.fasta`):
- ``constructor``: see ``constructor`` parameter in FASTA format
- ``seq_num``: see ``seq_num`` parameter in FASTA format
Generators Only
^^^^^^^^^^^^^^^
- ``filter``: If `True`, excludes sequences that did not pass filtering
(i.e., filter field is 0). Default is `True`.
Examples
--------
Suppose we have the following QSeq file::
illumina 1 3 34 -30 30 0 1 ACG....ACGTAC ruBBBBrBCEFGH 1
illumina 1 3 34 30 -30 0 1 CGGGCATTGCA CGGGCasdGCA 0
illumina 1 3 35 -30 30 0 2 ACGTA.AATAAAC geTaAafhwqAAf 1
illumina 1 3 35 30 -30 0 3 CATTTAGGA.TGCA tjflkAFnkKghvM 0
Let's define this file in-memory as a ``StringIO``, though this could be a real
file path, file handle, or anything that's supported by scikit-bio's I/O
registry in practice:
>>> from io import StringIO
>>> fs = '\n'.join([
... 'illumina\t1\t3\t34\t-30\t30\t0\t1\tACG....ACGTAC\truBBBBrBCEFGH\t1',
... 'illumina\t1\t3\t34\t30\t-30\t0\t1\tCGGGCATTGCA\tCGGGCasdGCA\t0',
... 'illumina\t1\t3\t35\t-30\t30\t0\t2\tACGTA.AATAAAC\tgeTaAafhwqAAf\t1',
... 'illumina\t1\t3\t35\t30\t-30\t0\t3\tCATTTAGGA.TGCA\ttjflkAFnkKghvM\t0'
... ])
>>> fh = StringIO(fs)
To iterate over the sequences using the generator reader, we run:
>>> import skbio.io
>>> for seq in skbio.io.read(fh, format='qseq', variant='illumina1.3'):
... seq
... print('')
Sequence
--------------------------------------
Metadata:
'id': 'illumina_1:3:34:-30:30#0/1'
'index': 0
'lane_number': 3
'machine_name': 'illumina'
'read_number': 1
'run_number': 1
'tile_number': 34
'x': -30
'y': 30
Positional metadata:
'quality': <dtype: uint8>
Stats:
length: 13
--------------------------------------
0 ACG....ACG TAC
<BLANKLINE>
Sequence
--------------------------------------
Metadata:
'id': 'illumina_1:3:35:-30:30#0/2'
'index': 0
'lane_number': 3
'machine_name': 'illumina'
'read_number': 2
'run_number': 1
'tile_number': 35
'x': -30
'y': 30
Positional metadata:
'quality': <dtype: uint8>
Stats:
length: 13
--------------------------------------
0 ACGTA.AATA AAC
<BLANKLINE>
Note that only two sequences were loaded because the QSeq reader filters out
sequences whose filter field is 0 (unless ``filter=False`` is supplied).
References
----------
.. [1] http://biowulf.nih.gov/apps/CASAVA_UG_15011196B.pdf
"""
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
from skbio.io import create_format, QSeqFormatError
from skbio.io.format._base import _decode_qual_to_phred, _get_nth_sequence
from skbio.sequence import Sequence, DNA, RNA, Protein
_default_phred_offset = None
_default_variant = None
_will_filter = True
qseq = create_format('qseq')
@qseq.sniffer()
def _qseq_sniffer(fh):
empty = True
try:
for _, line in zip(range(10), fh):
_record_parser(line)
empty = False
return not empty, {}
except QSeqFormatError:
return False, {}
@qseq.reader(None)
def _qseq_to_generator(fh, constructor=Sequence, filter=_will_filter,
phred_offset=_default_phred_offset,
variant=_default_variant, **kwargs):
for line in fh:
(machine_name, run, lane, tile, x, y, index, read, seq, raw_qual,
filtered) = _record_parser(line)
if not filter or not filtered:
phred = _decode_qual_to_phred(raw_qual, variant, phred_offset)
seq_id = '%s_%s:%s:%s:%s:%s#%s/%s' % (
machine_name, run, lane, tile, x, y, index, read)
yield constructor(seq, metadata={'id': seq_id,
'machine_name': machine_name,
'run_number': int(run),
'lane_number': int(lane),
'tile_number': int(tile),
'x': int(x),
'y': int(y),
'index': int(index),
'read_number': int(read)},
positional_metadata={'quality': phred},
**kwargs)
@qseq.reader(Sequence)
def _qseq_to_sequence(fh, seq_num=1, phred_offset=_default_phred_offset,
variant=_default_variant, **kwargs):
return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
phred_offset=phred_offset, variant=variant,
constructor=Sequence, **kwargs), seq_num)
@qseq.reader(DNA)
def _qseq_to_dna(fh, seq_num=1, phred_offset=_default_phred_offset,
variant=_default_variant, **kwargs):
return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
phred_offset=phred_offset, variant=variant,
constructor=DNA, **kwargs),
seq_num)
@qseq.reader(RNA)
def _qseq_to_rna(fh, seq_num=1, phred_offset=_default_phred_offset,
variant=_default_variant, **kwargs):
return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
phred_offset=phred_offset, variant=variant,
constructor=RNA, **kwargs),
seq_num)
@qseq.reader(Protein)
def _qseq_to_protein(fh, seq_num=1, phred_offset=_default_phred_offset,
variant=_default_variant, **kwargs):
return _get_nth_sequence(_qseq_to_generator(fh, filter=False,
phred_offset=phred_offset, variant=variant,
constructor=Protein, **kwargs),
seq_num)
def _record_parser(line):
fields = line.rstrip('\n')
if fields:
fields = fields.split('\t')
else:
raise QSeqFormatError('Found blank line.')
f_len = len(fields)
if not (10 <= f_len <= 11):
raise QSeqFormatError('Expected 10 or 11 fields, found %d.' % f_len)
# If the filter field was ommitted, assume that it passed filtering:
if f_len == 10:
fields.append('1')
(machine, run, lane, tile, x, y, index, read, seq, raw_qaul,
filter) = fields
_test_fields([('filter', filter)], lambda x: x in '01',
"0 or 1")
_test_fields([('read', read)], lambda x: x in '123',
"in the range [1, 3]")
_test_fields([('x', x), ('y', y)], lambda x: int(x) is not None,
"an integer")
_test_fields([('lane', lane), ('tile', tile)], lambda x: int(x) >= 0,
"a positive integer")
return (machine, run, lane, tile, x, y, index, read, seq, raw_qaul,
filter == '0')
def _test_fields(iterkv, test, efrag):
try:
for k, v in iterkv:
if not test(v):
raise ValueError()
except ValueError:
raise QSeqFormatError('Field %r is not %s.' % (k, efrag))
|