1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import numpy as np
from skbio.util._decorator import classproperty, stable, classonlymethod
from skbio._base import SkbioObject
from skbio.sequence import Protein, RNA
from skbio._base import ElasticLines
class GeneticCode(SkbioObject):
"""Genetic code for translating codons to amino acids.
Parameters
----------
amino_acids : consumable by ``skbio.Protein`` constructor
64-character vector containing IUPAC amino acid characters. The order
of the amino acids should correspond to NCBI's codon order (see *Notes*
section below). `amino_acids` is the "AAs" field in NCBI's genetic
code format [1]_.
starts : consumable by ``skbio.Protein`` constructor
64-character vector containing only M and - characters, with start
codons indicated by M. The order of the amino acids should correspond
to NCBI's codon order (see *Notes* section below). `starts` is the
"Starts" field in NCBI's genetic code format [1]_.
name : str, optional
Genetic code name. This is simply metadata and does not affect the
functionality of the genetic code itself.
See Also
--------
RNA.translate
DNA.translate
GeneticCode.from_ncbi
Notes
-----
The genetic codes available via ``GeneticCode.from_ncbi`` and used
throughout the examples are defined in [1]_. The genetic code strings
defined there are directly compatible with the ``GeneticCode`` constructor.
The order of `amino_acids` and `starts` should correspond to NCBI's codon
order, defined in [1]_::
UUUUUUUUUUUUUUUUCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
UUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGG
UCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAG
Note that scikit-bio displays this ordering using the IUPAC RNA alphabet,
while NCBI displays this same ordering using the IUPAC DNA alphabet (for
historical purposes).
References
----------
.. [1] http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
Examples
--------
Get NCBI's standard genetic code (table ID 1, the default genetic code
in scikit-bio):
>>> from skbio import GeneticCode
>>> GeneticCode.from_ncbi()
GeneticCode (Standard)
-------------------------------------------------------------------------
AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts = ---M---------------M---------------M----------------------------
Base1 = UUUUUUUUUUUUUUUUCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
Base2 = UUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGG
Base3 = UCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAG
Get a different NCBI genetic code (25):
>>> GeneticCode.from_ncbi(25)
GeneticCode (Candidate Division SR1 and Gracilibacteria)
-------------------------------------------------------------------------
AAs = FFLLSSSSYY**CCGWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts = ---M-------------------------------M---------------M------------
Base1 = UUUUUUUUUUUUUUUUCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
Base2 = UUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGG
Base3 = UCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAG
Define a custom genetic code:
>>> GeneticCode('M' * 64, '-' * 64)
GeneticCode
-------------------------------------------------------------------------
AAs = MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Starts = ----------------------------------------------------------------
Base1 = UUUUUUUUUUUUUUUUCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
Base2 = UUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGGUUUUCCCCAAAAGGGG
Base3 = UCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAGUCAG
Translate an RNA sequence to protein using NCBI's standard genetic code:
>>> from skbio import RNA
>>> rna = RNA('AUGCCACUUUAA')
>>> GeneticCode.from_ncbi().translate(rna)
Protein
--------------------------
Stats:
length: 4
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 MPL*
"""
_num_codons = 64
_radix_multiplier = np.asarray([16, 4, 1], dtype=np.uint8)
_start_stop_options = ['ignore', 'optional', 'require']
__offset_table = None
@classproperty
def _offset_table(cls):
if cls.__offset_table is None:
# create lookup table that is filled with 255 everywhere except for
# indices corresponding to U, C, A, and G. 255 was chosen to
# represent invalid character offsets because it will create an
# invalid (out of bounds) index into `amino_acids` which should
# error noisily. this is important in case the valid definite
# IUPAC RNA characters change in the future and the assumptions
# currently made by the code become invalid
table = np.empty(ord(b'U') + 1, dtype=np.uint8)
table.fill(255)
table[ord(b'U')] = 0
table[ord(b'C')] = 1
table[ord(b'A')] = 2
table[ord(b'G')] = 3
cls.__offset_table = table
return cls.__offset_table
@classonlymethod
@stable(as_of="0.4.0")
def from_ncbi(cls, table_id=1):
"""Return NCBI genetic code specified by table ID.
Parameters
----------
table_id : int, optional
Table ID of the NCBI genetic code to return.
Returns
-------
GeneticCode
NCBI genetic code specified by `table_id`.
Notes
-----
The table IDs and genetic codes available in this method and used
throughout the examples are defined in [1]_.
References
----------
.. [1] http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
Examples
--------
Get the NCBI thraustochytrium mitochondrial genetic code (23):
>>> tmgc = GeneticCode.from_ncbi(23)
>>> tmgc.name
'Thraustochytrium Mitochondrial'
"""
if table_id not in _ncbi_genetic_codes:
raise ValueError(
"`table_id` must be one of %r, not %r"
% (sorted(_ncbi_genetic_codes), table_id))
return _ncbi_genetic_codes[table_id]
@classproperty
@stable(as_of="0.4.0")
def reading_frames(cls):
"""Six possible reading frames.
Reading frames are ordered:
* 1 (forward)
* 2 (forward)
* 3 (forward)
* -1 (reverse)
* -2 (reverse)
* -3 (reverse)
This property can be passed into
``GeneticCode.translate(reading_frame)``.
Returns
-------
list (int)
Six possible reading frames.
"""
return [1, 2, 3, -1, -2, -3]
@property
@stable(as_of="0.4.0")
def name(self):
"""Genetic code name.
This is simply metadata and does not affect the functionality of the
genetic code itself.
Returns
-------
str
Genetic code name.
"""
return self._name
@stable(as_of="0.4.0")
def __init__(self, amino_acids, starts, name=''):
self._set_amino_acids(amino_acids)
self._set_starts(starts)
self._name = name
def _set_amino_acids(self, amino_acids):
amino_acids = Protein(amino_acids)
if len(amino_acids) != self._num_codons:
raise ValueError("`amino_acids` must be length %d, not %d"
% (self._num_codons, len(amino_acids)))
indices = (amino_acids.values == b'M').nonzero()[0]
if indices.size < 1:
raise ValueError("`amino_acids` must contain at least one M "
"(methionine) character")
self._amino_acids = amino_acids
self._m_character_codon = self._index_to_codon(indices[0])
def _set_starts(self, starts):
starts = Protein(starts)
if len(starts) != self._num_codons:
raise ValueError("`starts` must be length %d, not %d"
% (self._num_codons, len(starts)))
if ((starts.values == b'M').sum() + (starts.values == b'-').sum() !=
len(starts)):
# to prevent the user from accidentally swapping `starts` and
# `amino_acids` and getting a translation back
raise ValueError("`starts` may only contain M and - characters")
self._starts = starts
indices = (self._starts.values == b'M').nonzero()[0]
codons = np.empty((indices.size, 3), dtype=np.uint8)
for i, index in enumerate(indices):
codons[i] = self._index_to_codon(index)
self._start_codons = codons
def _index_to_codon(self, index):
"""Convert AA index (0-63) to codon encoded in offsets (0-3)."""
codon = np.empty(3, dtype=np.uint8)
for i, multiplier in enumerate(self._radix_multiplier):
offset, index = divmod(index, multiplier)
codon[i] = offset
return codon
@stable(as_of="0.4.0")
def __str__(self):
"""Return string representation of the genetic code.
Returns
-------
str
Genetic code in NCBI genetic code format.
Notes
-----
Representation uses NCBI genetic code format defined in [1]_.
References
----------
.. [1] http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
"""
return self._build_repr(include_name=False)
@stable(as_of="0.4.0")
def __repr__(self):
"""Return string representation of the genetic code.
Returns
-------
str
Genetic code in NCBI genetic code format.
Notes
-----
Representation uses NCBI genetic code format defined in [1]_ preceded
by a header. If the genetic code has a name, it will be included in the
header.
References
----------
.. [1] http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
"""
return self._build_repr(include_name=True)
def _build_repr(self, include_name):
lines = ElasticLines()
if include_name:
name_line = self.__class__.__name__
if len(self.name) > 0:
name_line += ' (%s)' % self.name
lines.add_line(name_line)
lines.add_separator()
lines.add_line(' AAs = %s' % str(self._amino_acids))
lines.add_line('Starts = %s' % str(self._starts))
base1 = 'U' * 16 + 'C' * 16 + 'A' * 16 + 'G' * 16
lines.add_line('Base1 = %s' % base1)
base2 = ('U' * 4 + 'C' * 4 + 'A' * 4 + 'G' * 4) * 4
lines.add_line('Base2 = %s' % base2)
base3 = 'UCAG' * 16
lines.add_line('Base3 = %s' % base3)
return lines.to_str()
@stable(as_of="0.4.0")
def __eq__(self, other):
"""Determine if the genetic code is equal to another.
Genetic codes are equal if they are *exactly* the same type and
defined by the same `amino_acids` and `starts`. A genetic code's name
(accessed via ``name`` property) does not affect equality.
Parameters
----------
other : GeneticCode
Genetic code to test for equality against.
Returns
-------
bool
Indicates whether the genetic code is equal to `other`.
Examples
--------
NCBI genetic codes 1 and 2 are not equal:
>>> GeneticCode.from_ncbi(1) == GeneticCode.from_ncbi(2)
False
Define a custom genetic code:
>>> gc = GeneticCode('M' * 64, '-' * 64)
Define a second genetic code with the same `amino_acids` and `starts`.
Note that the presence of a name does not make the genetic codes
unequal:
>>> named_gc = GeneticCode('M' * 64, '-' * 64, name='example name')
>>> gc == named_gc
True
"""
if self.__class__ != other.__class__:
return False
# convert Protein to str so that metadata is ignored in comparison. we
# only care about the sequence data defining the genetic code
if str(self._amino_acids) != str(other._amino_acids):
return False
if str(self._starts) != str(other._starts):
return False
return True
@stable(as_of="0.4.0")
def __ne__(self, other):
"""Determine if the genetic code is not equal to another.
Genetic codes are not equal if their type, `amino_acids`, or `starts`
differ. A genetic code's name (accessed via ``name`` property) does not
affect equality.
Parameters
----------
other : GeneticCode
Genetic code to test for inequality against.
Returns
-------
bool
Indicates whether the genetic code is not equal to `other`.
"""
return not (self == other)
@stable(as_of="0.4.0")
def translate(self, sequence, reading_frame=1, start='ignore',
stop='ignore'):
"""Translate RNA sequence into protein sequence.
Parameters
----------
sequence : RNA
RNA sequence to translate.
reading_frame : {1, 2, 3, -1, -2, -3}
Reading frame to use in translation. 1, 2, and 3 are forward frames
and -1, -2, and -3 are reverse frames. If reverse (negative), will
reverse complement the sequence before translation.
start : {'ignore', 'require', 'optional'}
How to handle start codons:
* "ignore": translation will start from the beginning of the
reading frame, regardless of the presence of a start codon.
* "require": translation will start at the first start codon in
the reading frame, ignoring all prior positions. The first amino
acid in the translated sequence will *always* be methionine
(M character), even if an alternative start codon was used in
translation. This behavior most closely matches the underlying
biology since fMet doesn't have a corresponding IUPAC character.
If a start codon does not exist, a ``ValueError`` is raised.
* "optional": if a start codon exists in the reading frame, matches
the behavior of "require". If a start codon does not exist,
matches the behavior of "ignore".
stop : {'ignore', 'require', 'optional'}
How to handle stop codons:
* "ignore": translation will ignore the presence of stop codons and
translate to the end of the reading frame.
* "require": translation will terminate at the first stop codon.
The stop codon will not be included in the translated sequence.
If a stop codon does not exist, a ``ValueError`` is raised.
* "optional": if a stop codon exists in the reading frame, matches
the behavior of "require". If a stop codon does not exist,
matches the behavior of "ignore".
Returns
-------
Protein
Translated sequence.
See Also
--------
translate_six_frames
Notes
-----
Input RNA sequence metadata are included in the translated protein
sequence. Positional metadata are not included.
Examples
--------
Translate RNA into protein using NCBI's standard genetic code (table ID
1, the default genetic code in scikit-bio):
>>> from skbio import RNA, GeneticCode
>>> rna = RNA('AGUAUUCUGCCACUGUAAGAA')
>>> sgc = GeneticCode.from_ncbi()
>>> sgc.translate(rna)
Protein
--------------------------
Stats:
length: 7
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 SILPL*E
In this command, we used the default ``start`` behavior, which starts
translation at the beginning of the reading frame, regardless of the
presence of a start codon. If we specify "require", translation will
start at the first start codon in the reading frame (in this example,
CUG), ignoring all prior positions:
>>> sgc.translate(rna, start='require')
Protein
--------------------------
Stats:
length: 5
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 MPL*E
Note that the codon coding for L (CUG) is an alternative start codon in
this genetic code. Since we specified "require" mode, methionine (M)
was used in place of the alternative start codon (L). This behavior
most closely matches the underlying biology since fMet doesn't have a
corresponding IUPAC character.
Translate the same RNA sequence, also specifying that translation
terminate at the first stop codon in the reading frame:
>>> sgc.translate(rna, start='require', stop='require')
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 MPL
Passing "require" to both ``start`` and ``stop`` trims the translation
to the CDS (and in fact requires that one is present in the reading
frame). Changing the reading frame to 2 causes an exception to be
raised because a start codon doesn't exist in the reading frame:
>>> sgc.translate(rna, start='require', stop='require',
... reading_frame=2) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: ...
"""
self._validate_translate_inputs(sequence, reading_frame, start, stop)
offset = abs(reading_frame) - 1
if reading_frame < 0:
sequence = sequence.reverse_complement()
# Translation strategy:
#
# 1. Obtain view of underlying sequence bytes from the beginning of
# the reading frame.
# 2. Convert bytes to offsets (0-3, base 4 since there are only 4
# characters allowed: UCAG).
# 3. Reshape byte vector into (N, 3), where N is the number of codons
# in the reading frame. Each row represents a codon in the
# sequence.
# 4. (Optional) Find start codon in the reading frame and trim to
# this position. Replace start codon with M codon.
# 5. Convert each codon (encoded as offsets) into an index
# corresponding to an amino acid (0-63).
# 6. Obtain translated sequence by indexing into the amino acids
# vector (`amino_acids`) using the indices defined in step 5.
# 7. (Optional) Find first stop codon and trim to this position.
data = sequence.values[offset:].view(np.uint8)
# since advanced indexing is used with an integer ndarray, a copy is
# always returned. thus, the in-place modification made below
# (replacing the start codon) is safe.
data = self._offset_table[data]
data = data[:data.size // 3 * 3].reshape((-1, 3))
if start in {'require', 'optional'}:
start_codon_index = data.shape[0]
for start_codon in self._start_codons:
indices = np.all(data == start_codon, axis=1).nonzero()[0]
if indices.size > 0:
first_index = indices[0]
if first_index < start_codon_index:
start_codon_index = first_index
if start_codon_index != data.shape[0]:
data = data[start_codon_index:]
data[0] = self._m_character_codon
elif start == 'require':
self._raise_require_error('start', reading_frame)
indices = (data * self._radix_multiplier).sum(axis=1)
translated = self._amino_acids.values[indices]
if stop in {'require', 'optional'}:
stop_codon_indices = (translated == b'*').nonzero()[0]
if stop_codon_indices.size > 0:
translated = translated[:stop_codon_indices[0]]
elif stop == 'require':
self._raise_require_error('stop', reading_frame)
metadata = None
if sequence.has_metadata():
metadata = sequence.metadata
# turn off validation because `translated` is guaranteed to be valid
return Protein(translated, metadata=metadata, validate=False)
def _validate_translate_inputs(self, sequence, reading_frame, start, stop):
if not isinstance(sequence, RNA):
raise TypeError("Sequence to translate must be RNA, not %s" %
type(sequence).__name__)
if reading_frame not in self.reading_frames:
raise ValueError("`reading_frame` must be one of %r, not %r" %
(self.reading_frames, reading_frame))
for name, value in ('start', start), ('stop', stop):
if value not in self._start_stop_options:
raise ValueError("`%s` must be one of %r, not %r" %
(name, self._start_stop_options, value))
if sequence.has_gaps():
raise ValueError("scikit-bio does not support translation of "
"gapped sequences.")
if sequence.has_degenerates():
raise NotImplementedError("scikit-bio does not currently support "
"translation of degenerate sequences."
"`RNA.expand_degenerates` can be used "
"to obtain all definite versions "
"of a degenerate sequence.")
def _raise_require_error(self, name, reading_frame):
raise ValueError(
"Sequence does not contain a %s codon in the "
"current reading frame (`reading_frame=%d`). Presence "
"of a %s codon is required with `%s='require'`"
% (name, reading_frame, name, name))
@stable(as_of="0.4.0")
def translate_six_frames(self, sequence, start='ignore', stop='ignore'):
"""Translate RNA into protein using six possible reading frames.
The six possible reading frames are:
* 1 (forward)
* 2 (forward)
* 3 (forward)
* -1 (reverse)
* -2 (reverse)
* -3 (reverse)
Translated sequences are yielded in this order.
Parameters
----------
sequence : RNA
RNA sequence to translate.
start : {'ignore', 'require', 'optional'}
How to handle start codons. See ``GeneticCode.translate`` for
details.
stop : {'ignore', 'require', 'optional'}
How to handle stop codons. See ``GeneticCode.translate`` for
details.
Yields
------
Protein
Translated sequence in the current reading frame.
See Also
--------
translate
Notes
-----
This method is faster than (and equivalent to) performing six
independent translations using, for example:
``(gc.translate(seq, reading_frame=rf)
for rf in GeneticCode.reading_frames)``
Input RNA sequence metadata are included in each translated protein
sequence. Positional metadata are not included.
Examples
--------
Translate RNA into protein using the six possible reading frames and
NCBI's standard genetic code (table ID 1, the default genetic code in
scikit-bio):
>>> from skbio import RNA, GeneticCode
>>> rna = RNA('AUGCCACUUUAA')
>>> sgc = GeneticCode.from_ncbi()
>>> for protein in sgc.translate_six_frames(rna):
... protein
... print('')
Protein
--------------------------
Stats:
length: 4
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 MPL*
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 CHF
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 ATL
<BLANKLINE>
Protein
--------------------------
Stats:
length: 4
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 LKWH
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: True
--------------------------
0 *SG
<BLANKLINE>
Protein
--------------------------
Stats:
length: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 KVA
<BLANKLINE>
"""
rc = sequence.reverse_complement()
for reading_frame in range(1, 4):
yield self.translate(sequence, reading_frame=reading_frame,
start=start, stop=stop)
for reading_frame in range(1, 4):
yield self.translate(rc, reading_frame=reading_frame,
start=start, stop=stop)
# defined at http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
_ncbi_genetic_codes = {
1: GeneticCode(
'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'---M---------------M---------------M----------------------------',
'Standard'),
2: GeneticCode(
'FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSS**VVVVAAAADDEEGGGG',
'--------------------------------MMMM---------------M------------',
'Vertebrate Mitochondrial'),
3: GeneticCode(
'FFLLSSSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'----------------------------------MM----------------------------',
'Yeast Mitochondrial'),
4: GeneticCode(
'FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'--MM---------------M------------MMMM---------------M------------',
'Mold, Protozoan, and Coelenterate Mitochondrial, and '
'Mycoplasma/Spiroplasma'),
5: GeneticCode(
'FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSSSVVVVAAAADDEEGGGG',
'---M----------------------------MMMM---------------M------------',
'Invertebrate Mitochondrial'),
6: GeneticCode(
'FFLLSSSSYYQQCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'-----------------------------------M----------------------------',
'Ciliate, Dasycladacean and Hexamita Nuclear'),
9: GeneticCode(
'FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG',
'-----------------------------------M---------------M------------',
'Echinoderm and Flatworm Mitochondrial'),
10: GeneticCode(
'FFLLSSSSYY**CCCWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'-----------------------------------M----------------------------',
'Euplotid Nuclear'),
11: GeneticCode(
'FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'---M---------------M------------MMMM---------------M------------',
'Bacterial, Archaeal and Plant Plastid'),
12: GeneticCode(
'FFLLSSSSYY**CC*WLLLSPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'-------------------M---------------M----------------------------',
'Alternative Yeast Nuclear'),
13: GeneticCode(
'FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSGGVVVVAAAADDEEGGGG',
'---M------------------------------MM---------------M------------',
'Ascidian Mitochondrial'),
14: GeneticCode(
'FFLLSSSSYYY*CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG',
'-----------------------------------M----------------------------',
'Alternative Flatworm Mitochondrial'),
16: GeneticCode(
'FFLLSSSSYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'-----------------------------------M----------------------------',
'Chlorophycean Mitochondrial'),
21: GeneticCode(
'FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNNKSSSSVVVVAAAADDEEGGGG',
'-----------------------------------M---------------M------------',
'Trematode Mitochondrial'),
22: GeneticCode(
'FFLLSS*SYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'-----------------------------------M----------------------------',
'Scenedesmus obliquus Mitochondrial'),
23: GeneticCode(
'FF*LSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'--------------------------------M--M---------------M------------',
'Thraustochytrium Mitochondrial'),
24: GeneticCode(
'FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSSKVVVVAAAADDEEGGGG',
'---M---------------M---------------M---------------M------------',
'Pterobranchia Mitochondrial'),
25: GeneticCode(
'FFLLSSSSYY**CCGWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG',
'---M-------------------------------M---------------M------------',
'Candidate Division SR1 and Gracilibacteria')
}
|