File: test_fasta.py

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (1074 lines) | stat: -rw-r--r-- 47,613 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

import copy
import io
import string
from unittest import TestCase, main
from functools import partial

import numpy as np

from skbio import Sequence, DNA, RNA, Protein, TabularMSA
from skbio.io import FASTAFormatError, QUALFormatError
from skbio.io.format.fasta import (
    _fasta_sniffer, _fasta_to_generator, _fasta_to_sequence,
    _fasta_to_dna, _fasta_to_rna, _fasta_to_protein,
    _fasta_to_tabular_msa, _generator_to_fasta,
    _sequence_to_fasta, _dna_to_fasta, _rna_to_fasta, _protein_to_fasta,
    _tabular_msa_to_fasta)
from skbio.sequence._grammared_sequence import GrammaredSequence
from skbio.util import get_data_path
from skbio.util._decorator import classproperty, overrides


class CustomSequence(GrammaredSequence):
    @classproperty
    @overrides(GrammaredSequence)
    def gap_chars(cls):
        return set('-.')

    @classproperty
    @overrides(GrammaredSequence)
    def default_gap_char(cls):
        return '-'

    @classproperty
    @overrides(GrammaredSequence)
    def definite_chars(cls):
        return set(string.ascii_letters)

    @classproperty
    @overrides(GrammaredSequence)
    def degenerate_map(cls):
        return {}


class SnifferTests(TestCase):
    def setUp(self):
        self.positive_fps = list(map(get_data_path, [
            'fasta_5_blanks_start_of_file',
            'fasta_5_ws_lines_start_of_file',
            'fasta_blanks_end_of_file',
            'fasta_ws_lines_end_of_file',
            'fasta_blank_lines_between_records',
            'fasta_3_seqs_defaults',
            'fasta_max_width_1',
            'fasta_single_bio_seq_non_defaults',
            'fasta_single_prot_seq_non_defaults',
            'fasta_3_seqs_non_defaults',
            'fasta_max_width_5',
            'fasta_single_dna_seq_defaults',
            'fasta_single_rna_seq_defaults',
            'fasta_description_newline_replacement_empty_str',
            'fasta_multi_seq',
            'fasta_single_dna_seq_non_defaults',
            'fasta_single_rna_seq_non_defaults',
            'fasta_description_newline_replacement_multi_char',
            'fasta_prot_seqs_odd_labels',
            'fasta_single_seq',
            'fasta_id_whitespace_replacement_empty_str',
            'fasta_tabular_msa_different_type',
            'fasta_id_whitespace_replacement_multi_char',
            'fasta_single_bio_seq_defaults',
            'fasta_single_prot_seq_defaults',
            'fasta_10_seqs',
            'fasta_invalid_after_10_seqs',
            'fasta_mixed_qual_scores',
            'qual_3_seqs_non_defaults'
        ]))

        self.negative_fps = list(map(get_data_path, [
            'empty',
            'whitespace_only',
            'fasta_invalid_missing_header',
            'fasta_invalid_blank_line_after_header',
            'fasta_invalid_blank_sequence',
            'fasta_invalid_blank_line_within_sequence',
            'fasta_invalid_whitespace_only_line_within_sequence',
            'fasta_invalid_whitespace_line_after_header',
            'fasta_invalid_missing_seq_data_first',
            'fasta_invalid_missing_seq_data_middle',
            'fasta_invalid_missing_seq_data_last',
            'fasta_invalid_legacy_format',
            'fasta_invalid_whitespace_only_sequence',
            'fasta_id_whitespace_replacement_none',
            'fasta_description_newline_replacement_none',
            'fasta_6_blanks_start_of_file',
            'fasta_6_ws_lines_start_of_file',
            'qual_2_seqs_defaults',
            'qual_3_seqs_defaults',
            'qual_3_seqs_defaults_desc_mismatch',
            'qual_3_seqs_defaults_extra',
            'qual_3_seqs_defaults_id_mismatch',
            'qual_3_seqs_defaults_length_mismatch',
            'qual_description_newline_replacement_empty_str',
            'qual_description_newline_replacement_multi_char',
            'qual_description_newline_replacement_none',
            'qual_id_whitespace_replacement_empty_str',
            'qual_id_whitespace_replacement_multi_char',
            'qual_id_whitespace_replacement_none',
            'qual_invalid_blank_line_within_seq',
            'qual_invalid_legacy_format',
            'qual_invalid_missing_header',
            'qual_invalid_missing_qual_scores_first',
            'qual_invalid_missing_qual_scores_last',
            'qual_invalid_missing_qual_scores_middle',
            'qual_invalid_whitespace_line_in_seq',
            'qual_invalid_blank_line_after_header',
            'qual_invalid_blank_sequence',
            'qual_invalid_whitespace_only_sequence',
            'qual_invalid_ws_line_after_header',
            'qual_invalid_qual_scores_float',
            'qual_invalid_qual_scores_string',
            'qual_max_width_1',
            'qual_max_width_5',
            'qual_multi_seq',
            'qual_multi_seq_roundtrip',
            'qual_prot_seqs_odd_labels',
            'qual_tabular_msa_different_type',
            'qual_single_bio_seq_non_defaults',
            'qual_single_dna_seq_non_defaults',
            'qual_single_prot_seq_non_defaults',
            'qual_single_rna_seq_non_defaults',
            'qual_single_seq',
            'qual_ws_lines_between_records',
            'qual_blank_lines_between_records',
            'qual_5_blanks_start_of_file',
            'qual_5_ws_lines_start_of_file',
            'qual_6_blanks_start_of_file',
            'qual_6_ws_lines_start_of_file',
            'qual_blanks_end_of_file',
            'qual_ws_lines_end_of_file'
        ]))

    def test_positives(self):
        for fp in self.positive_fps:
            self.assertEqual(_fasta_sniffer(fp), (True, {}))

    def test_negatives(self):
        for fp in self.negative_fps:
            self.assertEqual(_fasta_sniffer(fp), (False, {}))


class ReaderTests(TestCase):
    def setUp(self):
        # each structure stores the sequence generator results (expanded into a
        # list) that we expect to obtain from reading, matched with kwargs to
        # pass to the reader, and fasta and qual filepaths that should
        # deserialize into the expected generator results

        # empty file shouldn't yield sequences
        self.empty = ([], {}, list(map(get_data_path, ['empty',
                                                       'whitespace_only'])),
                      list(map(get_data_path, ['empty', 'whitespace_only'])))

        # single sequence
        self.single = (
            [Sequence(
                'ACGT-acgt.', metadata={'id': 'seq1', 'description': 'desc1'},
                positional_metadata={'quality':
                                     np.asarray([10, 20, 30, 10, 0, 0, 0, 255,
                                                 1, 255], dtype=np.uint8)})],
            {},
            list(map(get_data_path, ['fasta_single_seq',
                                     'fasta_max_width_1'])),
            list(map(get_data_path, ['qual_single_seq', 'qual_max_width_1']))
        )

        # multiple sequences
        self.multi = (
            [Sequence(
                'ACGT-acgt.', metadata={'id': 'seq1', 'description': 'desc1'},
                positional_metadata={'quality':
                                     np.asarray([10, 20, 30, 10, 0, 0, 0, 255,
                                                 1, 255], dtype=np.uint8)}),
             Sequence('A', metadata={'id': '_____seq__2_', 'description': ''},
                      positional_metadata={'quality':
                                           np.asarray([42], dtype=np.uint8)}),
             Sequence(
                'AACGGuA', metadata={'id': '', 'description': 'desc3'},
                positional_metadata={'quality':
                                     np.asarray([0, 0, 0, 0, 0, 0, 0],
                                                dtype=np.uint8)}),
             Sequence(
                'ACGTTGCAccGG',
                metadata={'id': '', 'description': ''},
                positional_metadata={'quality':
                                     np.asarray([55, 10, 0, 99, 1, 1, 8, 77,
                                                 40, 10, 10, 0],
                                                dtype=np.uint8)}),
             Sequence('ACGUU',
                      metadata={'id': '', 'description': ''},
                      positional_metadata={'quality':
                                           np.asarray([10, 9, 8, 7, 6],
                                                      dtype=np.uint8)}),
             Sequence(
                 'pQqqqPPQQQ',
                 metadata={'id': 'proteinseq',
                           'description':
                               'detailed description \t\twith  new  lines'},
                 positional_metadata={'quality':
                                      np.asarray([42, 42, 255, 255, 42, 42, 42,
                                                  42, 42, 43],
                                                 dtype=np.uint8)})],
            {},
            list(map(get_data_path, ['fasta_multi_seq', 'fasta_max_width_5',
                                     'fasta_blank_lines_between_records',
                                     'fasta_ws_lines_between_records',
                                     'fasta_5_blanks_start_of_file',
                                     'fasta_5_ws_lines_start_of_file',
                                     'fasta_6_blanks_start_of_file',
                                     'fasta_6_ws_lines_start_of_file',
                                     'fasta_blanks_end_of_file',
                                     'fasta_ws_lines_end_of_file'])),
            list(map(get_data_path, ['qual_multi_seq', 'qual_max_width_5',
                                     'qual_blank_lines_between_records',
                                     'qual_ws_lines_between_records',
                                     'qual_5_blanks_start_of_file',
                                     'qual_5_ws_lines_start_of_file',
                                     'qual_6_blanks_start_of_file',
                                     'qual_6_ws_lines_start_of_file',
                                     'qual_blanks_end_of_file',
                                     'qual_ws_lines_end_of_file']))

        )

        # test constructor parameter, as well as odd labels (label only
        # containing whitespace, label description preceded by multiple spaces,
        # no id) and leading/trailing whitespace on sequence data. for qual
        # files, in addition to the odd labels, test leading/trailing
        # whitespace on qual scores, as well as strange number formatting.
        # also test that fasta and qual headers do not need to match
        # exactly, only that they need to match exactly after parsing (e.g.,
        # after stripping leading/trailing whitespace from descriptions)
        self.odd_labels_different_type = (
            [Protein('DEFQfp',
                     metadata={'id': '', 'description': ''},
                     positional_metadata={'quality':
                                          np.asarray([0, 0, 1, 5, 44, 0],
                                                     dtype=np.uint8)},
                     validate=False),
             Protein(
                 'SKBI', metadata={'id': '', 'description': 'skbio'},
                 positional_metadata={'quality':
                                      np.asarray([1, 2, 33, 123],
                                                 dtype=np.uint8)})],
            {'constructor': partial(Protein, validate=False)},
            list(map(get_data_path, ['fasta_prot_seqs_odd_labels'])),
            list(map(get_data_path, ['qual_prot_seqs_odd_labels']))
        )

        # sequences that can be loaded into a TabularMSA
        self.tabular_msa_different_type = (
            [RNA('aUG',
                 metadata={'id': '', 'description': ''},
                 positional_metadata={'quality':
                                      np.asarray([20, 20, 21],
                                                 dtype=np.uint8)},
                 lowercase='introns'),
             RNA('AuC',
                 metadata={'id': 'rnaseq-1', 'description': 'rnaseq desc 1'},
                 positional_metadata={'quality':
                                      np.asarray([10, 9, 10], dtype=np.uint8)},
                 lowercase='introns'),
             RNA('AUg',
                 metadata={'id': 'rnaseq-2', 'description': 'rnaseq desc 2'},
                 positional_metadata={'quality':
                                      np.asarray([9, 99, 99], dtype=np.uint8)},
                 lowercase='introns')],
            {'constructor': partial(RNA, lowercase='introns')},
            list(map(get_data_path,
                     ['fasta_tabular_msa_different_type'])),
            list(map(get_data_path,
                     ['qual_tabular_msa_different_type']))
        )

        self.lowercase_seqs = (
            [DNA('TAcg',
                 metadata={'id': 'f-o-o', 'description': 'b_a_r'},
                 positional_metadata={'quality':
                                      np.asarray([0, 1, 2, 3],
                                                 dtype=np.uint8)},
                 lowercase='introns')],
            {'constructor': DNA, 'lowercase': 'introns'},
            list(map(get_data_path,
                     ['fasta_single_dna_seq_non_defaults'])),
            list(map(get_data_path,
                     ['qual_single_dna_seq_non_defaults']))
        )

        # store fasta filepath, kwargs, error type, and expected error message
        # for invalid input.
        #
        # note: there is some duplication in testing that fasta and qual
        # parsers raise expected errors. even though the parsers share the same
        # underlying logic, these tests are here as a safeguard in case the
        # code is refactored in the future such that fasta and qual have
        # different implementations (e.g., if qual is written in cython while
        # fasta remains in python)
        self.invalid_fps = list(map(lambda e: (get_data_path(e[0]),
                                               e[1], e[2], e[3]), [
            # fasta and qual missing header
            ('fasta_invalid_missing_header', {}, FASTAFormatError,
             'non-header.*1st'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_missing_header')},
             QUALFormatError, 'non-header.*1st'),

            # fasta and qual with blank line within sequence
            ('fasta_invalid_blank_line_within_sequence', {}, FASTAFormatError,
             'whitespace-only'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_blank_line_within_seq')},
             QUALFormatError, 'whitespace-only'),

            # fasta and qual with blank after header
            ('fasta_invalid_blank_sequence', {}, FASTAFormatError,
             'without sequence data'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_blank_sequence')},
             QUALFormatError, 'without quality scores'),

            # fasta and qual with whitespace only sequence
            ('fasta_invalid_whitespace_only_sequence', {}, FASTAFormatError,
             'without sequence data'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_whitespace_only_sequence')},
             QUALFormatError, 'without quality scores'),

            # fasta and qual with blank line within sequence
            ('fasta_invalid_blank_line_after_header', {}, FASTAFormatError,
             'whitespace-only'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_blank_line_after_header')},
             QUALFormatError, 'whitespace-only'),

            # fasta and qual with whitespace-only line within sequence
            ('fasta_invalid_whitespace_only_line_within_sequence',
             {}, FASTAFormatError, 'whitespace-only'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_whitespace_line_in_seq')},
             QUALFormatError, 'whitespace-only'),

            # fasta and qual with whitespace-only line after header
            ('fasta_invalid_whitespace_line_after_header',
             {}, FASTAFormatError, 'whitespace-only'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_ws_line_after_header')},
             QUALFormatError, 'whitespace-only'),

            # fasta and qual missing record data (first record)
            ('fasta_invalid_missing_seq_data_first', {}, FASTAFormatError,
             'without sequence data'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_missing_qual_scores_first')},
             QUALFormatError, 'without quality scores'),

            # fasta and qual missing record data (middle record)
            ('fasta_invalid_missing_seq_data_middle', {}, FASTAFormatError,
             'without sequence data'),
            ('fasta_3_seqs_defaults',
             {'qual':
              get_data_path('qual_invalid_missing_qual_scores_middle')},
             QUALFormatError, 'without quality scores'),

            # fasta and qual missing record data (last record)
            ('fasta_invalid_missing_seq_data_last', {}, FASTAFormatError,
             'without sequence data'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_missing_qual_scores_last')},
             QUALFormatError, 'without quality scores'),

            # fasta and qual in legacy format (;)
            ('fasta_invalid_legacy_format', {}, FASTAFormatError,
             'non-header.*1st'),
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_legacy_format')},
             QUALFormatError, 'non-header.*1st'),

            # qual file with an extra record
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_3_seqs_defaults_extra')},
             FASTAFormatError, 'QUAL file has more'),

            # fasta file with an extra record
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_2_seqs_defaults')},
             FASTAFormatError, 'FASTA file has more'),

            # id mismatch between fasta and qual
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_3_seqs_defaults_id_mismatch')},
             FASTAFormatError,
             'IDs do not match.*\'s_e_q_2\' != \'s_e_q_42\''),

            # description mismatch between fasta and qual
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_3_seqs_defaults_desc_mismatch')},
             FASTAFormatError,
             'Descriptions do not match.*\'desc 2\' != \'desc 42\''),

            # sequence and quality score length mismatch between fasta and qual
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_3_seqs_defaults_length_mismatch')},
             ValueError,
             'Number of positional metadata values \(3\) must match the '
             'positional metadata axis length \(4\)\.'),

            # invalid qual scores (string value can't be converted to integer)
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_qual_scores_string')},
             QUALFormatError,
             'quality scores to integers:\n100 0 1a -42'),

            # invalid qual scores (float value can't be converted to integer)
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_qual_scores_float')},
             QUALFormatError,
             'quality scores to integers:\n42    41.0 39 40'),

            # invalid qual scores (negative integer)
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_qual_scores_negative')},
             QUALFormatError,
             'Quality scores must be greater than or equal to zero\.'),

            # invalid qual scores (over 255)
            ('fasta_3_seqs_defaults',
             {'qual': get_data_path('qual_invalid_qual_scores_over_255')},
             QUALFormatError,
             'quality score\(s\) greater than 255'),

            # misc. invalid files used elsewhere in the tests
            ('fasta_invalid_after_10_seqs', {}, FASTAFormatError,
             'without sequence data'),
            ('fasta_id_whitespace_replacement_none', {}, FASTAFormatError,
             'whitespace-only'),
            ('fasta_description_newline_replacement_none', {},
             FASTAFormatError, 'whitespace-only')
        ]))

    # extensive tests for fasta -> generator reader since it is used by all
    # other fasta -> object readers

    def test_fasta_to_generator_valid_files(self):
        test_cases = (self.empty, self.single, self.multi,
                      self.odd_labels_different_type,
                      self.tabular_msa_different_type,
                      self.lowercase_seqs)

        # Strategy:
        #   for each fasta file, read it without its corresponding qual file,
        #   and ensure observed vs. expected match, ignoring quality scores in
        #   expected. next, parse the current fasta file with each
        #   corresponding quality file and ensure that observed vs. expected
        #   match, this time taking quality scores into account. this
        #   sufficiently exercises parsing a standalone fasta file and paired
        #   fasta/qual files
        for exp, kwargs, fasta_fps, qual_fps in test_cases:
            for fasta_fp in fasta_fps:
                obs = list(_fasta_to_generator(fasta_fp, **kwargs))
                self.assertEqual(len(obs), len(exp))
                for o, e in zip(obs, exp):
                    e = copy.copy(e)
                    del e.positional_metadata['quality']
                    self.assertEqual(o, e)

                for qual_fp in qual_fps:
                    obs = list(_fasta_to_generator(fasta_fp, qual=qual_fp,
                                                   **kwargs))

                    self.assertEqual(len(obs), len(exp))
                    for o, e in zip(obs, exp):
                        self.assertEqual(o, e)

    def test_fasta_to_generator_invalid_files(self):
        for fp, kwargs, error_type, error_msg_regex in self.invalid_fps:
            with self.assertRaisesRegex(error_type, error_msg_regex):
                list(_fasta_to_generator(fp, **kwargs))

    # light testing of fasta -> object readers to ensure interface is present
    # and kwargs are passed through. extensive testing of underlying reader is
    # performed above

    def test_fasta_to_any_sequence(self):
        for constructor, reader_fn in ((Sequence,
                                        _fasta_to_sequence),
                                       (partial(DNA, validate=False,
                                                lowercase='introns'),
                                        partial(_fasta_to_dna,
                                                validate=False,
                                                lowercase='introns')),
                                       (partial(RNA, validate=False,
                                                lowercase='introns'),
                                        partial(_fasta_to_rna,
                                                validate=False,
                                                lowercase='introns')),
                                       (partial(Protein, lowercase='introns'),
                                        partial(_fasta_to_protein,
                                                validate=False,
                                                lowercase='introns'))):

            # empty file
            empty_fp = get_data_path('empty')
            with self.assertRaisesRegex(ValueError, '1st sequence'):
                reader_fn(empty_fp)
            with self.assertRaisesRegex(ValueError, '1st sequence'):
                reader_fn(empty_fp, qual=empty_fp)

            # the sequences in the following files don't necessarily make sense
            # for each of the sequence object types that they're read into
            # (e.g., reading a protein sequence into a dna sequence object).
            # however, for the purposes of testing the various
            # fasta -> sequence readers, this works out okay as it is valid to
            # construct a sequence object with invalid characters. we're
            # interested in testing the reading logic here, and don't care so
            # much about constructing semantically-meaningful/valid sequence
            # objects

            # file with only 1 seq, get first
            fasta_fps = list(map(get_data_path,
                                 ['fasta_single_seq', 'fasta_max_width_1']))
            for fasta_fp in fasta_fps:
                exp = constructor(
                    'ACGT-acgt.',
                    metadata={'id': 'seq1', 'description': 'desc1'})

                obs = reader_fn(fasta_fp)
                self.assertEqual(obs, exp)

                exp.positional_metadata.insert(
                    0, 'quality',
                    np.asarray([10, 20, 30, 10, 0, 0, 0, 255, 1, 255],
                               dtype=np.uint8))
                qual_fps = list(map(get_data_path,
                                    ['qual_single_seq', 'qual_max_width_1']))
                for qual_fp in qual_fps:
                    obs = reader_fn(fasta_fp, qual=qual_fp)
                    self.assertEqual(obs, exp)

            # file with multiple seqs
            fasta_fps = list(map(get_data_path,
                                 ['fasta_multi_seq', 'fasta_max_width_5']))
            qual_fps = list(map(get_data_path,
                                ['qual_multi_seq', 'qual_max_width_5']))
            for fasta_fp in fasta_fps:
                # get first
                exp = constructor(
                    'ACGT-acgt.',
                    metadata={'id': 'seq1', 'description': 'desc1'})

                obs = reader_fn(fasta_fp)
                self.assertEqual(obs, exp)

                exp.positional_metadata.insert(
                    0, 'quality',
                    np.asarray([10, 20, 30, 10, 0, 0, 0, 255, 1, 255],
                               dtype=np.uint8))
                for qual_fp in qual_fps:
                    obs = reader_fn(fasta_fp, qual=qual_fp)
                    self.assertEqual(obs, exp)

                # get middle
                exp = constructor('ACGTTGCAccGG',
                                  metadata={'id': '', 'description': ''})

                obs = reader_fn(fasta_fp, seq_num=4)
                self.assertEqual(obs, exp)

                exp.positional_metadata.insert(
                    0, 'quality',
                    np.asarray([55, 10, 0, 99, 1, 1, 8, 77, 40, 10, 10, 0],
                               dtype=np.uint8))
                for qual_fp in qual_fps:
                    obs = reader_fn(fasta_fp, seq_num=4, qual=qual_fp)
                    self.assertEqual(obs, exp)

                # get last
                exp = constructor(
                    'pQqqqPPQQQ',
                    metadata={'id': 'proteinseq',
                              'description':
                                  'detailed description \t\twith  new  lines'})

                obs = reader_fn(fasta_fp, seq_num=6)
                self.assertEqual(obs, exp)

                exp.positional_metadata.insert(
                    0, 'quality',
                    np.asarray([42, 42, 255, 255, 42, 42, 42, 42, 42, 43],
                               dtype=np.uint8))
                for qual_fp in qual_fps:
                    obs = reader_fn(fasta_fp, seq_num=6, qual=qual_fp)
                    self.assertEqual(obs, exp)

                # seq_num too large
                with self.assertRaisesRegex(ValueError, '8th sequence'):
                    reader_fn(fasta_fp, seq_num=8)
                for qual_fp in qual_fps:
                    with self.assertRaisesRegex(ValueError, '8th sequence'):
                        reader_fn(fasta_fp, seq_num=8, qual=qual_fp)

                # seq_num too small
                with self.assertRaisesRegex(ValueError, '`seq_num`=0'):
                    reader_fn(fasta_fp, seq_num=0)
                for qual_fp in qual_fps:
                    with self.assertRaisesRegex(ValueError, '`seq_num`=0'):
                        reader_fn(fasta_fp, seq_num=0, qual=qual_fp)

    def test_fasta_to_tabular_msa(self):
        test_cases = (self.empty, self.single,
                      self.tabular_msa_different_type,
                      self.lowercase_seqs)

        # see comment in test_fasta_to_generator_valid_files (above) for
        # testing strategy
        for exp_list, kwargs, fasta_fps, qual_fps in test_cases:
            if 'constructor' not in kwargs:
                kwargs['constructor'] = CustomSequence
                exp_list = [CustomSequence(seq) for seq in exp_list]

            exp = TabularMSA(exp_list)

            for fasta_fp in fasta_fps:
                obs = _fasta_to_tabular_msa(fasta_fp, **kwargs)

                self.assertEqual(len(obs), len(exp))
                for o, e in zip(obs, exp):
                    e = copy.copy(e)
                    del e.positional_metadata['quality']
                    self.assertEqual(o, e)

                for qual_fp in qual_fps:
                    obs = _fasta_to_tabular_msa(fasta_fp, qual=qual_fp,
                                                **kwargs)
                    self.assertEqual(obs, exp)

    def test_fasta_to_tabular_msa_no_constructor(self):
        with self.assertRaisesRegex(ValueError, '`constructor`'):
            _fasta_to_tabular_msa(get_data_path('fasta_single_seq'))


class WriterTests(TestCase):
    def setUp(self):
        self.bio_seq1 = DNA(
            'ACGT-acgt.',
            metadata={'id': 'seq1', 'description': 'desc1'},
            positional_metadata={'quality': [10, 20, 30, 10, 0, 0, 0, 255,
                                             1, 255]},
            lowercase='introns')
        self.bio_seq2 = DNA(
            'A',
            metadata={'id': ' \n  \nseq \t2 '},
            positional_metadata={'quality': [42]},
            lowercase='introns')
        self.bio_seq3 = RNA(
            'AACGGuA',
            metadata={'description': 'desc3'},
            positional_metadata={'quality': [0, 0, 0, 0, 0, 0, 0]},
            lowercase='introns')
        self.dna_seq = DNA(
            'ACGTTGCAccGG',
            positional_metadata={'quality': [55, 10, 0, 99, 1, 1, 8, 77, 40,
                                             10, 10, 0]},
            lowercase='introns')
        self.rna_seq = RNA('ACGUU',
                           positional_metadata={'quality': [10, 9, 8, 7, 6]},
                           lowercase='introns')
        self.prot_seq = Protein(
            'pQqqqPPQQQ',
            metadata={'id': 'proteinseq',
                      'description': "\ndetailed\ndescription \t\twith "
                                     " new\n\nlines\n\n\n"},
            positional_metadata={'quality': [42, 42, 255, 255, 42, 42, 42, 42,
                                             42, 43]},
            lowercase='introns')

        seqs = [
            CustomSequence(
                'UUUU',
                metadata={'id': 's\te\tq\t1', 'description': 'desc\n1'},
                positional_metadata={'quality': [1234, 0, 0, 2]},
                lowercase='introns'),
            CustomSequence(
                'CATC',
                metadata={'id': 's\te\tq\t2', 'description': 'desc\n2'},
                positional_metadata={'quality': [1, 11, 111, 11112]}),
            CustomSequence(
                'sits',
                metadata={'id': 's\te\tq\t3', 'description': 'desc\n3'},
                positional_metadata={'quality': [12345, 678909, 999999,
                                                 4242424242]})
        ]
        self.msa = TabularMSA(seqs)

        def empty_gen():
            yield from ()

        def single_seq_gen():
            yield self.bio_seq1

        # generate sequences with descriptions containing newlines (to test
        # description_newline_replacement)
        def newline_description_gen():
            yield self.prot_seq
            yield DNA('AGGAGAATA',
                      metadata={'id': 'foo', 'description': '\n\n\n\n'},
                      positional_metadata={'quality': range(9)},
                      lowercase='introns')

        # generate sequences with ids containing whitespace (to test
        # id_whitespace_replacement)
        def whitespace_id_gen():
            yield self.bio_seq2
            yield RNA('UA', metadata={'id': '\n\t \t', 'description': 'a\nb'},
                      positional_metadata={'quality': [1000, 1]})

        # multiple sequences of mixed types, lengths, and metadata. lengths are
        # chosen to exercise various splitting cases when testing max_width,
        # including exercising the different splitting algorithms used for
        # sequence data vs. quality scores
        def multi_seq_gen():
            yield from (self.bio_seq1, self.bio_seq2, self.bio_seq3,
                        self.dna_seq, self.rna_seq, self.prot_seq)

        # can be serialized if no qual file is provided, else it should raise
        # an error because one seq has qual scores and the other doesn't
        def mixed_qual_score_gen():
            yield self.bio_seq1
            yield DNA('AAAAT',
                      metadata={'id': 'da,dadadada',
                                'description': '10 hours'},
                      lowercase='introns')

        self.mixed_qual_score_gen = mixed_qual_score_gen()

        # store sequence generator to serialize, writer kwargs (if any), and
        # fasta and qual filepaths of expected results
        self.objs_fps = list(map(lambda e: (e[0], e[1], get_data_path(e[2]),
                                            get_data_path(e[3])), [
            (empty_gen(), {}, 'empty', 'empty'),
            (single_seq_gen(), {'lowercase': 'introns'}, 'fasta_single_seq',
             'qual_single_seq'),

            # no splitting of sequence or qual data across lines b/c max_width
            # is sufficiently large
            (single_seq_gen(), {'max_width': 32, 'lowercase': 'introns'},
             'fasta_single_seq',
             'qual_single_seq'),

            # splitting algorithm for sequence and qual scores is different;
            # make sure individual qual scores aren't split across lines even
            # if they exceed max_width
            (single_seq_gen(), {'max_width': 1, 'lowercase': 'introns'},
             'fasta_max_width_1',
             'qual_max_width_1'),
            (multi_seq_gen(),
             {'lowercase': 'introns'}, 'fasta_multi_seq', 'qual_multi_seq'),
            (multi_seq_gen(),
             {'max_width': 5, 'lowercase': 'introns'}, 'fasta_max_width_5',
             'qual_max_width_5'),
            (newline_description_gen(),
             {'description_newline_replacement': ':-)',
              'lowercase': 'introns'},
             'fasta_description_newline_replacement_multi_char',
             'qual_description_newline_replacement_multi_char'),
            (newline_description_gen(),
             {'description_newline_replacement': '',
              'lowercase': 'introns'},
             'fasta_description_newline_replacement_empty_str',
             'qual_description_newline_replacement_empty_str',),
            (newline_description_gen(),
             {'description_newline_replacement': None,
              'lowercase': 'introns'},
             'fasta_description_newline_replacement_none',
             'qual_description_newline_replacement_none'),
            (whitespace_id_gen(),
             {'id_whitespace_replacement': '>:o'},
             'fasta_id_whitespace_replacement_multi_char',
             'qual_id_whitespace_replacement_multi_char'),
            (whitespace_id_gen(),
             {'id_whitespace_replacement': ''},
             'fasta_id_whitespace_replacement_empty_str',
             'qual_id_whitespace_replacement_empty_str'),
            (whitespace_id_gen(),
             {'id_whitespace_replacement': None},
             'fasta_id_whitespace_replacement_none',
             'qual_id_whitespace_replacement_none'),
        ]))

        def blank_seq_gen():
            yield from (self.bio_seq1, Sequence(''))

        # generators or parameter combos that cannot be written in fasta
        # format, paired with kwargs (if any), error type, and expected error
        # message regexp
        self.invalid_objs = [
            (blank_seq_gen(), {}, ValueError, '2nd.*empty'),
            (single_seq_gen(),
             {'max_width': 0}, ValueError, 'max_width=0'),
            (multi_seq_gen(), {'id_whitespace_replacement': '-\n_'},
             ValueError, 'Newline character'),
            (multi_seq_gen(), {'description_newline_replacement': '-.-\n'},
             ValueError, 'Newline character'),
            (mixed_qual_score_gen(), {'qual': io.StringIO()}, ValueError,
             '2nd sequence.*does not have quality scores')
        ]

    # extensive tests for generator -> fasta writer since it is used by all
    # other object -> fasta writers

    def test_generator_to_fasta_no_qual(self):
        # test writing standalone fasta (i.e., without a qual file)
        for obj, kwargs, fp, _ in self.objs_fps:
            fh = io.StringIO()
            _generator_to_fasta(obj, fh, **kwargs)
            obs = fh.getvalue()
            fh.close()

            with io.open(fp) as fh:
                exp = fh.read()
            self.assertEqual(obs, exp)

    def test_generator_to_fasta_mixed_qual_scores(self):
        # test writing some sequences with qual scores and some without is
        # possible if no qual output file is specified
        fh = io.StringIO()
        _generator_to_fasta(self.mixed_qual_score_gen, fh, lowercase='introns')
        obs = fh.getvalue()
        fh.close()

        with io.open(get_data_path('fasta_mixed_qual_scores')) as fh:
            exp = fh.read()

        self.assertEqual(obs, exp)

    def test_generator_to_fasta_with_qual(self):
        # test writing fasta and qual files
        for obj, kwargs, fasta_fp, qual_fp in self.objs_fps:
            if qual_fp is not None:
                fasta_fh = io.StringIO()
                qual_fh = io.StringIO()
                _generator_to_fasta(obj, fasta_fh, qual=qual_fh, **kwargs)
                obs_fasta = fasta_fh.getvalue()
                obs_qual = qual_fh.getvalue()
                fasta_fh.close()
                qual_fh.close()

                with io.open(fasta_fp) as fh:
                    exp_fasta = fh.read()
                with io.open(qual_fp) as fh:
                    exp_qual = fh.read()

                self.assertEqual(obs_fasta, exp_fasta)
                self.assertEqual(obs_qual, exp_qual)

    def test_generator_to_fasta_invalid_input(self):
        for obj, kwargs, error_type, error_msg_regexp in self.invalid_objs:
            fh = io.StringIO()
            with self.assertRaisesRegex(error_type, error_msg_regexp):
                _generator_to_fasta(obj, fh, **kwargs)
            fh.close()

    # light testing of object -> fasta writers to ensure interface is present
    # and kwargs are passed through. extensive testing of underlying writer is
    # performed above
    def test_any_sequence_to_fasta(self):
        # store writer function, sequence object to write, expected
        # fasta filepath for default parameters, expected fasta filepath for
        # non-defaults, and expected qual filepath for non-defaults
        id_ = 'f o o'
        desc = 'b\na\nr'
        test_data = (
            (partial(_sequence_to_fasta, lowercase='introns'),
             Sequence('ACgt', metadata={'id': id_, 'description': desc},
                      positional_metadata={'quality': range(1, 5)},
                      lowercase='introns'),
             ('fasta_single_bio_seq_defaults',
              'fasta_single_bio_seq_non_defaults',
              'qual_single_bio_seq_non_defaults')),
            (partial(_dna_to_fasta, lowercase='introns'),
             DNA('TAcg', metadata={'id': id_, 'description': desc},
                 positional_metadata={'quality': range(4)},
                 lowercase='introns'),
             ('fasta_single_dna_seq_defaults',
              'fasta_single_dna_seq_non_defaults',
              'qual_single_dna_seq_non_defaults')),
            (partial(_rna_to_fasta, lowercase='introns'),
             RNA('uaCG', metadata={'id': id_, 'description': desc},
                 positional_metadata={'quality': range(2, 6)},
                 lowercase='introns'),
             ('fasta_single_rna_seq_defaults',
              'fasta_single_rna_seq_non_defaults',
              'qual_single_rna_seq_non_defaults')),
            (partial(_protein_to_fasta, lowercase='introns'),
             Protein('PqQ', metadata={'id': id_, 'description': desc},
                     positional_metadata={'quality': [42, 41, 40]},
                     lowercase='introns'),
             ('fasta_single_prot_seq_defaults',
              'fasta_single_prot_seq_non_defaults',
              'qual_single_prot_seq_non_defaults')))

        for fn, obj, fps in test_data:
            defaults_fp, non_defaults_fasta_fp, non_defaults_qual_fp = fps

            # test writing with default parameters
            fh = io.StringIO()
            fn(obj, fh)
            obs = fh.getvalue()
            fh.close()

            with io.open(get_data_path(defaults_fp)) as fh:
                exp = fh.read()

            self.assertEqual(obs, exp)

            # test writing with non-defaults
            fasta_fh = io.StringIO()
            qual_fh = io.StringIO()
            fn(obj, fasta_fh, id_whitespace_replacement='-',
               description_newline_replacement='_', max_width=1, qual=qual_fh)
            obs_fasta = fasta_fh.getvalue()
            obs_qual = qual_fh.getvalue()
            fasta_fh.close()
            qual_fh.close()

            with io.open(get_data_path(non_defaults_fasta_fp)) as fh:
                exp_fasta = fh.read()
            with io.open(get_data_path(non_defaults_qual_fp)) as fh:
                exp_qual = fh.read()

            self.assertEqual(obs_fasta, exp_fasta)
            self.assertEqual(obs_qual, exp_qual)

    def test_any_sequences_to_fasta(self):
        # test writing with default parameters
        fh = io.StringIO()
        _tabular_msa_to_fasta(self.msa, fh)
        obs = fh.getvalue()
        fh.close()

        with io.open(get_data_path('fasta_3_seqs_defaults')) as fh:
            exp = fh.read()

        self.assertEqual(obs, exp)

        # test writing with non-defaults
        fasta_fh = io.StringIO()
        qual_fh = io.StringIO()
        _tabular_msa_to_fasta(self.msa, fasta_fh,
                              id_whitespace_replacement='*',
                              description_newline_replacement='+', max_width=3,
                              qual=qual_fh)
        obs_fasta = fasta_fh.getvalue()
        obs_qual = qual_fh.getvalue()
        fasta_fh.close()
        qual_fh.close()

        with io.open(get_data_path('fasta_3_seqs_non_defaults')) as fh:
            exp_fasta = fh.read()
        with io.open(get_data_path('qual_3_seqs_non_defaults')) as fh:
            exp_qual = fh.read()

        self.assertEqual(obs_fasta, exp_fasta)
        self.assertEqual(obs_qual, exp_qual)


class RoundtripTests(TestCase):
    def test_roundtrip_generators(self):
        # test that fasta and qual files can be streamed into memory and back
        # out to disk using generator reader and writer
        fps = list(map(lambda e: list(map(get_data_path, e)),
                       [('empty', 'empty'),
                        ('fasta_multi_seq_roundtrip',
                         'qual_multi_seq_roundtrip')]))

        for fasta_fp, qual_fp in fps:
            with io.open(fasta_fp) as fh:
                exp_fasta = fh.read()
            with io.open(qual_fp) as fh:
                exp_qual = fh.read()

            fasta_fh = io.StringIO()
            qual_fh = io.StringIO()
            _generator_to_fasta(_fasta_to_generator(fasta_fp, qual=qual_fp),
                                fasta_fh, qual=qual_fh)
            obs_fasta = fasta_fh.getvalue()
            obs_qual = qual_fh.getvalue()
            fasta_fh.close()
            qual_fh.close()

            self.assertEqual(obs_fasta, exp_fasta)
            self.assertEqual(obs_qual, exp_qual)

    def test_roundtrip_tabular_msa(self):
        fps = list(map(lambda e: list(map(get_data_path, e)),
                       [('empty', 'empty'),
                        ('fasta_tabular_msa_different_type',
                         'qual_tabular_msa_different_type')]))

        reader = partial(_fasta_to_tabular_msa, constructor=CustomSequence)
        writer = _tabular_msa_to_fasta
        for fasta_fp, qual_fp in fps:
            # read
            obj1 = reader(fasta_fp, qual=qual_fp)

            # write
            fasta_fh = io.StringIO()
            qual_fh = io.StringIO()
            writer(obj1, fasta_fh, qual=qual_fh)
            fasta_fh.seek(0)
            qual_fh.seek(0)

            # read
            obj2 = reader(fasta_fh, qual=qual_fh)
            fasta_fh.close()
            qual_fh.close()

            self.assertEqual(obj1, obj2)

    def test_roundtrip_biological_sequences(self):
        fps = list(map(lambda e: list(map(get_data_path, e)),
                       [('fasta_multi_seq_roundtrip',
                         'qual_multi_seq_roundtrip'),
                        ('fasta_tabular_msa_different_type',
                         'qual_tabular_msa_different_type')]))

        for reader, writer in ((_fasta_to_sequence,
                                _sequence_to_fasta),
                               (partial(_fasta_to_dna,
                                        validate=False),
                                _dna_to_fasta),
                               (partial(_fasta_to_rna,
                                        validate=False),
                                _rna_to_fasta),
                               (partial(_fasta_to_protein,
                                        validate=False),
                                _protein_to_fasta)):
            for fasta_fp, qual_fp in fps:
                # read
                obj1 = reader(fasta_fp, qual=qual_fp)

                # write
                fasta_fh = io.StringIO()
                qual_fh = io.StringIO()
                writer(obj1, fasta_fh, qual=qual_fh)
                fasta_fh.seek(0)
                qual_fh.seek(0)

                # read
                obj2 = reader(fasta_fh, qual=qual_fh)
                fasta_fh.close()
                qual_fh.close()

                self.assertEqual(obj1, obj2)


if __name__ == '__main__':
    main()