1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import io
from unittest import TestCase, main
import numpy as np
import pandas as pd
import numpy.testing as npt
from skbio import OrdinationResults
from skbio.io import OrdinationFormatError
from skbio.io.format.ordination import (
_ordination_to_ordination_results, _ordination_results_to_ordination,
_ordination_sniffer)
from skbio.util import get_data_path, assert_ordination_results_equal
class OrdinationTestData(TestCase):
def setUp(self):
self.valid_fps = map(
get_data_path,
['ordination_L&L_CA_data_scores', 'ordination_example3_scores',
'ordination_PCoA_sample_data_3_scores',
'ordination_example2_scores'])
# Store filepath, regex for matching the error message that should be
# raised when reading the file, and whether the file should be matched
# by the sniffer (True) or not (False).
self.invalid_fps = map(lambda e: (get_data_path(e[0]), e[1], e[2]), [
('empty', 'end of file.*Eigvals header', False),
('whitespace_only', 'Eigvals header not found', False),
('ordination_error1', 'Eigvals header not found', False),
('ordination_error2',
'Proportion explained header not found', False),
('ordination_error3', 'Species header not found', True),
('ordination_error4', 'Site header not found', True),
('ordination_error5', 'Biplot header not found', True),
('ordination_error6', 'Site constraints header not found', True),
('ordination_error7', 'empty line', False),
('ordination_error8', '9.*Proportion explained.*8', True),
('ordination_error9', '2 values.*1 in row 1', True),
('ordination_error10', '2 values.*1 in row 1', True),
('ordination_error11', 'Site constraints ids and site ids', True),
('ordination_error12', '9.*Eigvals.*8', True),
('ordination_error13', '9.*Proportion explained.*8', True),
('ordination_error14', 'Site is 0: 9 x 0', True),
('ordination_error15', '9 values.*8 in row 1', True),
('ordination_error16', 'Biplot is 0: 3 x 0', True),
('ordination_error17', '3 values.*2 in row 1', True),
('ordination_error18',
'proportion explained.*eigvals: 8 != 9', True),
('ordination_error19',
'coordinates.*species.*eigvals: 1 != 2', True),
('ordination_error20', 'coordinates.*site.*eigvals: 1 != 2', True),
('ordination_error21', 'one eigval', False),
('ordination_error22', 'end of file.*blank line', False),
('ordination_error23', 'end of file.*Proportion explained section',
True),
('ordination_error24', 'end of file.*row 2.*Species section', True)
])
class OrdinationResultsReaderWriterTests(OrdinationTestData):
def setUp(self):
super(OrdinationResultsReaderWriterTests, self).setUp()
# define in-memory results, one for each of the valid files in
# self.valid_fps
# CA results
axes_ids = ['CA1', 'CA2']
species_ids = ['Species1', 'Species2', 'Species3']
site_ids = ['Site1', 'Site2', 'Site3']
eigvals = pd.Series([0.0961330159181, 0.0409418140138], axes_ids)
species = pd.DataFrame([[0.408869425742, 0.0695518116298],
[-0.1153860437, -0.299767683538],
[-0.309967102571, 0.187391917117]],
index=species_ids, columns=axes_ids)
site = pd.DataFrame([[-0.848956053187, 0.882764759014],
[-0.220458650578, -1.34482000302],
[1.66697179591, 0.470324389808]],
index=site_ids, columns=axes_ids)
biplot = None
site_constraints = None
prop_explained = None
ca_scores = OrdinationResults(
'CA', 'Correspondence Analysis', eigvals=eigvals, features=species,
samples=site, biplot_scores=biplot,
sample_constraints=site_constraints,
proportion_explained=prop_explained)
# CCA results
axes_ids = ['CCA%d' % i for i in range(1, 10)]
species_ids = ['Species0', 'Species1', 'Species2', 'Species3',
'Species4', 'Species5', 'Species6', 'Species7',
'Species8']
site_ids = ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5',
'Site6', 'Site7', 'Site8', 'Site9']
eigvals = pd.Series([0.366135830393, 0.186887643052, 0.0788466514249,
0.082287840501, 0.0351348475787, 0.0233265839374,
0.0099048981912, 0.00122461669234,
0.000417454724117], axes_ids)
species = pd.DataFrame(np.loadtxt(
get_data_path('ordination_exp_Ordination_CCA_species')),
index=species_ids, columns=axes_ids)
site = pd.DataFrame(
np.loadtxt(get_data_path('ordination_exp_Ordination_CCA_site')),
index=site_ids, columns=axes_ids)
biplot = pd.DataFrame(
[[-0.169746767979, 0.63069090084, 0.760769036049],
[-0.994016563505, 0.0609533148724, -0.0449369418179],
[0.184352565909, -0.974867543612, 0.0309865007541]],
columns=axes_ids[:3])
site_constraints = pd.DataFrame(np.loadtxt(
get_data_path('ordination_exp_Ordination_CCA_site_constraints')),
index=site_ids, columns=axes_ids)
prop_explained = None
cca_scores = OrdinationResults('CCA',
'Canonical Correspondence Analysis',
eigvals=eigvals, features=species,
samples=site, biplot_scores=biplot,
sample_constraints=site_constraints,
proportion_explained=prop_explained)
# PCoA results
axes_ids = ['PC%d' % i for i in range(1, 10)]
species_ids = None
site_ids = ['PC.636', 'PC.635', 'PC.356', 'PC.481', 'PC.354', 'PC.593',
'PC.355', 'PC.607', 'PC.634']
eigvals = pd.Series([0.512367260461, 0.300719094427, 0.267912066004,
0.208988681078, 0.19169895326, 0.16054234528,
0.15017695712, 0.122457748167, 0.0], axes_ids)
species = None
site = pd.DataFrame(
np.loadtxt(get_data_path('ordination_exp_Ordination_PCoA_site')),
index=site_ids, columns=axes_ids)
biplot = None
site_constraints = None
prop_explained = pd.Series([0.267573832777, 0.15704469605,
0.139911863774, 0.109140272454,
0.100111048503, 0.0838401161912,
0.0784269939011, 0.0639511763509, 0.0],
axes_ids)
pcoa_scores = OrdinationResults('PCoA',
'Principal Coordinate Analysis',
eigvals=eigvals, features=species,
samples=site, biplot_scores=biplot,
sample_constraints=site_constraints,
proportion_explained=prop_explained)
# RDA results
axes_ids = ['RDA%d' % i for i in range(1, 8)]
species_ids = ['Species0', 'Species1', 'Species2', 'Species3',
'Species4', 'Species5']
site_ids = ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5',
'Site6', 'Site7', 'Site8', 'Site9']
eigvals = pd.Series([25.8979540892, 14.9825779819, 8.93784077262,
6.13995623072, 1.68070536498, 0.57735026919,
0.275983624351], axes_ids)
species = pd.DataFrame(np.loadtxt(
get_data_path('ordination_exp_Ordination_RDA_species')),
index=species_ids, columns=axes_ids)
site = pd.DataFrame(
np.loadtxt(get_data_path('ordination_exp_Ordination_RDA_site')),
index=site_ids, columns=axes_ids)
biplot = pd.DataFrame(
[[0.422650019179, -0.559142585857, -0.713250678211],
[0.988495963777, 0.150787422017, -0.0117848614073],
[-0.556516618887, 0.817599992718, 0.147714267459],
[-0.404079676685, -0.9058434809, -0.127150316558]],
columns=axes_ids[:3])
site_constraints = pd.DataFrame(np.loadtxt(
get_data_path('ordination_exp_Ordination_RDA_site_constraints')),
index=site_ids, columns=axes_ids)
prop_explained = None
rda_scores = OrdinationResults(
'RDA', 'Redundancy Analysis', eigvals=eigvals, features=species,
samples=site, biplot_scores=biplot,
sample_constraints=site_constraints,
proportion_explained=prop_explained)
self.ordination_results_objs = [ca_scores, cca_scores, pcoa_scores,
rda_scores]
def test_read_valid_files(self):
for fp, obj in zip(self.valid_fps, self.ordination_results_objs):
obs = _ordination_to_ordination_results(fp)
assert_ordination_results_equal(
obs, obj, ignore_method_names=True,
ignore_axis_labels=True)
def test_read_invalid_files(self):
for invalid_fp, error_msg_regexp, _ in self.invalid_fps:
with self.assertRaisesRegex(OrdinationFormatError,
error_msg_regexp):
_ordination_to_ordination_results(invalid_fp)
def test_write(self):
for fp, obj in zip(self.valid_fps, self.ordination_results_objs):
fh = io.StringIO()
_ordination_results_to_ordination(obj, fh)
obs = fh.getvalue()
fh.close()
with io.open(fp) as fh:
exp = fh.read()
npt.assert_equal(obs, exp)
def test_roundtrip_read_write(self):
for fp in self.valid_fps:
# Read.
obj1 = _ordination_to_ordination_results(fp)
# Write.
fh = io.StringIO()
_ordination_results_to_ordination(obj1, fh)
fh.seek(0)
# Read.
obj2 = _ordination_to_ordination_results(fh)
fh.close()
assert_ordination_results_equal(obj1, obj2)
class SnifferTests(OrdinationTestData):
def setUp(self):
super(SnifferTests, self).setUp()
def test_matches_and_nonmatches(self):
# Sniffer should match all valid files, and will match some invalid
# ones too because it doesn't exhaustively check the entire file.
for fp in self.valid_fps:
self.assertEqual(_ordination_sniffer(fp), (True, {}))
for fp, _, expected_sniffer_match in self.invalid_fps:
self.assertEqual(_ordination_sniffer(fp),
(expected_sniffer_match, {}))
if __name__ == '__main__':
main()
|