File: test_ordination.py

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (250 lines) | stat: -rw-r--r-- 11,672 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io
from unittest import TestCase, main

import numpy as np
import pandas as pd
import numpy.testing as npt

from skbio import OrdinationResults
from skbio.io import OrdinationFormatError
from skbio.io.format.ordination import (
    _ordination_to_ordination_results, _ordination_results_to_ordination,
    _ordination_sniffer)
from skbio.util import get_data_path, assert_ordination_results_equal


class OrdinationTestData(TestCase):
    def setUp(self):
        self.valid_fps = map(
            get_data_path,
            ['ordination_L&L_CA_data_scores', 'ordination_example3_scores',
             'ordination_PCoA_sample_data_3_scores',
             'ordination_example2_scores'])

        # Store filepath, regex for matching the error message that should be
        # raised when reading the file, and whether the file should be matched
        # by the sniffer (True) or not (False).
        self.invalid_fps = map(lambda e: (get_data_path(e[0]), e[1], e[2]), [
            ('empty', 'end of file.*Eigvals header', False),
            ('whitespace_only', 'Eigvals header not found', False),
            ('ordination_error1', 'Eigvals header not found', False),
            ('ordination_error2',
             'Proportion explained header not found', False),
            ('ordination_error3', 'Species header not found', True),
            ('ordination_error4', 'Site header not found', True),
            ('ordination_error5', 'Biplot header not found', True),
            ('ordination_error6', 'Site constraints header not found', True),
            ('ordination_error7', 'empty line', False),
            ('ordination_error8', '9.*Proportion explained.*8', True),
            ('ordination_error9', '2 values.*1 in row 1', True),
            ('ordination_error10', '2 values.*1 in row 1', True),
            ('ordination_error11', 'Site constraints ids and site ids', True),
            ('ordination_error12', '9.*Eigvals.*8', True),
            ('ordination_error13', '9.*Proportion explained.*8', True),
            ('ordination_error14', 'Site is 0: 9 x 0', True),
            ('ordination_error15', '9 values.*8 in row 1', True),
            ('ordination_error16', 'Biplot is 0: 3 x 0', True),
            ('ordination_error17', '3 values.*2 in row 1', True),
            ('ordination_error18',
             'proportion explained.*eigvals: 8 != 9', True),
            ('ordination_error19',
             'coordinates.*species.*eigvals: 1 != 2', True),
            ('ordination_error20', 'coordinates.*site.*eigvals: 1 != 2', True),
            ('ordination_error21', 'one eigval', False),
            ('ordination_error22', 'end of file.*blank line', False),
            ('ordination_error23', 'end of file.*Proportion explained section',
             True),
            ('ordination_error24', 'end of file.*row 2.*Species section', True)
        ])


class OrdinationResultsReaderWriterTests(OrdinationTestData):
    def setUp(self):
        super(OrdinationResultsReaderWriterTests, self).setUp()

        # define in-memory results, one for each of the valid files in
        # self.valid_fps

        # CA results
        axes_ids = ['CA1', 'CA2']
        species_ids = ['Species1', 'Species2', 'Species3']
        site_ids = ['Site1', 'Site2', 'Site3']
        eigvals = pd.Series([0.0961330159181, 0.0409418140138], axes_ids)
        species = pd.DataFrame([[0.408869425742, 0.0695518116298],
                                [-0.1153860437, -0.299767683538],
                                [-0.309967102571, 0.187391917117]],
                               index=species_ids, columns=axes_ids)
        site = pd.DataFrame([[-0.848956053187, 0.882764759014],
                             [-0.220458650578, -1.34482000302],
                             [1.66697179591, 0.470324389808]],
                            index=site_ids, columns=axes_ids)
        biplot = None
        site_constraints = None
        prop_explained = None
        ca_scores = OrdinationResults(
            'CA', 'Correspondence Analysis', eigvals=eigvals, features=species,
            samples=site, biplot_scores=biplot,
            sample_constraints=site_constraints,
            proportion_explained=prop_explained)

        # CCA results
        axes_ids = ['CCA%d' % i for i in range(1, 10)]
        species_ids = ['Species0', 'Species1', 'Species2', 'Species3',
                       'Species4', 'Species5', 'Species6', 'Species7',
                       'Species8']
        site_ids = ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5',
                    'Site6', 'Site7', 'Site8', 'Site9']

        eigvals = pd.Series([0.366135830393, 0.186887643052, 0.0788466514249,
                             0.082287840501, 0.0351348475787, 0.0233265839374,
                             0.0099048981912, 0.00122461669234,
                             0.000417454724117], axes_ids)
        species = pd.DataFrame(np.loadtxt(
            get_data_path('ordination_exp_Ordination_CCA_species')),
            index=species_ids, columns=axes_ids)
        site = pd.DataFrame(
            np.loadtxt(get_data_path('ordination_exp_Ordination_CCA_site')),
            index=site_ids, columns=axes_ids)
        biplot = pd.DataFrame(
            [[-0.169746767979, 0.63069090084, 0.760769036049],
             [-0.994016563505, 0.0609533148724, -0.0449369418179],
             [0.184352565909, -0.974867543612, 0.0309865007541]],
            columns=axes_ids[:3])
        site_constraints = pd.DataFrame(np.loadtxt(
            get_data_path('ordination_exp_Ordination_CCA_site_constraints')),
            index=site_ids, columns=axes_ids)
        prop_explained = None
        cca_scores = OrdinationResults('CCA',
                                       'Canonical Correspondence Analysis',
                                       eigvals=eigvals, features=species,
                                       samples=site, biplot_scores=biplot,
                                       sample_constraints=site_constraints,
                                       proportion_explained=prop_explained)

        # PCoA results
        axes_ids = ['PC%d' % i for i in range(1, 10)]
        species_ids = None
        site_ids = ['PC.636', 'PC.635', 'PC.356', 'PC.481', 'PC.354', 'PC.593',
                    'PC.355', 'PC.607', 'PC.634']
        eigvals = pd.Series([0.512367260461, 0.300719094427, 0.267912066004,
                             0.208988681078, 0.19169895326, 0.16054234528,
                             0.15017695712, 0.122457748167, 0.0], axes_ids)
        species = None
        site = pd.DataFrame(
            np.loadtxt(get_data_path('ordination_exp_Ordination_PCoA_site')),
            index=site_ids, columns=axes_ids)
        biplot = None
        site_constraints = None
        prop_explained = pd.Series([0.267573832777, 0.15704469605,
                                    0.139911863774, 0.109140272454,
                                    0.100111048503, 0.0838401161912,
                                    0.0784269939011, 0.0639511763509, 0.0],
                                   axes_ids)
        pcoa_scores = OrdinationResults('PCoA',
                                        'Principal Coordinate Analysis',
                                        eigvals=eigvals, features=species,
                                        samples=site, biplot_scores=biplot,
                                        sample_constraints=site_constraints,
                                        proportion_explained=prop_explained)

        # RDA results
        axes_ids = ['RDA%d' % i for i in range(1, 8)]
        species_ids = ['Species0', 'Species1', 'Species2', 'Species3',
                       'Species4', 'Species5']
        site_ids = ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5',
                    'Site6', 'Site7', 'Site8', 'Site9']
        eigvals = pd.Series([25.8979540892, 14.9825779819, 8.93784077262,
                            6.13995623072, 1.68070536498, 0.57735026919,
                            0.275983624351], axes_ids)
        species = pd.DataFrame(np.loadtxt(
            get_data_path('ordination_exp_Ordination_RDA_species')),
            index=species_ids, columns=axes_ids)
        site = pd.DataFrame(
            np.loadtxt(get_data_path('ordination_exp_Ordination_RDA_site')),
            index=site_ids, columns=axes_ids)
        biplot = pd.DataFrame(
            [[0.422650019179, -0.559142585857, -0.713250678211],
             [0.988495963777, 0.150787422017, -0.0117848614073],
             [-0.556516618887, 0.817599992718, 0.147714267459],
             [-0.404079676685, -0.9058434809, -0.127150316558]],
            columns=axes_ids[:3])
        site_constraints = pd.DataFrame(np.loadtxt(
            get_data_path('ordination_exp_Ordination_RDA_site_constraints')),
            index=site_ids, columns=axes_ids)
        prop_explained = None
        rda_scores = OrdinationResults(
            'RDA', 'Redundancy Analysis', eigvals=eigvals, features=species,
            samples=site, biplot_scores=biplot,
            sample_constraints=site_constraints,
            proportion_explained=prop_explained)

        self.ordination_results_objs = [ca_scores, cca_scores, pcoa_scores,
                                        rda_scores]

    def test_read_valid_files(self):
        for fp, obj in zip(self.valid_fps, self.ordination_results_objs):
                obs = _ordination_to_ordination_results(fp)
                assert_ordination_results_equal(
                    obs, obj, ignore_method_names=True,
                    ignore_axis_labels=True)

    def test_read_invalid_files(self):
        for invalid_fp, error_msg_regexp, _ in self.invalid_fps:
            with self.assertRaisesRegex(OrdinationFormatError,
                                        error_msg_regexp):
                _ordination_to_ordination_results(invalid_fp)

    def test_write(self):
        for fp, obj in zip(self.valid_fps, self.ordination_results_objs):
            fh = io.StringIO()
            _ordination_results_to_ordination(obj, fh)
            obs = fh.getvalue()
            fh.close()

            with io.open(fp) as fh:
                exp = fh.read()

            npt.assert_equal(obs, exp)

    def test_roundtrip_read_write(self):
        for fp in self.valid_fps:
            # Read.
            obj1 = _ordination_to_ordination_results(fp)

            # Write.
            fh = io.StringIO()
            _ordination_results_to_ordination(obj1, fh)
            fh.seek(0)

            # Read.
            obj2 = _ordination_to_ordination_results(fh)
            fh.close()

            assert_ordination_results_equal(obj1, obj2)


class SnifferTests(OrdinationTestData):
    def setUp(self):
        super(SnifferTests, self).setUp()

    def test_matches_and_nonmatches(self):
        # Sniffer should match all valid files, and will match some invalid
        # ones too because it doesn't exhaustively check the entire file.
        for fp in self.valid_fps:
            self.assertEqual(_ordination_sniffer(fp), (True, {}))

        for fp, _, expected_sniffer_match in self.invalid_fps:
            self.assertEqual(_ordination_sniffer(fp),
                             (expected_sniffer_match, {}))


if __name__ == '__main__':
    main()