1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import unittest
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import numpy.testing as npt
import pandas as pd
from IPython.core.display import Image, SVG
from skbio import OrdinationResults
class TestOrdinationResults(unittest.TestCase):
def setUp(self):
# Define in-memory CA results to serialize and deserialize.
eigvals = pd.Series([0.0961330159181, 0.0409418140138], ['CA1', 'CA2'])
features = np.array([[0.408869425742, 0.0695518116298],
[-0.1153860437, -0.299767683538],
[-0.309967102571, 0.187391917117]])
samples = np.array([[-0.848956053187, 0.882764759014],
[-0.220458650578, -1.34482000302],
[1.66697179591, 0.470324389808]])
features_ids = ['Species1', 'Species2', 'Species3']
sample_ids = ['Site1', 'Site2', 'Site3']
samples_df = pd.DataFrame(samples, index=sample_ids,
columns=['CA1', 'CA2'])
features_df = pd.DataFrame(features, index=features_ids,
columns=['CA1', 'CA2'])
self.ordination_results = OrdinationResults(
'CA', 'Correspondance Analysis', eigvals=eigvals,
samples=samples_df, features=features_df)
# DataFrame for testing plot method. Has a categorical column with a
# mix of numbers and strings. Has a numeric column with a mix of ints,
# floats, and strings that can be converted to floats. Has a numeric
# column with missing data (np.nan).
self.df = pd.DataFrame([['foo', '42', 10],
[22, 0, 8],
[22, -4.2, np.nan],
['foo', '42.19', 11]],
index=['A', 'B', 'C', 'D'],
columns=['categorical', 'numeric', 'nancolumn'])
# Minimal ordination results for easier testing of plotting method.
# Paired with df above.
eigvals = np.array([0.50, 0.25, 0.25])
samples = np.array([[0.1, 0.2, 0.3],
[0.2, 0.3, 0.4],
[0.3, 0.4, 0.5],
[0.4, 0.5, 0.6]])
samples_df = pd.DataFrame(samples, ['A', 'B', 'C', 'D'],
['PC1', 'PC2', 'PC3'])
self.min_ord_results = OrdinationResults(
'PCoA', 'Principal Coordinate Analysis', eigvals, samples_df)
def test_str(self):
exp = ("Ordination results:\n"
"\tMethod: Correspondance Analysis (CA)\n"
"\tEigvals: 2\n"
"\tProportion explained: N/A\n"
"\tFeatures: 3x2\n"
"\tSamples: 3x2\n"
"\tBiplot Scores: N/A\n"
"\tSample constraints: N/A\n"
"\tFeature IDs: 'Species1', 'Species2', 'Species3'\n"
"\tSample IDs: 'Site1', 'Site2', 'Site3'")
obs = str(self.ordination_results)
self.assertEqual(obs, exp)
# all optional attributes missing
exp = ("Ordination results:\n"
"\tMethod: Principal Coordinate Analysis (PCoA)\n"
"\tEigvals: 1\n"
"\tProportion explained: N/A\n"
"\tFeatures: N/A\n"
"\tSamples: 2x1\n"
"\tBiplot Scores: N/A\n"
"\tSample constraints: N/A\n"
"\tFeature IDs: N/A\n"
"\tSample IDs: 0, 1")
samples_df = pd.DataFrame(np.array([[1], [2]]))
obs = str(OrdinationResults('PCoA', 'Principal Coordinate Analysis',
pd.Series(np.array([4.2])), samples_df))
self.assertEqual(obs.split('\n'), exp.split('\n'))
def check_basic_figure_sanity(self, fig, exp_num_subplots, exp_title,
exp_legend_exists, exp_xlabel, exp_ylabel,
exp_zlabel):
# check type
self.assertIsInstance(fig, mpl.figure.Figure)
# check number of subplots
axes = fig.get_axes()
npt.assert_equal(len(axes), exp_num_subplots)
# check title
ax = axes[0]
npt.assert_equal(ax.get_title(), exp_title)
# shouldn't have tick labels
for tick_label in (ax.get_xticklabels() + ax.get_yticklabels() +
ax.get_zticklabels()):
npt.assert_equal(tick_label.get_text(), '')
# check if legend is present
legend = ax.get_legend()
if exp_legend_exists:
self.assertTrue(legend is not None)
else:
self.assertTrue(legend is None)
# check axis labels
npt.assert_equal(ax.get_xlabel(), exp_xlabel)
npt.assert_equal(ax.get_ylabel(), exp_ylabel)
npt.assert_equal(ax.get_zlabel(), exp_zlabel)
def test_plot_no_metadata(self):
fig = self.min_ord_results.plot()
self.check_basic_figure_sanity(fig, 1, '', False, '0', '1', '2')
def test_plot_with_numeric_metadata_and_plot_options(self):
fig = self.min_ord_results.plot(
self.df, 'numeric', axes=(1, 0, 2),
axis_labels=['PC 2', 'PC 1', 'PC 3'], title='a title', cmap='Reds')
self.check_basic_figure_sanity(
fig, 2, 'a title', False, 'PC 2', 'PC 1', 'PC 3')
def test_plot_with_categorical_metadata_and_plot_options(self):
fig = self.min_ord_results.plot(
self.df, 'categorical', axes=[2, 0, 1], title='a title',
cmap='Accent')
self.check_basic_figure_sanity(fig, 1, 'a title', True, '2', '0', '1')
def test_plot_with_invalid_axis_labels(self):
with self.assertRaisesRegex(ValueError, 'axis_labels.*4'):
self.min_ord_results.plot(axes=[2, 0, 1],
axis_labels=('a', 'b', 'c', 'd'))
def test_validate_plot_axes_valid_input(self):
# shouldn't raise an error on valid input. nothing is returned, so
# nothing to check here
samples = self.min_ord_results.samples.values.T
self.min_ord_results._validate_plot_axes(samples, (1, 2, 0))
def test_validate_plot_axes_invalid_input(self):
# not enough dimensions
with self.assertRaisesRegex(ValueError, '2 dimension\(s\)'):
self.min_ord_results._validate_plot_axes(
np.asarray([[0.1, 0.2, 0.3], [0.2, 0.3, 0.4]]), (0, 1, 2))
coord_matrix = self.min_ord_results.samples.values.T
# wrong number of axes
with self.assertRaisesRegex(ValueError, 'exactly three.*found 0'):
self.min_ord_results._validate_plot_axes(coord_matrix, [])
with self.assertRaisesRegex(ValueError, 'exactly three.*found 4'):
self.min_ord_results._validate_plot_axes(coord_matrix,
(0, 1, 2, 3))
# duplicate axes
with self.assertRaisesRegex(ValueError, 'must be unique'):
self.min_ord_results._validate_plot_axes(coord_matrix, (0, 1, 0))
# out of range axes
with self.assertRaisesRegex(ValueError, 'axes\[1\].*3'):
self.min_ord_results._validate_plot_axes(coord_matrix, (0, -1, 2))
with self.assertRaisesRegex(ValueError, 'axes\[2\].*3'):
self.min_ord_results._validate_plot_axes(coord_matrix, (0, 2, 3))
def test_get_plot_point_colors_invalid_input(self):
# column provided without df
with npt.assert_raises(ValueError):
self.min_ord_results._get_plot_point_colors(None, 'numeric',
['B', 'C'], 'jet')
# df provided without column
with npt.assert_raises(ValueError):
self.min_ord_results._get_plot_point_colors(self.df, None,
['B', 'C'], 'jet')
# column not in df
with self.assertRaisesRegex(ValueError, 'missingcol'):
self.min_ord_results._get_plot_point_colors(self.df, 'missingcol',
['B', 'C'], 'jet')
# id not in df
with self.assertRaisesRegex(ValueError, 'numeric'):
self.min_ord_results._get_plot_point_colors(
self.df, 'numeric', ['B', 'C', 'missingid', 'A'], 'jet')
# missing data in df
with self.assertRaisesRegex(ValueError, 'nancolumn'):
self.min_ord_results._get_plot_point_colors(self.df, 'nancolumn',
['B', 'C', 'A'], 'jet')
def test_get_plot_point_colors_no_df_or_column(self):
obs = self.min_ord_results._get_plot_point_colors(None, None,
['B', 'C'], 'jet')
npt.assert_equal(obs, (None, None))
def test_get_plot_point_colors_numeric_column(self):
# subset of the ids in df
exp = [0.0, -4.2, 42.0]
obs = self.min_ord_results._get_plot_point_colors(
self.df, 'numeric', ['B', 'C', 'A'], 'jet')
npt.assert_almost_equal(obs[0], exp)
self.assertTrue(obs[1] is None)
# all ids in df
exp = [0.0, 42.0, 42.19, -4.2]
obs = self.min_ord_results._get_plot_point_colors(
self.df, 'numeric', ['B', 'A', 'D', 'C'], 'jet')
npt.assert_almost_equal(obs[0], exp)
self.assertTrue(obs[1] is None)
def test_get_plot_point_colors_categorical_column(self):
# subset of the ids in df
exp_colors = [[0., 0., 0.5, 1.], [0., 0., 0.5, 1.], [0.5, 0., 0., 1.]]
exp_color_dict = {
'foo': [0.5, 0., 0., 1.],
22: [0., 0., 0.5, 1.]
}
obs = self.min_ord_results._get_plot_point_colors(
self.df, 'categorical', ['B', 'C', 'A'], 'jet')
npt.assert_almost_equal(obs[0], exp_colors)
npt.assert_equal(obs[1], exp_color_dict)
# all ids in df
exp_colors = [[0., 0., 0.5, 1.], [0.5, 0., 0., 1.], [0.5, 0., 0., 1.],
[0., 0., 0.5, 1.]]
obs = self.min_ord_results._get_plot_point_colors(
self.df, 'categorical', ['B', 'A', 'D', 'C'], 'jet')
npt.assert_almost_equal(obs[0], exp_colors)
# should get same color dict as before
npt.assert_equal(obs[1], exp_color_dict)
def test_plot_categorical_legend(self):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# we shouldn't have a legend yet
self.assertTrue(ax.get_legend() is None)
self.min_ord_results._plot_categorical_legend(
ax, {'foo': 'red', 'bar': 'green'})
# make sure we have a legend now
legend = ax.get_legend()
self.assertTrue(legend is not None)
# do some light sanity checking to make sure our input labels and
# colors are present. we're not using nose.tools.assert_items_equal
# because it isn't available in Python 3.
labels = [t.get_text() for t in legend.get_texts()]
npt.assert_equal(sorted(labels), ['bar', 'foo'])
colors = [l.get_color() for l in legend.get_lines()]
npt.assert_equal(sorted(colors), ['green', 'red'])
def test_repr_png(self):
obs = self.min_ord_results._repr_png_()
self.assertIsInstance(obs, bytes)
self.assertTrue(len(obs) > 0)
def test_repr_svg(self):
obs = self.min_ord_results._repr_svg_()
self.assertIsInstance(obs, str)
self.assertTrue(len(obs) > 0)
def test_png(self):
self.assertIsInstance(self.min_ord_results.png, Image)
def test_svg(self):
self.assertIsInstance(self.min_ord_results.svg, SVG)
if __name__ == '__main__':
unittest.main()
|