1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import operator
import copy
import functools
from ._intersection import IntervalTree
from skbio.util._decorator import experimental, classonlymethod
class Interval:
"""Stores the bounds and metadata of an interval feature.
This class stores an interval feature. An interval feature
is defined as a sub-region of a biological sequence or sequence
alignment that is a functional entity, e.g., a gene, a riboswitch,
an exon, etc. It can span a single contiguous region or multiple
non-contiguous regions (e.g. multiple exons in a transcript, or
multiple genes in an operon).
Parameters
----------
interval_metadata : object
A reference to the ``IntervalMetadata`` object that this
``Interval`` object is associated to.
bounds : iterable of tuple of int
Tuples representing start and end coordinates. It is *zero-based*
numbering. It is always inclusive on start bound and exclusive on
end bound.
fuzzy : iterable of tuple of bool, optional
Tuples representing the fuzziness of each bound coordinates.
If this isn't specified, then the fuzziness of all bound
coordinates are ``False``. If any of the coordinate fuzziness
is ``True``, it indicates that the exact bound point of a
interval feature is unknown. The bound may begin or end at
some points outside the specified coordinates. This
accommodates the location format [1]_ of INSDC.
metadata : dict, optional
Dictionary of attributes storing information of the feature
such as "strand", "gene_name", or "product".
See Also
--------
skbio.metadata.IntervalMetadata
Notes
-----
While the construction of an ``Interval`` object automatically add
itself to its associated ``IntervalMetadata`` object,
``IntervalMetadata.add`` is the typical/easier way to
create and add it to ``IntervalMetadata``.
References
----------
.. [1] ftp://ftp.ebi.ac.uk/pub/databases/embl/doc/FT_current.html#3.4.3
Examples
--------
Hypothetically, let's say we have a gene called "genA" with 10 nt
as shown in the following diagram. The second row represents the
two exons (indicated by "=") on this gene:
::
TGGATTCTGC
-====--==-
0123456789
We can create an ``Interval`` object to represent the exons of the gene:
>>> from skbio.metadata import Interval, IntervalMetadata
>>> interval_metadata = IntervalMetadata(10)
Remember the coordinates are inclusive in lower bound and exclusive on
upper bound:
>>> gene = Interval(interval_metadata,
... bounds=[(1, 5), (7, 9)],
... metadata={'name': 'genA'})
>>> gene # doctest: +ELLIPSIS
Interval(interval_metadata=..., bounds=[(1, 5), (7, 9)], \
fuzzy=[(False, False), (False, False)], metadata={'name': 'genA'})
"""
def __init__(self, interval_metadata, bounds,
fuzzy=None, metadata=None):
if not isinstance(interval_metadata, IntervalMetadata):
raise TypeError('You need to provide an IntervalMetadata'
'object, not %r' % interval_metadata)
# Intervals
self._interval_metadata = interval_metadata
self._bounds_fuzzy_setter(bounds, fuzzy)
# Metadata
if metadata is None:
metadata = {}
self.metadata = metadata
# add this interval feature to the associated IntervalMetadata
self._add()
def _add(self):
"""Add the current ``Interval`` to the IntervalMetadata object."""
for bound in self.bounds:
start, end = bound
self._interval_metadata._interval_tree.add(start, end, self)
self._interval_metadata._intervals.append(self)
@experimental(as_of='0.5.1')
def __eq__(self, other):
'''Test if this ``Interval`` object is equal to another.
The equality is performed by checking if the ``metadata``,
``bounds`` and ``fuzzy`` are equal. Since the ``bounds``
and the ``fuzzy`` are sorted, the permutations of them during
the ``Interval`` construction or assignment won't matter.
Parameters
----------
other : Interval
Interval to test for equality against.
Returns
-------
bool
Indicates if the two objects are equal.
'''
return ((self.metadata == other.metadata) and
(self.bounds == other.bounds) and
(self.fuzzy == other.fuzzy))
@experimental(as_of='0.5.1')
def __ne__(self, other):
'''Test if this ``Interval`` object is not equal to another.
Parameters
----------
other : Interval
Interval to test for inequality against.
Returns
-------
bool
Indicates if the two objects are not equal.
'''
return not (self == other)
@experimental(as_of='0.5.1')
def __repr__(self):
'''Return a string representation of this ``Interval`` object.
Returns
-------
str
String representation of this ``Interval`` object.
'''
if self.dropped:
s = ('{}(dropped=True, bounds={!r}, '
'fuzzy={!r}, metadata={!r})')
return s.format(self.__class__.__name__,
self.bounds, self.fuzzy, self.metadata)
else:
s = ('{}(interval_metadata=<{!r}>, bounds={!r}, '
'fuzzy={!r}, metadata={!r})')
return s.format(self.__class__.__name__,
id(self._interval_metadata),
self.bounds, self.fuzzy, self.metadata)
@experimental(as_of='0.5.1')
def drop(self):
'''Drop this ``Interval`` object from the interval metadata it links to.
If the ``Interval`` object is dropped, you can still get values of
``bounds``, ``fuzzy``, and ``metadata`` attributes, but you
can not change their values with the setters.
See Also
--------
skbio.metadata.IntervalMetadata.drop
'''
if not self.dropped:
self._interval_metadata.drop([self])
def _bounds_fuzzy_setter(self, bounds=None, fuzzy=None):
if self.dropped:
raise RuntimeError('Cannot change `bounds` or `fuzzy` '
'on a dropped Interval object.')
# Casts to `list`, validation, sorting, and setting of `bounds`
# and `fuzzy` happen here.
if bounds is not None:
# check iterability
try:
# check iterability
bounds = list(bounds)
except TypeError:
raise TypeError('Cannot give an non-iterable (%r) '
'to `bounds`.' % bounds)
# check it is not empty
if not bounds:
raise ValueError('Cannot give empty `bounds`.')
# check each contiguous span is in right format
for bound in bounds:
_assert_valid_bound(bound)
spans = len(bounds)
else:
spans = len(self.bounds)
if fuzzy is not None:
try:
fuzzy = list(fuzzy)
except TypeError:
raise TypeError(
'Cannot give a non-iterable (%r) '
'to `fuzzy`.' % fuzzy)
if len(fuzzy) != spans:
raise ValueError(
'The length of fuzzy must '
'be equal to the length of bounds.')
for fuzzy_i in fuzzy:
_assert_valid_fuzzy(fuzzy_i)
if bounds is None:
# `bounds` and `fuzzy` cannot both be omitted.
if fuzzy is None:
raise ValueError('Cannot give `None` to both `bounds` '
'and `fuzzy`.')
# If only `fuzzy` is provided, set `self.fuzzy` and don't
# change `self.bounds`.
else:
self._fuzzy = fuzzy
else:
# If only `bounds` is provided, reset `self.fuzzy` to
# all `False`.
if fuzzy is None:
bounds.sort()
self._check_bounds(bounds)
self._bounds = bounds
# reset all the fuzzy to False!!
del self.fuzzy
# If both `bounds` and `fuzzy` are provided, set
# `self.bounds` and `self.fuzzy`.
else:
bounds, fuzzy = [
list(e) for e in zip(*sorted(zip(bounds, fuzzy)))]
self._check_bounds(bounds)
self._bounds = bounds
self._fuzzy = fuzzy
self._interval_metadata._is_stale_tree = True
def _check_bounds(self, bounds):
'''input `bounds` must be sorted.'''
upper_bound = self._interval_metadata.upper_bound
lower_bound = self._interval_metadata.lower_bound
if bounds[-1][-1] > upper_bound or bounds[0][0] < lower_bound:
raise ValueError('Cannot set `bounds` (%r) with coordinate '
'larger than upper bound (%r) or smaller than '
'lower bound (%r).' %
(bounds, upper_bound, lower_bound))
@property
@experimental(as_of='0.5.1')
def fuzzy(self):
'''The openness of each coordinate.
This indicates that the exact bound of a interval feature
is unknown. The bound may begin or end at some points outside
the specified coordinates. This accommodates the bound format [1]_
of INSDC.
References
----------
.. [1] ftp://ftp.ebi.ac.uk/pub/databases/embl/doc/FT_current.html#3.4.3
'''
return self._fuzzy
@fuzzy.setter
@experimental(as_of='0.5.1')
def fuzzy(self, value):
'''Set ``fuzzy``.
The ``value`` should an iterable matching ``self.bounds``.
'''
self._bounds_fuzzy_setter(fuzzy=value)
@fuzzy.deleter
@experimental(as_of='0.5.1')
def fuzzy(self):
'''Delete ``fuzzy``.
This set all fuzzy to be ``False``.
'''
if self.dropped:
raise RuntimeError('Cannot change fuzzy on dropped '
'Interval object.')
self._fuzzy = [(False, False)] * len(self.bounds)
@property
@experimental(as_of='0.5.1')
def bounds(self):
'''The coordinates of the interval feature.
It should be a list of tuples of int pair. Each tuple stores
the start and end coordinates of a span of the interval
feature. The coordinates are *zero-based*. They are inclusive on
the start and exclusive on the end.
'''
return self._bounds
@bounds.setter
@experimental(as_of='0.5.1')
def bounds(self, value):
'''Set ``bounds``.
WARNING: setting ``bounds`` will reset ``fuzzy`` value to ``False``.
This is not totally surprising because it is justifiable your old
``fuzzy`` don't fit the new bounds.
'''
self._bounds_fuzzy_setter(bounds=value)
@property
@experimental(as_of='0.5.1')
def metadata(self):
'''The metadata of the interval feature.
It stores the metadata (eg. gene name, function, ID, etc.) of
the interval feature as a ``dict``.
'''
return self._metadata
@metadata.setter
@experimental(as_of='0.5.1')
def metadata(self, value):
if self.dropped:
raise RuntimeError('Cannot change metadata on dropped '
'Interval object.')
if not isinstance(value, dict):
raise TypeError("metadata must be a dict, not %r" % value)
self._metadata = value
@metadata.deleter
@experimental(as_of='0.5.1')
def metadata(self):
'''Delete metadata.
This sets metadata to be empty dict.
'''
if self.dropped:
raise RuntimeError('Cannot change metadata to dropped '
'Interval object.')
self._metadata = {}
@property
@experimental(as_of='0.5.1')
def dropped(self):
'''Boolean value indicating if the ``Interval`` object is dropped.
If it is dropped, it means it is not associated with IntervalMetadata
object any more.
Notes
-----
This property is not writable.
See Also
--------
skbio.metadata.Interval.drop
skbio.metadata.IntervalMetadata.drop
'''
return self._interval_metadata is None
class IntervalMetadata():
"""Stores the interval features.
``IntervalMetadata`` object allows storage, modification, and
querying of interval features covering a region of a single coordinate
system. For instance, this can be used to store functional annotations
about genes across a genome. This object is also applied to the sequence
alignment.
This object is typically coupled with another object, such as a
``Sequence`` object (or its child class), or a ``TabularMSA`` object.
Parameters
----------
upper_bound : int
Defines the exclusive upper bound of the interval features. No
coordinate can be greater than it.
Notes
-----
This class stores coordinates of all feature bounds into a interval
tree. It allows the speed up of query-by-bound. The building of
interval tree is deferred until necessary to save computation. It is
updated from all coordinates only when you need to fetch info from
the interval tree.
When you add a method into this class and if you method need to fetch
info from ``IntervalMetadata._interval_tree``, you should decorate it with
``_rebuild_tree``. This decorator will check if the current interval tree
is stale and will update it if so. Additionally, if your method add,
delete, or changes the coordinates of any interval features, you should
set ``self._is_stale_tree`` to ``True`` at the end of your method to
indicate the interval tree becomes stale.
See Also
--------
skbio.metadata.Interval
Examples
--------
Let's say we have a sequence of length 10 and want to add annotation
to it. Create an ``IntervalMetadata`` object:
>>> from skbio.metadata import Interval, IntervalMetadata
>>> im = IntervalMetadata(10)
Let's add annotations of 3 genes:
>>> im.add(bounds=[(3, 9)],
... metadata={'gene': 'sagB'}) # doctest: +ELLIPSIS
Interval(interval_metadata=..., bounds=[(3, 9)], \
fuzzy=[(False, False)], metadata={'gene': 'sagB'})
>>> im.add(bounds=[(3, 7)],
... metadata={'gene': 'sagC'}) # doctest: +ELLIPSIS
Interval(interval_metadata=..., bounds=[(3, 7)], \
fuzzy=[(False, False)], metadata={'gene': 'sagC'})
>>> im.add(bounds=[(1, 2), (4, 7)],
... metadata={'gene': 'sagA'}) # doctest: +ELLIPSIS
Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], \
fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})
Show the object representation:
>>> im # doctest: +ELLIPSIS
3 interval features
-------------------
Interval(interval_metadata=..., bounds=[(3, 9)], \
fuzzy=[(False, False)], metadata={'gene': 'sagB'})
Interval(interval_metadata=..., bounds=[(3, 7)], \
fuzzy=[(False, False)], metadata={'gene': 'sagC'})
Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], \
fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})
We can sort the genes by their bounds:
>>> im.sort()
>>> im # doctest: +ELLIPSIS
3 interval features
-------------------
Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], \
fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})
Interval(interval_metadata=..., bounds=[(3, 7)], \
fuzzy=[(False, False)], metadata={'gene': 'sagC'})
Interval(interval_metadata=..., bounds=[(3, 9)], \
fuzzy=[(False, False)], metadata={'gene': 'sagB'})
Query the genes by bound and/or metadata:
>>> intvls = im.query([(1, 2)], metadata={'gene': 'foo'})
>>> list(intvls)
[]
>>> intvls = im.query([(7, 9)])
>>> list(intvls) # doctest: +ELLIPSIS
[Interval(interval_metadata=..., bounds=[(3, 9)], \
fuzzy=[(False, False)], metadata={'gene': 'sagB'})]
>>> intvls = im.query(metadata={'gene': 'sagA'})
>>> intvls = list(intvls)
>>> intvls # doctest: +ELLIPSIS
[Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], \
fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})]
Drop the gene(s) we get from query:
>>> im.drop(intvls)
>>> im.sort()
>>> im # doctest: +ELLIPSIS
2 interval features
-------------------
Interval(interval_metadata=..., bounds=[(3, 7)], \
fuzzy=[(False, False)], metadata={'gene': 'sagC'})
Interval(interval_metadata=..., bounds=[(3, 9)], \
fuzzy=[(False, False)], metadata={'gene': 'sagB'})
"""
def __init__(self, upper_bound):
self._upper_bound = upper_bound
if self.upper_bound < self.lower_bound:
raise ValueError('Cannot set `upper_bound` (%r) '
'smaller than `lower_bound` (%r)'
% (self.upper_bound, self.lower_bound))
# List of Interval objects.
self._intervals = []
# IntervalTree object to allow faster querying of interval objects.
self._interval_tree = IntervalTree()
# Indicates if the IntervalTree needs to be rebuilt.
self._is_stale_tree = False
@property
@experimental(as_of='0.5.1')
def upper_bound(self):
'''The exclusive upper bound of interval features.'''
return self._upper_bound
@property
@experimental(as_of='0.5.1')
def lower_bound(self):
'''The inclusive lower bound of interval features.'''
return 0
@property
@experimental(as_of='0.5.1')
def num_interval_features(self):
'''The total number of interval features.'''
return len(self._intervals)
def _rebuild_tree(method):
"""Rebuild the IntervalTree."""
@functools.wraps(method)
def inner(self, *args, **kwargs):
if self._is_stale_tree is False:
return method(self, *args, **kwargs)
self._interval_tree = IntervalTree()
for f in self._intervals:
for start, end in f.bounds:
self._interval_tree.add(start, end, f)
self._is_stale_tree = False
return method(self, *args, **kwargs)
return inner
def _reverse(self):
"""Reverse ``IntervalMetadata`` object.
This operation reverses all of the interval coordinates.
For instance, this can be used to compare coordinates
in the forward strand to coordinates in the reversal strand.
"""
for f in self._intervals:
intvls = [(self.upper_bound - x[1], self.upper_bound - x[0])
for x in reversed(f.bounds)]
f.bounds = intvls
# DONT' forget this!!!
self._is_stale_tree = True
@classonlymethod
@experimental(as_of="0.5.1")
def concat(cls, interval_metadata):
'''Concatenate an iterable of ``IntervalMetadata`` objects.
It concatenates the multiple ``IntervalMetadata`` objects into
one coordinate space. The order of the objects in the input
iterable matters. The coordinate of the second
``InterableMetadata`` will be shifted up with the length of
the first ``IntervalMetadata`` object.
This function is useful when you concatenate multiple sequences.
Parameters
----------
interval_metadata : Iterable (IntervalMetadata)
The interval metadata to concatenate.
Returns
-------
IntervalMetadata
Concatenated interval metadata.
Examples
--------
>>> from skbio.metadata import IntervalMetadata
Create two ``IntervalMetadata`` objects:
>>> im1 = IntervalMetadata(3)
>>> _ = im1.add([(0, 2)], [(True, False)], {'gene': 'sagA'})
>>> im2 = IntervalMetadata(4)
>>> _ = im2.add([(1, 4)], [(True, True)], {'gene': 'sagB'})
Concatenate them into a single coordinate space. The second
``IntervalMetadata``'s interval features are all shifted
up. The resulting ``IntervalMetadata``'s upper bound is the
sum of upper bounds of concatenated objects:
>>> im = IntervalMetadata.concat([im1, im2])
>>> im # doctest: +ELLIPSIS
2 interval features
-------------------
Interval(interval_metadata=<...>, bounds=[(0, 2)], \
fuzzy=[(True, False)], metadata={'gene': 'sagA'})
Interval(interval_metadata=<...>, bounds=[(4, 7)], \
fuzzy=[(True, True)], metadata={'gene': 'sagB'})
>>> im.upper_bound
7
'''
interval_metadata = list(interval_metadata)
if len(interval_metadata) == 0:
return cls(0)
upper_bound = 0
for im in interval_metadata:
upper_bound += im.upper_bound
new = cls(upper_bound)
length = 0
for i, im in enumerate(interval_metadata):
for intvl in im._intervals:
bounds = intvl.bounds
fuzzy = intvl.fuzzy
if i != 0:
bounds = [(start + length, end + length)
for start, end in bounds]
new.add(bounds, fuzzy, intvl.metadata)
length += im.upper_bound
return new
@experimental(as_of='0.5.1')
def merge(self, other):
'''Merge the interval features of another ``IntervalMetadata`` object.
It adds all the interval features of the other object into
``self``. Note this will not check if there are any duplicates
of interval features after merge.
Parameters
----------
other : ``IntervalMetadata``
The other ``IntervalMetadata`` to be merged.
'''
if self.upper_bound != other.upper_bound:
raise ValueError(
'The upper bounds of the two IntervalMetadata objects '
'are not equal (%d != %d)' % (
self.upper_bound, other.upper_bound))
if self.lower_bound != other.lower_bound:
raise ValueError(
'The lower bounds of the two IntervalMetadata objects '
'are not equal (%d != %d)' % (
self.lower_bound, other.lower_bound))
for intvl in other._intervals:
self.add(intvl.bounds, intvl.fuzzy, intvl.metadata)
@experimental(as_of='0.5.1')
def sort(self, ascending=True):
'''Sort interval features by their coordinates.
It sorts by the start coordinate first. If they are the same between
two interval features, they will be sorted by comparing their end
coordinates. For example, an interval feature with [(1, 2), (4, 7)]
will be sorted in front of another one with [(1, 2), (3, 8)].
Parameters
----------
ascending : bool, optional
sort in ascending or descending coordinates.
'''
self._intervals.sort(
key=lambda i: [i.bounds[0][0], i.bounds[-1][1]],
reverse=not ascending)
@experimental(as_of='0.5.1')
def add(self, bounds, fuzzy=None, metadata=None):
"""Create and add an ``Interval`` to this ``IntervalMetadata``.
This method creates an ``Interval`` object and inserts it into
the ``IntervalMetadata`` object.
Parameters
----------
bounds : iterable of tuple of ints
Tuples representing start and end coordinates. It is *zero-based*
numbering. It is always inclusive on start bound and exclusive on
end bound.
fuzzy : iterable of tuple of bool, optional
Tuples representing the fuzziness of each bound coordinates.
metadata : dict, optional
A dictionary of key-value pairs associated with the
``Interval`` object.
Returns
-------
Interval
The ``Interval`` object added.
See Also
--------
skbio.metadata.Interval
"""
# Add an interval to the tree. Note that the add functionality is
# built within the Interval constructor.
return Interval(interval_metadata=self,
bounds=bounds,
fuzzy=fuzzy,
metadata=metadata)
@_rebuild_tree
def _query_interval(self, bound):
"""Yield ``Interval`` objects that overlap with the bound."""
_assert_valid_bound(bound)
start, end = bound
intvls = self._interval_tree.find(start, end)
# if a ``Interval`` has many non-contiguous spans and
# multiple of them overlap with the bound, then
# this ``Interval`` object will be returned
# multiple times. So we need to remove duplicates.
seen = set()
for intvl in intvls:
if id(intvl) not in seen:
seen.add(id(intvl))
yield intvl
def _query_attribute(self, metadata, intervals=None):
"""Yield ``Interval`` objects based on query attributes.
Parameters
----------
metadata : dict or ``None``
If it is ``None``, return empty iterator; if it is
``{}``, return an interator of all the ``Interval``
objects.
intervals : an iterable of ``Interval`` objects
"""
if metadata is None:
return
if intervals is None:
intervals = self._intervals
for intvl in intervals:
for (key, value) in metadata.items():
if (key not in intvl.metadata or
intvl.metadata[key] != value):
break
else:
yield intvl
@experimental(as_of='0.5.1')
@_rebuild_tree
def query(self, bounds=None, metadata=None):
"""Yield ``Interval`` object with the bounds and attributes.
The ``Interval`` objects must meet both requirements: 1) overlap
with any of the spans specified by ``bounds``; 2) satisfy
``metadata`` specification. For instance, you can identify
all the recA genes that overlap with (10, 100) or (900, 1000)
with this code ``interval_metadata.query([(10, 100),
(900, 1000)], {'gene': 'recA'})``.
Parameters
----------
bounds : iterable of tuples of int pair, optional
Specifies bounds to look for the ``Interval``
objects. An satisfying interval feature only need to overlap with
one bound. Default (``None``) means all ``Intervals`` meet
this requirement.
metadata : dict, optional
A dictionary of key word attributes associated with the
``Interval`` object. It specifies what metadata keywords and
values to look for. Default (``None``) means all ``Intervals``
meet this requirement.
Yields
------
Interval
``Interval`` object satisfying the search criteria.
"""
if bounds is None:
for intvl in self._query_attribute(metadata):
yield intvl
else:
for loc in bounds:
intvls = self._query_interval(loc)
if metadata is None:
metadata = {}
for intvl in self._query_attribute(metadata, intvls):
yield intvl
@experimental(as_of='0.5.1')
def drop(self, intervals):
"""Drops Interval objects.
The given ``Interval`` objects will be removed and their
associated ``IntervalMetadata`` will be set to ``None``.
Parameters
----------
intervals : iterable of ``Interval``
``Interval`` objects to drop from this object.
"""
to_delete = {id(f) for f in intervals}
new_intvls = []
# iterate through queries and drop them
for intvl in self._intervals:
if id(intvl) in to_delete:
intvl._interval_metadata = None
else:
new_intvls.append(intvl)
self._intervals = new_intvls
self._is_stale_tree = True
@experimental(as_of='0.5.1')
def __eq__(self, other):
'''Test if this object is equal to another.
It checks if the coordinate spaces are the same between the
two objects. If so, then check if all the interval features
are equal between the two objects after sorting them by
bounds.
Parameters
----------
other : IntervalMetadata
Interval metadata to test for equality against.
Returns
-------
bool
Indicates if the two objects are equal.
'''
if self.upper_bound != other.upper_bound or \
self.lower_bound != other.lower_bound:
return False
else:
self_intervals = sorted(self._intervals,
key=operator.attrgetter('bounds'))
other_intervals = sorted(other._intervals,
key=operator.attrgetter('bounds'))
return self_intervals == other_intervals
@experimental(as_of='0.5.1')
def __ne__(self, other):
'''Test if this object is not equal to another.
Parameters
----------
other : IntervalMetadata
Interval metadata to test for inequality against.
Returns
-------
bool
Indicates if the two objects are not equal.
See Also
--------
skbio.metadata.IntervalMetadata.__eq__
'''
return not (self == other)
@experimental(as_of='0.5.1')
def __repr__(self):
'''Return a string representation of this object.
Returns
-------
str
String representation of this ``IntervalMetadata`` object.
'''
n = self.num_interval_features
l1 = '{} interval feature'.format(n)
if n != 1:
l1 += 's'
l2 = '-' * len(l1)
if n <= 5:
items = [repr(i) for i in self._intervals]
else:
# intentionally overwrite items[2] to make code cleaner
items = [repr(self._intervals[i]) for i in [0, 1, 2, n-2, n-1]]
items[2] = '...'
return '\n'.join([l1, l2] + items)
@experimental(as_of='0.5.1')
def __copy__(self):
'''Return a shallow copy.
Notes
-----
The ``IntervalMetadata`` copy will have copies of the
``Interval`` objects present in this object. The ``metadata``
dictionary of each ``Interval`` object will be a shallow copy.
See Also
--------
__deepcopy__
'''
return self._copy(False, {})
@experimental(as_of='0.5.1')
def __deepcopy__(self, memo):
'''Return a deep copy.
Notes
-----
The ``IntervalMetadata`` copy will have copies of the
``Interval`` objects present in this object. The ``metadata``
dictionary of each ``Interval`` object will be a deep copy.
See Also
--------
__copy__
'''
return self._copy(True, memo)
def _copy(self, deep, memo):
cp = IntervalMetadata(self.upper_bound)
for interval in self._intervals:
# Only need to shallow-copy `bounds` and `fuzzy`
# because their elements are immutable.
bounds_cp = interval.bounds[:]
fuzzy_cp = interval.fuzzy[:]
if deep:
metadata_cp = copy.deepcopy(interval.metadata, memo)
else:
metadata_cp = copy.copy(interval.metadata)
cp.add(bounds_cp,
fuzzy=fuzzy_cp,
metadata=metadata_cp)
return cp
def _assert_valid_bound(bound):
if isinstance(bound, tuple):
try:
start, end = bound
except ValueError:
raise ValueError("A `bound` must be a tuple of exactly "
"two coordinates, not {!r}".format(bound))
if not (isinstance(start, int) and
isinstance(end, int)) or start > end:
raise ValueError('`start` (%r) cannot be a larger int '
'than `end` (%r).' % (start, end))
else:
raise TypeError("Each `bound` must be a tuple, not {!r}".format(
bound))
def _assert_valid_fuzzy(fuzzy):
if isinstance(fuzzy, tuple):
try:
start, end = fuzzy
except ValueError:
raise ValueError("A `fuzzy` must be a tuple of exactly "
"two, not {!r}".format(fuzzy))
if not (isinstance(start, bool) and isinstance(end, bool)):
raise TypeError('A `fuzzy` must be a tuple of two booleans')
else:
raise TypeError("Each `fuzzy` must be a tuple, not {!r}".format(
fuzzy))
|