File: test_lsmat.py

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (249 lines) | stat: -rw-r--r-- 9,905 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io
from unittest import TestCase, main

from skbio import DistanceMatrix
from skbio.io import LSMatFormatError
from skbio.io.format.lsmat import (
    _lsmat_to_dissimilarity_matrix, _lsmat_to_distance_matrix,
    _dissimilarity_matrix_to_lsmat, _distance_matrix_to_lsmat, _lsmat_sniffer)
from skbio.stats.distance import DissimilarityMatrix, DistanceMatrixError


class LSMatTestData(TestCase):
    def setUp(self):
        self.lsmat_1x1_fh = io.StringIO(LSMat_1x1)
        self.lsmat_2x2_fh = io.StringIO(LSMat_2x2)
        self.lsmat_2x2_asym_fh = io.StringIO(LSMat_2x2_ASYM)
        self.lsmat_3x3_fh = io.StringIO(LSMat_3x3)
        self.lsmat_3x3_whitespace_fh = io.StringIO(LSMat_3x3_WHITESPACE)
        self.lsmat_3x3_csv_fh = io.StringIO(LSMat_3x3_CSV)

        self.valid_fhs = [
            self.lsmat_1x1_fh,
            self.lsmat_2x2_fh,
            self.lsmat_2x2_asym_fh,
            self.lsmat_3x3_fh,
            self.lsmat_3x3_whitespace_fh
        ]

        self.empty_fh = io.StringIO()
        self.invalid_1_fh = io.StringIO(INVALID_1)
        self.invalid_2_fh = io.StringIO(INVALID_2)
        self.invalid_3_fh = io.StringIO(INVALID_3)
        self.invalid_4_fh = io.StringIO(INVALID_4)
        self.invalid_5_fh = io.StringIO(INVALID_5)
        self.invalid_6_fh = io.StringIO(INVALID_6)

        self.invalid_fhs = [
            (self.empty_fh, 'empty'),
            (self.invalid_1_fh, '1 value\(s\).*2.*\(2\)'),
            (self.invalid_2_fh, "'b'.*'a'"),
            (self.invalid_3_fh, 'extra row\(s\)'),
            (self.invalid_4_fh, '2 row\(s\).*found 1'),
            (self.invalid_5_fh, '2 row\(s\).*found 0'),
            (self.invalid_6_fh, r"delimiter '\\t'")
        ]


class DissimilarityAndDistanceMatrixReaderWriterTests(LSMatTestData):
    def setUp(self):
        super(DissimilarityAndDistanceMatrixReaderWriterTests, self).setUp()

        self.lsmat_1x1_data = [[0.0]]
        self.lsmat_2x2_data = [[0.0, 0.123], [0.123, 0.0]]
        self.lsmat_2x2_asym_data = [[0.0, 1.0], [-2.0, 0.0]]
        self.lsmat_3x3_data = [[0.0, 0.01, 4.2], [0.01, 0.0, 12.0],
                               [4.2, 12.0, 0.0]]

        # We repeat the 3x3 example because there are two file format
        # representations of it, one that is messy and one that is not. Both
        # should be read into an equivalent object and written to an equivalent
        # format though, which is why we duplicate the 3x3 objects and strings.
        self.dissim_objs = [
            DissimilarityMatrix(self.lsmat_1x1_data, ['a']),
            DissimilarityMatrix(self.lsmat_2x2_data, ['a', 'b']),
            DissimilarityMatrix(self.lsmat_2x2_asym_data, ['a', 'b']),
            DissimilarityMatrix(self.lsmat_3x3_data, ['a', 'b', 'c']),
            DissimilarityMatrix(self.lsmat_3x3_data, ['a', 'b', 'c'])
        ]

        self.dissim_strs = [LSMat_1x1, LSMat_2x2, LSMat_2x2_ASYM, LSMat_3x3,
                            LSMat_3x3]

        self.dissim_fhs = [self.lsmat_1x1_fh, self.lsmat_2x2_fh,
                           self.lsmat_2x2_asym_fh, self.lsmat_3x3_fh,
                           self.lsmat_3x3_whitespace_fh]

        self.dist_objs = [
            DistanceMatrix(self.lsmat_1x1_data, ['a']),
            DistanceMatrix(self.lsmat_2x2_data, ['a', 'b']),
            DistanceMatrix(self.lsmat_3x3_data, ['a', 'b', 'c']),
            DistanceMatrix(self.lsmat_3x3_data, ['a', 'b', 'c'])
        ]

        self.dist_strs = [LSMat_1x1, LSMat_2x2, LSMat_3x3, LSMat_3x3]

        self.dist_fhs = [self.lsmat_1x1_fh, self.lsmat_2x2_fh,
                         self.lsmat_3x3_fh, self.lsmat_3x3_whitespace_fh]

    def test_read_valid_files(self):
        for fn, cls, objs, fhs in ((_lsmat_to_dissimilarity_matrix,
                                    DissimilarityMatrix, self.dissim_objs,
                                    self.dissim_fhs),
                                   (_lsmat_to_distance_matrix, DistanceMatrix,
                                    self.dist_objs, self.dist_fhs)):
            for fh, obj in zip(fhs, objs):
                fh.seek(0)
                obs = fn(fh)
                self.assertEqual(obs, obj)
                self.assertIsInstance(obs, cls)

        # Above files are TSV (default delimiter). Test that CSV works too.
        for fn, cls in ((_lsmat_to_dissimilarity_matrix, DissimilarityMatrix),
                        (_lsmat_to_distance_matrix, DistanceMatrix)):
            exp = cls(self.lsmat_3x3_data, ['a', 'b', 'c'])
            self.lsmat_3x3_csv_fh.seek(0)
            obs = fn(self.lsmat_3x3_csv_fh, delimiter=',')
            self.assertEqual(obs, exp)
            self.assertIsInstance(obs, cls)

    def test_read_invalid_files(self):
        for fn in _lsmat_to_dissimilarity_matrix, _lsmat_to_distance_matrix:
            for invalid_fh, error_msg_regexp in self.invalid_fhs:
                with self.assertRaisesRegex(LSMatFormatError,
                                            error_msg_regexp):
                    invalid_fh.seek(0)
                    fn(invalid_fh)

        # Asymmetric data only raises an error for DistanceMatrix.
        with self.assertRaises(DistanceMatrixError):
            _lsmat_to_distance_matrix(self.lsmat_2x2_asym_fh)

    def test_write(self):
        for fn, objs, strs in ((_dissimilarity_matrix_to_lsmat,
                                self.dissim_objs, self.dissim_strs),
                               (_distance_matrix_to_lsmat, self.dist_objs,
                                self.dist_strs)):
            for obj, str_ in zip(objs, strs):
                fh = io.StringIO()
                fn(obj, fh)
                obs = fh.getvalue()
                fh.close()
                self.assertEqual(obs, str_)

        # Test writing CSV (TSV is written above).
        for fn, cls in ((_dissimilarity_matrix_to_lsmat, DissimilarityMatrix),
                        (_distance_matrix_to_lsmat, DistanceMatrix)):
            obj = cls(self.lsmat_3x3_data, ['a', 'b', 'c'])
            fh = io.StringIO()
            fn(obj, fh, delimiter=',')
            obs = fh.getvalue()
            fh.close()
            self.assertEqual(obs, LSMat_3x3_CSV)

    def test_roundtrip_read_write(self):
        for reader_fn, writer_fn, fhs in ((_lsmat_to_dissimilarity_matrix,
                                           _dissimilarity_matrix_to_lsmat,
                                           self.dissim_fhs),
                                          (_lsmat_to_distance_matrix,
                                           _distance_matrix_to_lsmat,
                                           self.dist_fhs)):
            for fh in fhs:
                # Read.
                fh.seek(0)
                lsmat1 = reader_fn(fh)

                # Write.
                out_fh = io.StringIO()
                writer_fn(lsmat1, out_fh)
                out_fh.seek(0)

                # Read.
                lsmat2 = reader_fn(out_fh)
                out_fh.close()

                self.assertEqual(lsmat1, lsmat2)


class SnifferTests(LSMatTestData):
    def setUp(self):
        super(SnifferTests, self).setUp()

    def test_match_tsv(self):
        # Sniffer should match all valid files, and will match some invalid
        # ones too because it doesn't exhaustively check the entire file.
        fhs = self.valid_fhs + [self.invalid_1_fh, self.invalid_3_fh,
                                self.invalid_4_fh]
        for fh in fhs:
            self.assertEqual(_lsmat_sniffer(fh), (True, {'delimiter': '\t'}))

    def test_match_csv(self):
        self.assertEqual(_lsmat_sniffer(self.lsmat_3x3_csv_fh),
                         (True, {'delimiter': ','}))

    def test_no_match(self):
        for fh in (self.empty_fh, self.invalid_2_fh, self.invalid_5_fh,
                   self.invalid_6_fh):
            self.assertEqual(_lsmat_sniffer(fh), (False, {}))


LSMat_1x1 = "\ta\na\t0.0\n"

LSMat_2x2 = "\ta\tb\na\t0.0\t0.123\nb\t0.123\t0.0\n"

LSMat_2x2_ASYM = "\ta\tb\na\t0.0\t1.0\nb\t-2.0\t0.0\n"

LSMat_3x3 = ("\ta\tb\tc\na\t0.0\t0.01\t4.2\nb\t0.01\t0.0\t12.0\nc\t4.2\t12.0\t"
             "0.0\n")

# Extra whitespace-only lines throughout. Also has comments before the header.
LSMat_3x3_WHITESPACE = '\n'.join(['# foo',
                                  '      \t \t ',
                                  ' #bar',
                                  '',
                                  '',
                                  '\ta\t b \tc',
                                  'a  \t0.0\t0.01\t4.2',
                                  '     \t',
                                  'b\t0.01\t0.0\t12.0',
                                  '',
                                  '\t     \t',
                                  '',
                                  'c\t4.2\t12.0\t0.0',
                                  '',
                                  '   \t ',
                                  '\t\t\t',
                                  ' '])

# Same matrix as above, but delimited by commas instead of tabs.
LSMat_3x3_CSV = ",a,b,c\na,0.0,0.01,4.2\nb,0.01,0.0,12.0\nc,4.2,12.0,0.0\n"

# missing data
INVALID_1 = '\ta\tb\na\t0\t1\nb\t1'

# mismatched IDs
INVALID_2 = '\ta\tb\nb\t0\t1\na\t1\t0'

# extra data lines
INVALID_3 = '\ta\tb\na\t0\t1\nb\t1\t0\n  \nfoo\n\n\n'

# missing data lines
INVALID_4 = '\ta\tb\na\t0\t1\n  \n'

# no data lines
INVALID_5 = '\ta\tb\n'

# missing leading delimiter in header
INVALID_6 = "a\tb\na\t0.0\t0.123\nb\t0.123\t0.0\n"


if __name__ == '__main__':
    main()