1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import numpy as np
import numpy.testing as npt
import pandas as pd
from unittest import TestCase, main
from skbio import OrdinationResults
from skbio.stats.ordination import rda
from skbio.util import get_data_path, assert_ordination_results_equal
class TestRDAErrors(TestCase):
def setUp(self):
pass
def test_shape(self):
for n, p, n_, m in [(3, 4, 2, 1), (3, 4, 3, 10)]:
Y = pd.DataFrame(np.random.randn(n, p))
X = pd.DataFrame(np.random.randn(n_, m))
yield npt.assert_raises, ValueError, rda, Y, X, None, None
class TestRDAResults(TestCase):
# STATUS: L&L only shows results with scaling 1, and they agree
# with vegan's (module multiplying by a constant). I can also
# compute scaling 2, agreeing with vegan, but there are no written
# results in L&L.
def setUp(self):
"""Data from table 11.3 in Legendre & Legendre 1998."""
self.sample_ids = ['Site0', 'Site1', 'Site2', 'Site3', 'Site4',
'Site5', 'Site6', 'Site7', 'Site8', 'Site9']
self.feature_ids = ['Species0', 'Species1', 'Species2', 'Species3',
'Species4', 'Species5']
self.env_ids = list(map(str, range(4)))
self.pc_ids = ['RDA1', 'RDA2', 'RDA3', 'RDA4', 'RDA5', 'RDA6', 'RDA7']
self.Y = pd.DataFrame(
np.loadtxt(get_data_path('example2_Y')),
index=self.sample_ids, columns=self.feature_ids)
self.X = pd.DataFrame(
np.loadtxt(get_data_path('example2_X')),
index=self.sample_ids, columns=self.env_ids)
def test_scaling1(self):
scores = rda(self.Y, self.X, scaling=1)
sample_constraints = pd.DataFrame(np.loadtxt(
get_data_path('example2_sample_constraints_scaling1')))
# Load data as computed with vegan 2.0-8
vegan_features = pd.DataFrame(
np.loadtxt(get_data_path(
'example2_species_scaling1_from_vegan')),
index=self.feature_ids,
columns=self.pc_ids)
vegan_samples = pd.DataFrame(
np.loadtxt(get_data_path(
'example2_site_scaling1_from_vegan')),
index=self.sample_ids,
columns=self.pc_ids)
sample_constraints = pd.DataFrame(
np.loadtxt(get_data_path(
'example2_sample_constraints_scaling1')),
index=self.sample_ids,
columns=self.pc_ids)
mat = np.loadtxt(get_data_path(
'example2_biplot_scaling1'))
cropped_pc_ids = self.pc_ids[:mat.shape[1]]
biplot_scores = pd.DataFrame(mat,
index=self.env_ids,
columns=cropped_pc_ids)
proportion_explained = pd.Series([0.44275783, 0.25614586,
0.15280354, 0.10497021,
0.02873375, 0.00987052,
0.00471828],
index=self.pc_ids)
eigvals = pd.Series([25.897954, 14.982578, 8.937841, 6.139956,
1.680705, 0.577350, 0.275984],
index=self.pc_ids)
exp = OrdinationResults(
'RDA', 'Redundancy Analysis',
samples=vegan_samples,
features=vegan_features,
sample_constraints=sample_constraints,
biplot_scores=biplot_scores,
proportion_explained=proportion_explained,
eigvals=eigvals)
assert_ordination_results_equal(scores, exp,
ignore_directionality=True,
decimal=6)
def test_scaling2(self):
scores = rda(self.Y, self.X, scaling=2)
mat = np.loadtxt(get_data_path('example2_biplot_scaling2'))
cropped_pc_ids = self.pc_ids[:mat.shape[1]]
biplot_scores = pd.DataFrame(mat,
index=self.env_ids,
columns=cropped_pc_ids)
sample_constraints = pd.DataFrame(np.loadtxt(
get_data_path('example2_sample_constraints_scaling2')))
# Load data as computed with vegan 2.0-8
vegan_features = pd.DataFrame(
np.loadtxt(get_data_path(
'example2_species_scaling2_from_vegan')),
index=self.feature_ids,
columns=self.pc_ids)
vegan_samples = pd.DataFrame(
np.loadtxt(get_data_path(
'example2_site_scaling2_from_vegan')),
index=self.sample_ids,
columns=self.pc_ids)
sample_constraints = pd.DataFrame(
np.loadtxt(get_data_path(
'example2_sample_constraints_scaling2')),
index=self.sample_ids,
columns=self.pc_ids)
mat = np.loadtxt(get_data_path(
'example2_biplot_scaling2'))
cropped_pc_ids = self.pc_ids[:mat.shape[1]]
biplot_scores = pd.DataFrame(mat,
index=self.env_ids,
columns=cropped_pc_ids)
proportion_explained = pd.Series([0.44275783, 0.25614586,
0.15280354, 0.10497021,
0.02873375, 0.00987052,
0.00471828],
index=self.pc_ids)
eigvals = pd.Series([25.897954, 14.982578, 8.937841, 6.139956,
1.680705, 0.577350, 0.275984],
index=self.pc_ids)
exp = OrdinationResults(
'RDA', 'Redundancy Analysis',
samples=vegan_samples,
features=vegan_features,
sample_constraints=sample_constraints,
biplot_scores=biplot_scores,
proportion_explained=proportion_explained,
eigvals=eigvals)
assert_ordination_results_equal(scores, exp,
ignore_directionality=True,
decimal=6)
if __name__ == '__main__':
main()
|