1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import skbio
from skbio.util._decorator import classproperty, overrides
from skbio.util._decorator import stable
from ._nucleotide_mixin import NucleotideMixin, _motifs as _parent_motifs
from ._grammared_sequence import GrammaredSequence, DisableSubclassingMeta
class DNA(GrammaredSequence, NucleotideMixin,
metaclass=DisableSubclassingMeta):
"""Store DNA sequence data and optional associated metadata.
Only characters in the IUPAC DNA character set [1]_ are supported.
Parameters
----------
sequence : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
Characters representing the DNA sequence itself.
metadata : dict, optional
Arbitrary metadata which applies to the entire sequence.
positional_metadata : Pandas DataFrame consumable, optional
Arbitrary per-character metadata. For example, quality data from
sequencing reads. Must be able to be passed directly to the Pandas
DataFrame constructor.
interval_metadata : IntervalMetadata
Arbitrary interval metadata which applies to intervals within
a sequence to store interval features (such as genes on the
DNA sequence).
lowercase : bool or str, optional
If ``True``, lowercase sequence characters will be converted to
uppercase characters in order to be valid IUPAC DNA characters. If
``False``, no characters will be converted. If a str, it will be
treated as a key into the positional metadata of the object. All
lowercase characters will be converted to uppercase, and a ``True``
value will be stored in a boolean array in the positional metadata
under the key.
validate : bool, optional
If ``True``, validation will be performed to ensure that all sequence
characters are in the IUPAC DNA character set. If ``False``, validation
will not be performed. Turning off validation will improve runtime
performance. If invalid characters are present, however, there is
**no guarantee that operations performed on the resulting object will
work or behave as expected.** Only turn off validation if you are
certain that the sequence characters are valid. To store sequence data
that is not IUPAC-compliant, use ``Sequence``.
Attributes
----------
values
metadata
positional_metadata
interval_metadata
alphabet
gap_chars
default_gap_char
definite_chars
degenerate_chars
degenerate_map
complement_map
See Also
--------
RNA
GrammaredSequence
Notes
-----
Subclassing is disabled for DNA, because subclassing makes
it possible to change the alphabet, and certain methods rely on the
IUPAC alphabet. If a custom sequence alphabet is needed, inherit directly
from ``GrammaredSequence``.
References
----------
.. [1] Nomenclature for incompletely specified bases in nucleic acid
sequences: recommendations 1984.
Nucleic Acids Res. May 10, 1985; 13(9): 3021-3030.
A Cornish-Bowden
Examples
--------
>>> from skbio import DNA
>>> DNA('ACCGAAT')
DNA
--------------------------
Stats:
length: 7
has gaps: False
has degenerates: False
has definites: True
GC-content: 42.86%
--------------------------
0 ACCGAAT
Convert lowercase characters to uppercase:
>>> DNA('AcCGaaT', lowercase=True)
DNA
--------------------------
Stats:
length: 7
has gaps: False
has degenerates: False
has definites: True
GC-content: 42.86%
--------------------------
0 ACCGAAT
"""
@classproperty
@overrides(NucleotideMixin)
def complement_map(cls):
comp_map = {
'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G', 'Y': 'R', 'R': 'Y',
'S': 'S', 'W': 'W', 'K': 'M', 'M': 'K', 'B': 'V', 'D': 'H',
'H': 'D', 'V': 'B', 'N': 'N'
}
comp_map.update({c: c for c in cls.gap_chars})
return comp_map
@classproperty
@overrides(GrammaredSequence)
def definite_chars(cls):
return set("ACGT")
@classproperty
@overrides(GrammaredSequence)
def degenerate_map(cls):
return {
"R": set("AG"), "Y": set("CT"), "M": set("AC"), "K": set("TG"),
"W": set("AT"), "S": set("GC"), "B": set("CGT"), "D": set("AGT"),
"H": set("ACT"), "V": set("ACG"), "N": set("ACGT")
}
@classproperty
@overrides(GrammaredSequence)
def default_gap_char(cls):
return '-'
@classproperty
@overrides(GrammaredSequence)
def gap_chars(cls):
return set('-.')
@property
def _motifs(self):
return _motifs
@stable(as_of="0.4.0")
def transcribe(self):
"""Transcribe DNA into RNA.
DNA sequence is assumed to be the coding strand. Thymine (T) is
replaced with uracil (U) in the transcribed sequence.
Returns
-------
RNA
Transcribed sequence.
See Also
--------
translate
translate_six_frames
Notes
-----
DNA sequence's metadata, positional, and interval
metadata are included in the transcribed RNA sequence.
Examples
--------
Transcribe DNA into RNA:
>>> from skbio import DNA
>>> dna = DNA('TAACGTTA')
>>> dna
DNA
--------------------------
Stats:
length: 8
has gaps: False
has degenerates: False
has definites: True
GC-content: 25.00%
--------------------------
0 TAACGTTA
>>> dna.transcribe()
RNA
--------------------------
Stats:
length: 8
has gaps: False
has degenerates: False
has definites: True
GC-content: 25.00%
--------------------------
0 UAACGUUA
"""
seq = self._string.replace(b'T', b'U')
metadata = None
if self.has_metadata():
metadata = self.metadata
positional_metadata = None
if self.has_positional_metadata():
positional_metadata = self.positional_metadata
interval_metadata = None
if self.has_interval_metadata():
interval_metadata = self.interval_metadata
# turn off validation because `seq` is guaranteed to be valid
return skbio.RNA(seq, metadata=metadata,
positional_metadata=positional_metadata,
interval_metadata=interval_metadata,
validate=False)
@stable(as_of="0.4.0")
def translate(self, *args, **kwargs):
"""Translate DNA sequence into protein sequence.
DNA sequence is assumed to be the coding strand. DNA sequence is first
transcribed into RNA and then translated into protein.
Parameters
----------
args : tuple
Positional arguments accepted by ``RNA.translate``.
kwargs : dict
Keyword arguments accepted by ``RNA.translate``.
Returns
-------
Protein
Translated sequence.
See Also
--------
RNA.reverse_transcribe
RNA.translate
translate_six_frames
transcribe
Notes
-----
DNA sequence's metadata are included in the translated protein
sequence. Positional metadata are not included.
Examples
--------
Translate DNA into protein using NCBI's standard genetic code (table ID
1, the default genetic code in scikit-bio):
>>> from skbio import DNA
>>> dna = DNA('ATGCCACTTTAA')
>>> dna.translate()
Protein
--------------------------
Stats:
length: 4
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 MPL*
Translate the same DNA sequence using a different NCBI genetic code
(table ID 3, the yeast mitochondrial code) and specify that translation
must terminate at the first stop codon:
>>> dna.translate(3, stop='require')
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 MPT
"""
return self.transcribe().translate(*args, **kwargs)
@stable(as_of="0.4.0")
def translate_six_frames(self, *args, **kwargs):
"""Translate DNA into protein using six possible reading frames.
DNA sequence is assumed to be the coding strand. DNA sequence is first
transcribed into RNA and then translated into protein. The six possible
reading frames are:
* 1 (forward)
* 2 (forward)
* 3 (forward)
* -1 (reverse)
* -2 (reverse)
* -3 (reverse)
Translated sequences are yielded in this order.
Parameters
----------
args : tuple
Positional arguments accepted by ``RNA.translate_six_frames``.
kwargs : dict
Keyword arguments accepted by ``RNA.translate_six_frames``.
Yields
------
Protein
Translated sequence in the current reading frame.
See Also
--------
RNA.translate_six_frames
translate
transcribe
Notes
-----
This method is faster than (and equivalent to) performing six
independent translations using, for example:
``(seq.translate(reading_frame=rf)
for rf in GeneticCode.reading_frames)``
DNA sequence's metadata are included in each translated protein
sequence. Positional metadata are not included.
Examples
--------
Translate DNA into protein using the six possible reading frames and
NCBI's standard genetic code (table ID 1, the default genetic code in
scikit-bio):
>>> from skbio import DNA
>>> dna = DNA('ATGCCACTTTAA')
>>> for protein in dna.translate_six_frames():
... protein
... print('')
Protein
--------------------------
Stats:
length: 4
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 MPL*
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 CHF
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 ATL
<BLANKLINE>
Protein
--------------------------
Stats:
length: 4
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 LKWH
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 *SG
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 KVA
<BLANKLINE>
"""
return self.transcribe().translate_six_frames(*args, **kwargs)
@overrides(GrammaredSequence)
def _repr_stats(self):
"""Define custom statistics to display in the sequence's repr."""
stats = super(DNA, self)._repr_stats()
stats.append(('GC-content', '{:.2%}'.format(self.gc_content())))
return stats
_motifs = _parent_motifs.copy()
# Leave this at the bottom
_motifs.interpolate(DNA, "find_motifs")
|