1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import io
from unittest import TestCase, main
from skbio import DistanceMatrix
from skbio.io import LSMatFormatError
from skbio.io.format.lsmat import (
_lsmat_to_dissimilarity_matrix, _lsmat_to_distance_matrix,
_dissimilarity_matrix_to_lsmat, _distance_matrix_to_lsmat, _lsmat_sniffer)
from skbio.stats.distance import DissimilarityMatrix, DistanceMatrixError
class LSMatTestData(TestCase):
def setUp(self):
self.lsmat_1x1_fh = io.StringIO(LSMat_1x1)
self.lsmat_2x2_fh = io.StringIO(LSMat_2x2)
self.lsmat_2x2_asym_fh = io.StringIO(LSMat_2x2_ASYM)
self.lsmat_3x3_fh = io.StringIO(LSMat_3x3)
self.lsmat_3x3_whitespace_fh = io.StringIO(LSMat_3x3_WHITESPACE)
self.lsmat_3x3_csv_fh = io.StringIO(LSMat_3x3_CSV)
self.valid_fhs = [
self.lsmat_1x1_fh,
self.lsmat_2x2_fh,
self.lsmat_2x2_asym_fh,
self.lsmat_3x3_fh,
self.lsmat_3x3_whitespace_fh
]
self.empty_fh = io.StringIO()
self.invalid_1_fh = io.StringIO(INVALID_1)
self.invalid_2_fh = io.StringIO(INVALID_2)
self.invalid_3_fh = io.StringIO(INVALID_3)
self.invalid_4_fh = io.StringIO(INVALID_4)
self.invalid_5_fh = io.StringIO(INVALID_5)
self.invalid_6_fh = io.StringIO(INVALID_6)
self.invalid_fhs = [
(self.empty_fh, 'empty'),
(self.invalid_1_fh, '1 value\(s\).*2.*\(2\)'),
(self.invalid_2_fh, "'b'.*'a'"),
(self.invalid_3_fh, 'extra row\(s\)'),
(self.invalid_4_fh, '2 row\(s\).*found 1'),
(self.invalid_5_fh, '2 row\(s\).*found 0'),
(self.invalid_6_fh, r"delimiter '\\t'")
]
class DissimilarityAndDistanceMatrixReaderWriterTests(LSMatTestData):
def setUp(self):
super(DissimilarityAndDistanceMatrixReaderWriterTests, self).setUp()
self.lsmat_1x1_data = [[0.0]]
self.lsmat_2x2_data = [[0.0, 0.123], [0.123, 0.0]]
self.lsmat_2x2_asym_data = [[0.0, 1.0], [-2.0, 0.0]]
self.lsmat_3x3_data = [[0.0, 0.01, 4.2], [0.01, 0.0, 12.0],
[4.2, 12.0, 0.0]]
# We repeat the 3x3 example because there are two file format
# representations of it, one that is messy and one that is not. Both
# should be read into an equivalent object and written to an equivalent
# format though, which is why we duplicate the 3x3 objects and strings.
self.dissim_objs = [
DissimilarityMatrix(self.lsmat_1x1_data, ['a']),
DissimilarityMatrix(self.lsmat_2x2_data, ['a', 'b']),
DissimilarityMatrix(self.lsmat_2x2_asym_data, ['a', 'b']),
DissimilarityMatrix(self.lsmat_3x3_data, ['a', 'b', 'c']),
DissimilarityMatrix(self.lsmat_3x3_data, ['a', 'b', 'c'])
]
self.dissim_strs = [LSMat_1x1, LSMat_2x2, LSMat_2x2_ASYM, LSMat_3x3,
LSMat_3x3]
self.dissim_fhs = [self.lsmat_1x1_fh, self.lsmat_2x2_fh,
self.lsmat_2x2_asym_fh, self.lsmat_3x3_fh,
self.lsmat_3x3_whitespace_fh]
self.dist_objs = [
DistanceMatrix(self.lsmat_1x1_data, ['a']),
DistanceMatrix(self.lsmat_2x2_data, ['a', 'b']),
DistanceMatrix(self.lsmat_3x3_data, ['a', 'b', 'c']),
DistanceMatrix(self.lsmat_3x3_data, ['a', 'b', 'c'])
]
self.dist_strs = [LSMat_1x1, LSMat_2x2, LSMat_3x3, LSMat_3x3]
self.dist_fhs = [self.lsmat_1x1_fh, self.lsmat_2x2_fh,
self.lsmat_3x3_fh, self.lsmat_3x3_whitespace_fh]
def test_read_valid_files(self):
for fn, cls, objs, fhs in ((_lsmat_to_dissimilarity_matrix,
DissimilarityMatrix, self.dissim_objs,
self.dissim_fhs),
(_lsmat_to_distance_matrix, DistanceMatrix,
self.dist_objs, self.dist_fhs)):
for fh, obj in zip(fhs, objs):
fh.seek(0)
obs = fn(fh)
self.assertEqual(obs, obj)
self.assertIsInstance(obs, cls)
# Above files are TSV (default delimiter). Test that CSV works too.
for fn, cls in ((_lsmat_to_dissimilarity_matrix, DissimilarityMatrix),
(_lsmat_to_distance_matrix, DistanceMatrix)):
exp = cls(self.lsmat_3x3_data, ['a', 'b', 'c'])
self.lsmat_3x3_csv_fh.seek(0)
obs = fn(self.lsmat_3x3_csv_fh, delimiter=',')
self.assertEqual(obs, exp)
self.assertIsInstance(obs, cls)
def test_read_invalid_files(self):
for fn in _lsmat_to_dissimilarity_matrix, _lsmat_to_distance_matrix:
for invalid_fh, error_msg_regexp in self.invalid_fhs:
with self.assertRaisesRegex(LSMatFormatError,
error_msg_regexp):
invalid_fh.seek(0)
fn(invalid_fh)
# Asymmetric data only raises an error for DistanceMatrix.
with self.assertRaises(DistanceMatrixError):
_lsmat_to_distance_matrix(self.lsmat_2x2_asym_fh)
def test_write(self):
for fn, objs, strs in ((_dissimilarity_matrix_to_lsmat,
self.dissim_objs, self.dissim_strs),
(_distance_matrix_to_lsmat, self.dist_objs,
self.dist_strs)):
for obj, str_ in zip(objs, strs):
fh = io.StringIO()
fn(obj, fh)
obs = fh.getvalue()
fh.close()
self.assertEqual(obs, str_)
# Test writing CSV (TSV is written above).
for fn, cls in ((_dissimilarity_matrix_to_lsmat, DissimilarityMatrix),
(_distance_matrix_to_lsmat, DistanceMatrix)):
obj = cls(self.lsmat_3x3_data, ['a', 'b', 'c'])
fh = io.StringIO()
fn(obj, fh, delimiter=',')
obs = fh.getvalue()
fh.close()
self.assertEqual(obs, LSMat_3x3_CSV)
def test_roundtrip_read_write(self):
for reader_fn, writer_fn, fhs in ((_lsmat_to_dissimilarity_matrix,
_dissimilarity_matrix_to_lsmat,
self.dissim_fhs),
(_lsmat_to_distance_matrix,
_distance_matrix_to_lsmat,
self.dist_fhs)):
for fh in fhs:
# Read.
fh.seek(0)
lsmat1 = reader_fn(fh)
# Write.
out_fh = io.StringIO()
writer_fn(lsmat1, out_fh)
out_fh.seek(0)
# Read.
lsmat2 = reader_fn(out_fh)
out_fh.close()
self.assertEqual(lsmat1, lsmat2)
class SnifferTests(LSMatTestData):
def setUp(self):
super(SnifferTests, self).setUp()
def test_match_tsv(self):
# Sniffer should match all valid files, and will match some invalid
# ones too because it doesn't exhaustively check the entire file.
fhs = self.valid_fhs + [self.invalid_1_fh, self.invalid_3_fh,
self.invalid_4_fh]
for fh in fhs:
self.assertEqual(_lsmat_sniffer(fh), (True, {'delimiter': '\t'}))
def test_match_csv(self):
self.assertEqual(_lsmat_sniffer(self.lsmat_3x3_csv_fh),
(True, {'delimiter': ','}))
def test_no_match(self):
for fh in (self.empty_fh, self.invalid_2_fh, self.invalid_5_fh,
self.invalid_6_fh):
self.assertEqual(_lsmat_sniffer(fh), (False, {}))
LSMat_1x1 = "\ta\na\t0.0\n"
LSMat_2x2 = "\ta\tb\na\t0.0\t0.123\nb\t0.123\t0.0\n"
LSMat_2x2_ASYM = "\ta\tb\na\t0.0\t1.0\nb\t-2.0\t0.0\n"
LSMat_3x3 = ("\ta\tb\tc\na\t0.0\t0.01\t4.2\nb\t0.01\t0.0\t12.0\nc\t4.2\t12.0\t"
"0.0\n")
# Extra whitespace-only lines throughout. Also has comments before the header.
LSMat_3x3_WHITESPACE = '\n'.join(['# foo',
' \t \t ',
' #bar',
'',
'',
'\ta\t b \tc',
'a \t0.0\t0.01\t4.2',
' \t',
'b\t0.01\t0.0\t12.0',
'',
'\t \t',
'',
'c\t4.2\t12.0\t0.0',
'',
' \t ',
'\t\t\t',
' '])
# Same matrix as above, but delimited by commas instead of tabs.
LSMat_3x3_CSV = ",a,b,c\na,0.0,0.01,4.2\nb,0.01,0.0,12.0\nc,4.2,12.0,0.0\n"
# missing data
INVALID_1 = '\ta\tb\na\t0\t1\nb\t1'
# mismatched IDs
INVALID_2 = '\ta\tb\nb\t0\t1\na\t1\t0'
# extra data lines
INVALID_3 = '\ta\tb\na\t0\t1\nb\t1\t0\n \nfoo\n\n\n'
# missing data lines
INVALID_4 = '\ta\tb\na\t0\t1\n \n'
# no data lines
INVALID_5 = '\ta\tb\n'
# missing leading delimiter in header
INVALID_6 = "a\tb\na\t0.0\t0.123\nb\t0.123\t0.0\n"
if __name__ == '__main__':
main()
|