1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import warnings
from operator import or_, itemgetter
from copy import deepcopy
from itertools import combinations
from functools import reduce
from collections import defaultdict
import numpy as np
from scipy.stats import pearsonr
from skbio._base import SkbioObject
from skbio.stats.distance import DistanceMatrix
from ._exception import (NoLengthError, DuplicateNodeError, NoParentError,
MissingNodeError, TreeError)
from skbio.util import RepresentationWarning
from skbio.util._decorator import experimental, classonlymethod
def distance_from_r(m1, m2):
r"""Estimates distance as (1-r)/2: neg correl = max distance
Parameters
----------
m1 : DistanceMatrix
a distance matrix to compare
m2 : DistanceMatrix
a distance matrix to compare
Returns
-------
float
The distance between m1 and m2
"""
return (1-pearsonr(m1.data.flat, m2.data.flat)[0])/2
class TreeNode(SkbioObject):
r"""Representation of a node within a tree
A `TreeNode` instance stores links to its parent and optional children
nodes. In addition, the `TreeNode` can represent a `length` (e.g., a
branch length) between itself and its parent. Within this object, the use
of "children" and "descendants" is frequent in the documentation. A child
is a direct descendant of a node, while descendants are all nodes that are
below a given node (e.g., grand-children, etc).
Parameters
----------
name : str or None
A node can have a name. It is common for tips in particular to have
names, for instance, in a phylogenetic tree where the tips correspond
to species.
length : float, int, or None
Distances between nodes can be used to represent evolutionary
distances, time, etc.
parent : TreeNode or None
Connect this node to a parent
children : list of TreeNode or None
Connect this node to existing children
Attributes
----------
name
length
parent
children
id
"""
default_write_format = 'newick'
_exclude_from_copy = set(['parent', 'children', '_tip_cache',
'_non_tip_cache'])
@experimental(as_of="0.4.0")
def __init__(self, name=None, length=None, parent=None, children=None):
self.name = name
self.length = length
self.parent = parent
self._tip_cache = {}
self._non_tip_cache = {}
self._registered_caches = set()
self.children = []
self.id = None
if children is not None:
self.extend(children)
@experimental(as_of="0.4.0")
def __repr__(self):
r"""Returns summary of the tree
Returns
-------
str
A summary of this node and all descendants
Notes
-----
This method returns the name of the node and a count of tips and the
number of internal nodes in the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c, d)root;"])
>>> repr(tree)
'<TreeNode, name: root, internal node count: 1, tips count: 3>'
"""
nodes = [n for n in self.traverse(include_self=False)]
n_tips = sum([n.is_tip() for n in nodes])
n_nontips = len(nodes) - n_tips
classname = self.__class__.__name__
name = self.name if self.name is not None else "unnamed"
return "<%s, name: %s, internal node count: %d, tips count: %d>" % \
(classname, name, n_nontips, n_tips)
@experimental(as_of="0.4.0")
def __str__(self):
r"""Returns string version of self, with names and distances
Returns
-------
str
Returns a Newick representation of the tree
See Also
--------
read
write
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> str(tree)
'((a,b)c);\n'
"""
return str(''.join(self.write([])))
@experimental(as_of="0.4.0")
def __iter__(self):
r"""Node iter iterates over the `children`."""
return iter(self.children)
@experimental(as_of="0.4.0")
def __len__(self):
return len(self.children)
@experimental(as_of="0.4.0")
def __getitem__(self, i):
r"""Node delegates slicing to `children`."""
return self.children[i]
@experimental(as_of="0.4.0")
def _adopt(self, node):
r"""Update `parent` references but does NOT update `children`."""
self.invalidate_caches()
if node.parent is not None:
node.parent.remove(node)
node.parent = self
return node
@experimental(as_of="0.4.0")
def append(self, node):
r"""Appends a node to `children`, in-place, cleaning up refs
`append` will invalidate any node lookup caches, remove an existing
parent on `node` if one exists, set the parent of `node` to self
and add the `node` to `self` `children`.
Parameters
----------
node : TreeNode
An existing TreeNode object
See Also
--------
extend
Examples
--------
>>> from skbio import TreeNode
>>> root = TreeNode(name="root")
>>> child1 = TreeNode(name="child1")
>>> child2 = TreeNode(name="child2")
>>> root.append(child1)
>>> root.append(child2)
>>> print(root)
(child1,child2)root;
<BLANKLINE>
"""
self.children.append(self._adopt(node))
@experimental(as_of="0.4.0")
def extend(self, nodes):
r"""Append a `list` of `TreeNode` to `self`.
`extend` will invalidate any node lookup caches, remove existing
parents of the `nodes` if they have any, set their parents to self
and add the nodes to `self` `children`.
Parameters
----------
nodes : list of TreeNode
A list of TreeNode objects
See Also
--------
append
Examples
--------
>>> from skbio import TreeNode
>>> root = TreeNode(name="root")
>>> root.extend([TreeNode(name="child1"), TreeNode(name="child2")])
>>> print(root)
(child1,child2)root;
<BLANKLINE>
"""
self.children.extend([self._adopt(n) for n in nodes[:]])
@experimental(as_of="0.4.0")
def pop(self, index=-1):
r"""Remove a `TreeNode` from `self`.
Remove a child node by its index position. All node lookup caches
are invalidated, and the parent reference for the popped node will be
set to `None`.
Parameters
----------
index : int
The index position in `children` to pop
Returns
-------
TreeNode
The popped child
See Also
--------
remove
remove_deleted
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> print(tree.pop(0))
a;
<BLANKLINE>
"""
return self._remove_node(index)
def _remove_node(self, idx):
r"""The actual (and only) method that performs node removal"""
self.invalidate_caches()
node = self.children.pop(idx)
node.parent = None
return node
@experimental(as_of="0.4.0")
def remove(self, node):
r"""Remove a node from self
Remove a `node` from `self` by identity of the node.
Parameters
----------
node : TreeNode
The node to remove from self's children
Returns
-------
bool
`True` if the node was removed, `False` otherwise
See Also
--------
pop
remove_deleted
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> tree.remove(tree.children[0])
True
"""
for (i, curr_node) in enumerate(self.children):
if curr_node is node:
self._remove_node(i)
return True
return False
@experimental(as_of="0.4.0")
def remove_deleted(self, func):
r"""Delete nodes in which `func(node)` evaluates `True`.
Remove all descendants from `self` that evaluate `True` from `func`.
This has the potential to drop clades.
Parameters
----------
func : a function
A function that evaluates `True` when a node should be deleted
See Also
--------
pop
remove
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> tree.remove_deleted(lambda x: x.name == 'b')
>>> print(tree)
(a)c;
<BLANKLINE>
"""
for node in self.traverse(include_self=False):
if func(node):
node.parent.remove(node)
@experimental(as_of="0.4.0")
def prune(self):
r"""Reconstructs correct topology after nodes have been removed.
Internal nodes with only one child will be removed and new connections
will be made to reflect change. This method is useful to call
following node removals as it will clean up nodes with singular
children.
Names and properties of singular children will override the names and
properties of their parents following the prune.
Node lookup caches are invalidated.
See Also
--------
shear
remove
pop
remove_deleted
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> to_delete = tree.find('b')
>>> tree.remove_deleted(lambda x: x == to_delete)
>>> print(tree)
((a)c,(d,e)f)root;
<BLANKLINE>
>>> tree.prune()
>>> print(tree)
((d,e)f,a)root;
<BLANKLINE>
"""
# build up the list of nodes to remove so the topology is not altered
# while traversing
nodes_to_remove = []
for node in self.traverse(include_self=False):
if len(node.children) == 1:
nodes_to_remove.append(node)
# clean up the single children nodes
for node in nodes_to_remove:
child = node.children[0]
if child.length is None or node.length is None:
child.length = child.length or node.length
else:
child.length += node.length
if node.parent is None:
continue
node.parent.append(child)
node.parent.remove(node)
# if a single descendent from the root, the root adopts the childs
# properties. we can't "delete" the root as that would be deleting
# self.
if len(self.children) == 1:
node_to_copy = self.children[0]
efc = self._exclude_from_copy
for key in node_to_copy.__dict__:
if key not in efc:
self.__dict__[key] = deepcopy(node_to_copy.__dict__[key])
self.remove(node_to_copy)
self.extend(node_to_copy.children)
@experimental(as_of="0.4.0")
def shear(self, names):
"""Lop off tips until the tree just has the desired tip names.
Parameters
----------
names : Iterable of str
The tip names on the tree to keep
Returns
-------
TreeNode
The resulting tree
Raises
------
ValueError
If the names do not exist in the tree
See Also
--------
prune
remove
pop
remove_deleted
Examples
--------
>>> from skbio import TreeNode
>>> t = TreeNode.read(['((H:1,G:1):2,(R:0.5,M:0.7):3);'])
>>> sheared = t.shear(['G', 'M'])
>>> print(sheared)
(G:3.0,M:3.7);
<BLANKLINE>
"""
tcopy = self.deepcopy()
all_tips = {n.name for n in tcopy.tips()}
ids = set(names)
if not ids.issubset(all_tips):
raise ValueError("ids are not a subset of the tree.")
marked = set()
for tip in tcopy.tips():
if tip.name in ids:
marked.add(tip)
for anc in tip.ancestors():
if anc in marked:
break
else:
marked.add(anc)
for node in list(tcopy.traverse()):
if node not in marked:
node.parent.remove(node)
tcopy.prune()
return tcopy
@experimental(as_of="0.4.0")
def copy(self):
r"""Returns a copy of self using an iterative approach
Perform an iterative deepcopy of self. It is not assured that the copy
of node attributes will be performed iteratively as that depends on
the copy method of the types being copied
Returns
-------
TreeNode
A new copy of self
See Also
--------
unrooted_deepcopy
unrooted_copy
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> tree_copy = tree.copy()
>>> tree_nodes = set([id(n) for n in tree.traverse()])
>>> tree_copy_nodes = set([id(n) for n in tree_copy.traverse()])
>>> print(len(tree_nodes.intersection(tree_copy_nodes)))
0
"""
def __copy_node(node_to_copy):
r"""Helper method to copy a node"""
# this is _possibly_ dangerous, we're assuming the node to copy is
# of the same class as self, and has the same exclusion criteria.
# however, it is potentially dangerous to mix TreeNode subclasses
# within a tree, so...
result = self.__class__()
efc = self._exclude_from_copy
for key in node_to_copy.__dict__:
if key not in efc:
result.__dict__[key] = deepcopy(node_to_copy.__dict__[key])
return result
root = __copy_node(self)
nodes_stack = [[root, self, len(self.children)]]
while nodes_stack:
# check the top node, any children left unvisited?
top = nodes_stack[-1]
new_top_node, old_top_node, unvisited_children = top
if unvisited_children:
top[2] -= 1
old_child = old_top_node.children[-unvisited_children]
new_child = __copy_node(old_child)
new_top_node.append(new_child)
nodes_stack.append([new_child, old_child,
len(old_child.children)])
else: # no unvisited children
nodes_stack.pop()
return root
__copy__ = copy
__deepcopy__ = deepcopy = copy
@experimental(as_of="0.4.0")
def unrooted_deepcopy(self, parent=None):
r"""Walks the tree unrooted-style and returns a new copy
Perform a deepcopy of self and return a new copy of the tree as an
unrooted copy. This is useful for defining new roots of the tree as
the `TreeNode`.
This method calls `TreeNode.unrooted_copy` which is recursive.
Parameters
----------
parent : TreeNode or None
Used to avoid infinite loops when performing the unrooted traverse
Returns
-------
TreeNode
A new copy of the tree
See Also
--------
copy
unrooted_copy
root_at
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> new_tree = tree.find('d').unrooted_deepcopy()
>>> print(new_tree)
(b,c,(a,((f,g)h)e)d)root;
<BLANKLINE>
"""
root = self.root()
root.assign_ids()
new_tree = root.copy()
new_tree.assign_ids()
new_tree_self = new_tree.find_by_id(self.id)
return new_tree_self.unrooted_copy(parent)
@experimental(as_of="0.4.0")
def unrooted_copy(self, parent=None):
r"""Walks the tree unrooted-style and returns a copy
Perform a copy of self and return a new copy of the tree as an
unrooted copy. This is useful for defining new roots of the tree as
the `TreeNode`.
This method is recursive.
Warning, this is _NOT_ a deepcopy
Parameters
----------
parent : TreeNode or None
Used to avoid infinite loops when performing the unrooted traverse
Returns
-------
TreeNode
A new copy of the tree
See Also
--------
copy
unrooted_deepcopy
root_at
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> new_tree = tree.find('d').unrooted_copy()
>>> print(new_tree)
(b,c,(a,((f,g)h)e)d)root;
<BLANKLINE>
"""
neighbors = self.neighbors(ignore=parent)
children = [c.unrooted_copy(parent=self) for c in neighbors]
# we might be walking UP the tree, so:
if parent is None:
# base edge
edgename = None
length = None
elif parent.parent is self:
# self's parent is becoming self's child
edgename = parent.name
length = parent.length
else:
assert parent is self.parent
edgename = self.name
length = self.length
result = self.__class__(name=edgename, children=children,
length=length)
if parent is None:
result.name = "root"
return result
@experimental(as_of="0.4.0")
def count(self, tips=False):
"""Get the count of nodes in the tree
Parameters
----------
tips : bool
If `True`, only return the count of the number of tips
Returns
-------
int
The number of nodes or tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> print(tree.count())
9
>>> print(tree.count(tips=True))
5
"""
if tips:
return len(list(self.tips()))
else:
return len(list(self.traverse(include_self=True)))
@experimental(as_of="0.4.1")
def observed_node_counts(self, tip_counts):
"""Returns counts of node observations from counts of tip observations
Parameters
----------
tip_counts : dict of ints
Counts of observations of tips. Keys correspond to tip names in
``self``, and counts are unsigned ints.
Returns
-------
dict
Counts of observations of nodes. Keys correspond to node names
(internal nodes or tips), and counts are unsigned ints.
Raises
------
ValueError
If a count less than one is observed.
MissingNodeError
If a count is provided for a tip not in the tree, or for an
internal node.
"""
result = defaultdict(int)
for tip_name, count in tip_counts.items():
if count < 1:
raise ValueError("All tip counts must be greater than zero.")
else:
t = self.find(tip_name)
if not t.is_tip():
raise MissingNodeError(
"Counts can only be for tips in the tree. %s is an "
"internal node." % t.name)
result[t] += count
for internal_node in t.ancestors():
result[internal_node] += count
return result
@experimental(as_of="0.4.0")
def subtree(self, tip_list=None):
r"""Make a copy of the subtree"""
raise NotImplementedError()
@experimental(as_of="0.4.0")
def subset(self):
r"""Returns set of names that descend from specified node
Get the set of `name` on tips that descend from this node.
Returns
-------
frozenset
The set of names at the tips of the clade that descends from self
See Also
--------
subsets
compare_subsets
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> sorted(tree.subset())
['a', 'b', 'c', 'f', 'g']
"""
return frozenset({i.name for i in self.tips()})
@experimental(as_of="0.4.0")
def subsets(self):
r"""Return all sets of names that come from self and its descendants
Compute all subsets of tip names over `self`, or, represent a tree as a
set of nested sets.
Returns
-------
frozenset
A frozenset of frozensets of str
See Also
--------
subset
compare_subsets
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,b)c,(d,e)f)h)root;"])
>>> subsets = tree.subsets()
>>> len(subsets)
3
"""
sets = []
for i in self.postorder(include_self=False):
if not i.children:
i.__leaf_set = frozenset([i.name])
else:
leaf_set = reduce(or_, [c.__leaf_set for c in i.children])
if len(leaf_set) > 1:
sets.append(leaf_set)
i.__leaf_set = leaf_set
return frozenset(sets)
@experimental(as_of="0.4.0")
def root_at(self, node):
r"""Return a new tree rooted at the provided node.
This can be useful for drawing unrooted trees with an orientation that
reflects knowledge of the true root location.
Parameters
----------
node : TreeNode or str
The node to root at
Returns
-------
TreeNode
A new copy of the tree
Raises
------
TreeError
Raises a `TreeError` if a tip is specified as the new root
See Also
--------
root_at_midpoint
unrooted_deepcopy
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,b)c,(d,e)f)g,h)i;"])
>>> print(tree.root_at('c'))
(a,b,((d,e)f,(h)g)c)root;
<BLANKLINE>
"""
if isinstance(node, str):
node = self.find(node)
if not node.children:
raise TreeError("Can't use a tip (%s) as the root" %
repr(node.name))
return node.unrooted_deepcopy()
@experimental(as_of="0.4.0")
def root_at_midpoint(self):
r"""Return a new tree rooted at midpoint of the two tips farthest apart
This method doesn't preserve the internal node naming or structure,
but does keep tip to tip distances correct. Uses `unrooted_copy` but
operates on a full copy of the tree.
Raises
------
TreeError
If a tip ends up being the mid point
Returns
-------
TreeNode
A tree rooted at its midpoint
LengthError
Midpoint rooting requires `length` and will raise (indirectly) if
evaluated nodes don't have length.
See Also
--------
root_at
unrooted_deepcopy
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((d:1,e:1,(g:1)f:1)c:1)b:1,h:1)a:1;"])
>>> print(tree.root_at_midpoint())
((d:1.0,e:1.0,(g:1.0)f:1.0)c:0.5,((h:1.0)b:1.0):0.5)root;
<BLANKLINE>
"""
tree = self.copy()
max_dist, tips = tree.get_max_distance()
half_max_dist = max_dist / 2.0
if max_dist == 0.0: # only pathological cases with no lengths
return tree
tip1 = tree.find(tips[0])
tip2 = tree.find(tips[1])
lca = tree.lowest_common_ancestor([tip1, tip2])
if tip1.accumulate_to_ancestor(lca) > half_max_dist:
climb_node = tip1
else:
climb_node = tip2
dist_climbed = 0.0
while dist_climbed + climb_node.length < half_max_dist:
dist_climbed += climb_node.length
climb_node = climb_node.parent
# now midpt is either at on the branch to climb_node's parent
# or midpt is at climb_node's parent
if dist_climbed + climb_node.length == half_max_dist:
# climb to midpoint spot
climb_node = climb_node.parent
if climb_node.is_tip():
raise TreeError('error trying to root tree at tip')
else:
return climb_node.unrooted_copy()
else:
# make a new node on climb_node's branch to its parent
old_br_len = climb_node.length
new_root = tree.__class__()
climb_node.parent.append(new_root)
new_root.append(climb_node)
climb_node.length = half_max_dist - dist_climbed
new_root.length = old_br_len - climb_node.length
return new_root.unrooted_copy()
@experimental(as_of="0.4.0")
def is_tip(self):
r"""Returns `True` if the current node has no `children`.
Returns
-------
bool
`True` if the node is a tip
See Also
--------
is_root
has_children
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.is_tip())
False
>>> print(tree.find('a').is_tip())
True
"""
return not self.children
@experimental(as_of="0.4.0")
def is_root(self):
r"""Returns `True` if the current is a root, i.e. has no `parent`.
Returns
-------
bool
`True` if the node is the root
See Also
--------
is_tip
has_children
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.is_root())
True
>>> print(tree.find('a').is_root())
False
"""
return self.parent is None
@experimental(as_of="0.4.0")
def has_children(self):
r"""Returns `True` if the node has `children`.
Returns
-------
bool
`True` if the node has children.
See Also
--------
is_tip
is_root
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.has_children())
True
>>> print(tree.find('a').has_children())
False
"""
return not self.is_tip()
@experimental(as_of="0.4.0")
def traverse(self, self_before=True, self_after=False, include_self=True):
r"""Returns iterator over descendants
This is a depth-first traversal. Since the trees are not binary,
preorder and postorder traversals are possible, but inorder traversals
would depend on the data in the tree and are not handled here.
Parameters
----------
self_before : bool
includes each node before its descendants if True
self_after : bool
includes each node after its descendants if True
include_self : bool
include the initial node if True
`self_before` and `self_after` are independent. If neither is `True`,
only terminal nodes will be returned.
Note that if self is terminal, it will only be included once even if
`self_before` and `self_after` are both `True`.
Yields
------
TreeNode
Traversed node.
See Also
--------
preorder
postorder
pre_and_postorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.traverse():
... print(node.name)
None
c
a
b
"""
if self_before:
if self_after:
return self.pre_and_postorder(include_self=include_self)
else:
return self.preorder(include_self=include_self)
else:
if self_after:
return self.postorder(include_self=include_self)
else:
return self.tips(include_self=include_self)
@experimental(as_of="0.4.0")
def preorder(self, include_self=True):
r"""Performs preorder iteration over tree
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
pre_and_postorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.preorder():
... print(node.name)
None
c
a
b
"""
stack = [self]
while stack:
curr = stack.pop()
if include_self or (curr is not self):
yield curr
if curr.children:
stack.extend(curr.children[::-1])
@experimental(as_of="0.4.0")
def postorder(self, include_self=True):
r"""Performs postorder iteration over tree.
This is somewhat inelegant compared to saving the node and its index
on the stack, but is 30% faster in the average case and 3x faster in
the worst case (for a comb tree).
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
preorder
pre_and_postorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.postorder():
... print(node.name)
a
b
c
None
"""
child_index_stack = [0]
curr = self
curr_children = self.children
curr_children_len = len(curr_children)
while 1:
curr_index = child_index_stack[-1]
# if there are children left, process them
if curr_index < curr_children_len:
curr_child = curr_children[curr_index]
# if the current child has children, go there
if curr_child.children:
child_index_stack.append(0)
curr = curr_child
curr_children = curr.children
curr_children_len = len(curr_children)
curr_index = 0
# otherwise, yield that child
else:
yield curr_child
child_index_stack[-1] += 1
# if there are no children left, return self, and move to
# self's parent
else:
if include_self or (curr is not self):
yield curr
if curr is self:
break
curr = curr.parent
curr_children = curr.children
curr_children_len = len(curr_children)
child_index_stack.pop()
child_index_stack[-1] += 1
@experimental(as_of="0.4.0")
def pre_and_postorder(self, include_self=True):
r"""Performs iteration over tree, visiting node before and after
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.pre_and_postorder():
... print(node.name)
None
c
a
b
c
None
"""
# handle simple case first
if not self.children:
if include_self:
yield self
return
child_index_stack = [0]
curr = self
curr_children = self.children
while 1:
curr_index = child_index_stack[-1]
if not curr_index:
if include_self or (curr is not self):
yield curr
# if there are children left, process them
if curr_index < len(curr_children):
curr_child = curr_children[curr_index]
# if the current child has children, go there
if curr_child.children:
child_index_stack.append(0)
curr = curr_child
curr_children = curr.children
curr_index = 0
# otherwise, yield that child
else:
yield curr_child
child_index_stack[-1] += 1
# if there are no children left, return self, and move to
# self's parent
else:
if include_self or (curr is not self):
yield curr
if curr is self:
break
curr = curr.parent
curr_children = curr.children
child_index_stack.pop()
child_index_stack[-1] += 1
@experimental(as_of="0.4.0")
def levelorder(self, include_self=True):
r"""Performs levelorder iteration over tree
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
pre_and_postorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> for node in tree.levelorder():
... print(node.name)
None
c
f
a
b
d
e
"""
queue = [self]
while queue:
curr = queue.pop(0)
if include_self or (curr is not self):
yield curr
if curr.children:
queue.extend(curr.children)
@experimental(as_of="0.4.0")
def tips(self, include_self=False):
r"""Iterates over tips descended from `self`.
Node order is consistent between calls and is ordered by a
postorder traversal of the tree.
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
pre_and_postorder
levelorder
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> for node in tree.tips():
... print(node.name)
a
b
d
e
"""
for n in self.postorder(include_self=False):
if n.is_tip():
yield n
@experimental(as_of="0.4.0")
def non_tips(self, include_self=False):
r"""Iterates over nontips descended from self
`include_self`, if `True` (default is False), will return the current
node as part of non_tips if it is a non_tip. Node order is consistent
between calls and is ordered by a postorder traversal of the tree.
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
pre_and_postorder
levelorder
tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> for node in tree.non_tips():
... print(node.name)
c
f
"""
for n in self.postorder(include_self):
if not n.is_tip():
yield n
@experimental(as_of="0.4.0")
def invalidate_caches(self, attr=True):
r"""Delete lookup and attribute caches
Parameters
----------
attr : bool, optional
If ``True``, invalidate attribute caches created by
`TreeNode.cache_attr`.
See Also
--------
create_caches
cache_attr
find
"""
if not self.is_root():
self.root().invalidate_caches()
else:
self._tip_cache = {}
self._non_tip_cache = {}
if self._registered_caches and attr:
for n in self.traverse():
for cache in self._registered_caches:
if hasattr(n, cache):
delattr(n, cache)
@experimental(as_of="0.4.0")
def create_caches(self):
r"""Construct an internal lookups to facilitate searching by name
This method will not cache nodes in which the .name is None. This
method will raise `DuplicateNodeError` if a name conflict in the tips
is discovered, but will not raise if on internal nodes. This is
because, in practice, the tips of a tree are required to be unique
while no such requirement holds for internal nodes.
Raises
------
DuplicateNodeError
The tip cache requires that names are unique (with the exception of
names that are None)
See Also
--------
invalidate_caches
cache_attr
find
"""
if not self.is_root():
self.root().create_caches()
else:
if self._tip_cache and self._non_tip_cache:
return
self.invalidate_caches(attr=False)
tip_cache = {}
non_tip_cache = defaultdict(list)
for node in self.postorder():
name = node.name
if name is None:
continue
if node.is_tip():
if name in tip_cache:
raise DuplicateNodeError("Tip with name '%s' already "
"exists." % name)
tip_cache[name] = node
else:
non_tip_cache[name].append(node)
self._tip_cache = tip_cache
self._non_tip_cache = non_tip_cache
@experimental(as_of="0.4.0")
def find_all(self, name):
r"""Find all nodes that match `name`
The first call to `find_all` will cache all nodes in the tree on the
assumption that additional calls to `find_all` will be made.
Parameters
----------
name : TreeNode or str
The name or node to find. If `name` is `TreeNode` then all other
nodes with the same name will be returned.
Raises
------
MissingNodeError
Raises if the node to be searched for is not found
Returns
-------
list of TreeNode
The nodes found
See Also
--------
find
find_by_id
find_by_func
Examples
--------
>>> from skbio.tree import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)d,(f,g)c);"])
>>> for node in tree.find_all('c'):
... print(node.name, node.children[0].name, node.children[1].name)
c a b
c f g
>>> for node in tree.find_all('d'):
... print(node.name, str(node))
d (d,e)d;
<BLANKLINE>
d d;
<BLANKLINE>
"""
root = self.root()
# if what is being passed in looks like a node, just return it
if isinstance(name, root.__class__):
return [name]
root.create_caches()
tip = root._tip_cache.get(name, None)
nodes = root._non_tip_cache.get(name, [])
nodes.append(tip) if tip is not None else None
if not nodes:
raise MissingNodeError("Node %s is not in self" % name)
else:
return nodes
@experimental(as_of="0.4.0")
def find(self, name):
r"""Find a node by `name`.
The first call to `find` will cache all nodes in the tree on the
assumption that additional calls to `find` will be made.
`find` will first attempt to find the node in the tips. If it cannot
find a corresponding tip, then it will search through the internal
nodes of the tree. In practice, phylogenetic trees and other common
trees in biology do not have unique internal node names. As a result,
this find method will only return the first occurance of an internal
node encountered on a postorder traversal of the tree.
Parameters
----------
name : TreeNode or str
The name or node to find. If `name` is `TreeNode` then it is
simply returned
Raises
------
MissingNodeError
Raises if the node to be searched for is not found
Returns
-------
TreeNode
The found node
See Also
--------
find_all
find_by_id
find_by_func
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> print(tree.find('c').name)
c
"""
root = self.root()
# if what is being passed in looks like a node, just return it
if isinstance(name, root.__class__):
return name
root.create_caches()
node = root._tip_cache.get(name, None)
if node is None:
node = root._non_tip_cache.get(name, [None])[0]
if node is None:
raise MissingNodeError("Node %s is not in self" % name)
else:
return node
@experimental(as_of="0.4.0")
def find_by_id(self, node_id):
r"""Find a node by `id`.
This search method is based from the root.
Parameters
----------
node_id : int
The `id` of a node in the tree
Returns
-------
TreeNode
The tree node with the matcing id
Notes
-----
This method does not cache id associations. A full traversal of the
tree is performed to find a node by an id on every call.
Raises
------
MissingNodeError
This method will raise if the `id` cannot be found
See Also
--------
find
find_all
find_by_func
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> print(tree.find_by_id(2).name)
d
"""
# if this method gets used frequently, then we should cache by ID
# as well
root = self.root()
root.assign_ids()
node = None
for n in self.traverse(include_self=True):
if n.id == node_id:
node = n
break
if node is None:
raise MissingNodeError("ID %d is not in self" % node_id)
else:
return node
@experimental(as_of="0.4.0")
def find_by_func(self, func):
r"""Find all nodes given a function
This search method is based on the current subtree, not the root.
Parameters
----------
func : a function
A function that accepts a TreeNode and returns `True` or `False`,
where `True` indicates the node is to be yielded
Yields
------
TreeNode
Node found by `func`.
See Also
--------
find
find_all
find_by_id
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> func = lambda x: x.parent == tree.find('c')
>>> [n.name for n in tree.find_by_func(func)]
['a', 'b']
"""
for node in self.traverse(include_self=True):
if func(node):
yield node
@experimental(as_of="0.4.0")
def ancestors(self):
r"""Returns all ancestors back to the root
This call will return all nodes in the path back to root, but does not
include the node instance that the call was made from.
Returns
-------
list of TreeNode
The path, toward the root, from self
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> [node.name for node in tree.find('a').ancestors()]
['c', 'root']
"""
result = []
curr = self
while not curr.is_root():
result.append(curr.parent)
curr = curr.parent
return result
@experimental(as_of="0.4.0")
def root(self):
r"""Returns root of the tree `self` is in
Returns
-------
TreeNode
The root of the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> tip_a = tree.find('a')
>>> root = tip_a.root()
>>> root == tree
True
"""
curr = self
while not curr.is_root():
curr = curr.parent
return curr
@experimental(as_of="0.4.0")
def siblings(self):
r"""Returns all nodes that are `children` of `self` `parent`.
This call excludes `self` from the list.
Returns
-------
list of TreeNode
The list of sibling nodes relative to self
See Also
--------
neighbors
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e,f)g)root;"])
>>> tip_e = tree.find('e')
>>> [n.name for n in tip_e.siblings()]
['d', 'f']
"""
if self.is_root():
return []
result = self.parent.children[:]
result.remove(self)
return result
@experimental(as_of="0.4.0")
def neighbors(self, ignore=None):
r"""Returns all nodes that are connected to self
This call does not include `self` in the result
Parameters
----------
ignore : TreeNode
A node to ignore
Returns
-------
list of TreeNode
The list of all nodes that are connected to self
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> node_c = tree.find('c')
>>> [n.name for n in node_c.neighbors()]
['a', 'b', 'root']
"""
nodes = [n for n in self.children + [self.parent] if n is not None]
if ignore is None:
return nodes
else:
return [n for n in nodes if n is not ignore]
@experimental(as_of="0.4.0")
def lowest_common_ancestor(self, tipnames):
r"""Lowest common ancestor for a list of tips
Parameters
----------
tipnames : list of TreeNode or str
The nodes of interest
Returns
-------
TreeNode
The lowest common ancestor of the passed in nodes
Raises
------
ValueError
If no tips could be found in the tree, or if not all tips were
found.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> nodes = [tree.find('a'), tree.find('b')]
>>> lca = tree.lowest_common_ancestor(nodes)
>>> print(lca.name)
c
>>> nodes = [tree.find('a'), tree.find('e')]
>>> lca = tree.lca(nodes) # lca is an alias for convience
>>> print(lca.name)
root
"""
if len(tipnames) == 1:
return self.find(tipnames[0])
tips = [self.find(name) for name in tipnames]
if len(tips) == 0:
raise ValueError("No tips found.")
nodes_to_scrub = []
for t in tips:
if t.is_root():
# has to be the LCA...
return t
prev = t
curr = t.parent
while curr and not hasattr(curr, 'black'):
setattr(curr, 'black', [prev])
nodes_to_scrub.append(curr)
prev = curr
curr = curr.parent
# increase black count, multiple children lead to here
if curr:
curr.black.append(prev)
curr = self
while len(curr.black) == 1:
curr = curr.black[0]
# clean up tree
for n in nodes_to_scrub:
delattr(n, 'black')
return curr
lca = lowest_common_ancestor # for convenience
@classonlymethod
@experimental(as_of="0.4.0")
def from_taxonomy(cls, lineage_map):
"""Construct a tree from a taxonomy
Parameters
----------
lineage_map : iterable of tuple
A id to lineage mapping where the first index is an ID and the
second index is an iterable of the lineage.
Returns
-------
TreeNode
The constructed taxonomy
Examples
--------
>>> from skbio.tree import TreeNode
>>> lineages = [
... ('1', ['Bacteria', 'Firmicutes', 'Clostridia']),
... ('2', ['Bacteria', 'Firmicutes', 'Bacilli']),
... ('3', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
... ('4', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
... ('5', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
... ('6', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
... ('7', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
... ('8', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
... ('9', ['Bacteria', 'Bacteroidetes', 'Cytophagia'])]
>>> tree = TreeNode.from_taxonomy(lineages)
>>> print(tree.ascii_art())
/Clostridia-1
/Firmicutes
| \Bacilli- /-2
/Bacteria|
| | /-3
| | /Sphingobacteria
| \Bacteroidetes \-8
| |
---------| \Cytophagia-9
|
| /-4
| /Thermoplasmata
| | \-5
\Archaea- /Euryarchaeota
| /-6
\Halobacteria
\-7
"""
root = cls(name=None)
root._lookup = {}
for id_, lineage in lineage_map:
cur_node = root
# for each name, see if we've seen it, if not, add that puppy on
for name in lineage:
if name in cur_node._lookup:
cur_node = cur_node._lookup[name]
else:
new_node = cls(name=name)
new_node._lookup = {}
cur_node._lookup[name] = new_node
cur_node.append(new_node)
cur_node = new_node
cur_node.append(cls(name=id_))
# scrub the lookups
for node in root.non_tips(include_self=True):
del node._lookup
return root
def _balanced_distance_to_tip(self):
"""Return the distance to tip from this node.
The distance to every tip from this node must be equal for this to
return a correct result.
Returns
-------
int
The distance to tip of a length-balanced tree
"""
node = self
distance = 0
while node.has_children():
distance += node.children[0].length
node = node.children[0]
return distance
@classonlymethod
@experimental(as_of="0.4.0")
def from_linkage_matrix(cls, linkage_matrix, id_list):
"""Return tree from SciPy linkage matrix.
Parameters
----------
linkage_matrix : ndarray
A SciPy linkage matrix as returned by
`scipy.cluster.hierarchy.linkage`
id_list : list
The indices of the `id_list` will be used in the linkage_matrix
Returns
-------
TreeNode
An unrooted bifurcated tree
See Also
--------
scipy.cluster.hierarchy.linkage
"""
tip_width = len(id_list)
cluster_count = len(linkage_matrix)
lookup_len = cluster_count + tip_width
node_lookup = np.empty(lookup_len, dtype=cls)
for i, name in enumerate(id_list):
node_lookup[i] = cls(name=name)
for i in range(tip_width, lookup_len):
node_lookup[i] = cls()
newest_cluster_index = cluster_count + 1
for link in linkage_matrix:
child_a = node_lookup[int(link[0])]
child_b = node_lookup[int(link[1])]
path_length = link[2] / 2
child_a.length = path_length - child_a._balanced_distance_to_tip()
child_b.length = path_length - child_b._balanced_distance_to_tip()
new_cluster = node_lookup[newest_cluster_index]
new_cluster.append(child_a)
new_cluster.append(child_b)
newest_cluster_index += 1
return node_lookup[-1]
@experimental(as_of="0.4.0")
def to_taxonomy(self, allow_empty=False, filter_f=None):
"""Returns a taxonomy representation of self
Parameters
----------
allow_empty : bool, optional
Allow gaps the taxonomy (e.g., internal nodes without names).
filter_f : function, optional
Specify a filtering function that returns True if the lineage is
to be returned. This function must accept a ``TreeNode`` as its
first parameter, and a ``list`` that represents the lineage as the
second parameter.
Yields
------
tuple
``(tip, [lineage])`` where ``tip`` corresponds to a tip in the tree
and ``[lineage]`` is the expanded names from root to tip. ``None``
and empty strings are omitted from the lineage.
Notes
-----
If ``allow_empty`` is ``True`` and the root node does not have a name,
then that name will not be included. This is because it is common to
have multiple domains represented in the taxonomy, which would result
in a root node that does not have a name and does not make sense to
represent in the output.
Examples
--------
>>> from skbio.tree import TreeNode
>>> lineages = {'1': ['Bacteria', 'Firmicutes', 'Clostridia'],
... '2': ['Bacteria', 'Firmicutes', 'Bacilli'],
... '3': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
... '4': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
... '5': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
... '6': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
... '7': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
... '8': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
... '9': ['Bacteria', 'Bacteroidetes', 'Cytophagia']}
>>> tree = TreeNode.from_taxonomy(lineages.items())
>>> lineages = sorted([(n.name, l) for n, l in tree.to_taxonomy()])
>>> for name, lineage in lineages:
... print(name, '; '.join(lineage))
1 Bacteria; Firmicutes; Clostridia
2 Bacteria; Firmicutes; Bacilli
3 Bacteria; Bacteroidetes; Sphingobacteria
4 Archaea; Euryarchaeota; Thermoplasmata
5 Archaea; Euryarchaeota; Thermoplasmata
6 Archaea; Euryarchaeota; Halobacteria
7 Archaea; Euryarchaeota; Halobacteria
8 Bacteria; Bacteroidetes; Sphingobacteria
9 Bacteria; Bacteroidetes; Cytophagia
"""
if filter_f is None:
def filter_f(a, b):
return True
self.assign_ids()
seen = set()
lineage = []
# visit internal nodes while traversing out to the tips, and on the
# way back up
for node in self.traverse(self_before=True, self_after=True):
if node.is_tip():
if filter_f(node, lineage):
yield (node, lineage[:])
else:
if allow_empty:
if node.is_root() and not node.name:
continue
else:
if not node.name:
continue
if node.id in seen:
lineage.pop(-1)
else:
lineage.append(node.name)
seen.add(node.id)
@experimental(as_of="0.4.0")
def to_array(self, attrs=None, nan_length_value=None):
"""Return an array representation of self
Parameters
----------
attrs : list of tuple or None
The attributes and types to return. The expected form is
[(attribute_name, type)]. If `None`, then `name`, `length`, and
`id` are returned.
nan_length_value : float, optional
If provided, replaces any `nan` in the branch length vector
(i.e., ``result['length']``) with this value. `nan` branch lengths
can arise from an edge not having a length (common for the root
node parent edge), which can making summing problematic.
Returns
-------
dict of array
{id_index: {id: TreeNode},
child_index: ((node_id, left_child_id, right_child_id)),
attr_1: array(...),
...
attr_N: array(...)}
Notes
-----
Attribute arrays are in index order such that TreeNode.id can be used
as a lookup into the array.
Examples
--------
>>> from pprint import pprint
>>> from skbio import TreeNode
>>> t = TreeNode.read(['(((a:1,b:2,c:3)x:4,(d:5)y:6)z:7);'])
>>> res = t.to_array()
>>> sorted(res.keys())
['child_index', 'id', 'id_index', 'length', 'name']
>>> res['child_index']
array([[4, 0, 2],
[5, 3, 3],
[6, 4, 5],
[7, 6, 6]])
>>> for k, v in res['id_index'].items():
... print(k, v)
...
0 a:1.0;
<BLANKLINE>
1 b:2.0;
<BLANKLINE>
2 c:3.0;
<BLANKLINE>
3 d:5.0;
<BLANKLINE>
4 (a:1.0,b:2.0,c:3.0)x:4.0;
<BLANKLINE>
5 (d:5.0)y:6.0;
<BLANKLINE>
6 ((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0;
<BLANKLINE>
7 (((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0);
<BLANKLINE>
>>> res['id']
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> res['name']
array(['a', 'b', 'c', 'd', 'x', 'y', 'z', None], dtype=object)
"""
if attrs is None:
attrs = [('name', object), ('length', float), ('id', int)]
else:
for attr, dtype in attrs:
if not hasattr(self, attr):
raise AttributeError("Invalid attribute '%s'." % attr)
id_index, child_index = self.index_tree()
n = self.id + 1 # assign_ids starts at 0
tmp = [np.zeros(n, dtype=dtype) for attr, dtype in attrs]
for node in self.traverse(include_self=True):
n_id = node.id
for idx, (attr, dtype) in enumerate(attrs):
tmp[idx][n_id] = getattr(node, attr)
results = {'id_index': id_index, 'child_index': child_index}
results.update({attr: arr for (attr, dtype), arr in zip(attrs, tmp)})
if nan_length_value is not None:
length_v = results['length']
length_v[np.isnan(length_v)] = nan_length_value
return results
def _ascii_art(self, char1='-', show_internal=True, compact=False):
LEN = 10
PAD = ' ' * LEN
PA = ' ' * (LEN - 1)
namestr = self.name or '' # prevents name of NoneType
if self.children:
mids = []
result = []
for c in self.children:
if c is self.children[0]:
char2 = '/'
elif c is self.children[-1]:
char2 = '\\'
else:
char2 = '-'
(clines, mid) = c._ascii_art(char2, show_internal, compact)
mids.append(mid + len(result))
result.extend(clines)
if not compact:
result.append('')
if not compact:
result.pop()
(lo, hi, end) = (mids[0], mids[-1], len(result))
prefixes = [PAD] * (lo + 1) + [PA + '|'] * \
(hi - lo - 1) + [PAD] * (end - hi)
mid = np.int(np.trunc((lo + hi) / 2))
prefixes[mid] = char1 + '-' * (LEN - 2) + prefixes[mid][-1]
result = [p + l for (p, l) in zip(prefixes, result)]
if show_internal:
stem = result[mid]
result[mid] = stem[0] + namestr + stem[len(namestr) + 1:]
return (result, mid)
else:
return ([char1 + '-' + namestr], 0)
@experimental(as_of="0.4.0")
def ascii_art(self, show_internal=True, compact=False):
r"""Returns a string containing an ascii drawing of the tree
Note, this method calls a private recursive function and is not safe
for large trees.
Parameters
----------
show_internal : bool
includes internal edge names
compact : bool
use exactly one line per tip
Returns
-------
str
an ASCII formatted version of the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-root----|
| /-d
\f-------|
\-e
"""
(lines, mid) = self._ascii_art(show_internal=show_internal,
compact=compact)
return '\n'.join(lines)
@experimental(as_of="0.4.0")
def accumulate_to_ancestor(self, ancestor):
r"""Return the sum of the distance between self and ancestor
Parameters
----------
ancestor : TreeNode
The node of the ancestor to accumulate distance too
Returns
-------
float
The sum of lengths between self and ancestor
Raises
------
NoParentError
A NoParentError is raised if the ancestor is not an ancestor of
self
NoLengthError
A NoLengthError is raised if one of the nodes between self and
ancestor (including self) lacks a `length` attribute
See Also
--------
distance
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> root = tree
>>> tree.find('a').accumulate_to_ancestor(root)
4.0
"""
accum = 0.0
curr = self
while curr is not ancestor:
if curr.is_root():
raise NoParentError("Provided ancestor is not in the path")
if curr.length is None:
raise NoLengthError("No length on node %s found." %
curr.name or "unnamed")
accum += curr.length
curr = curr.parent
return accum
@experimental(as_of="0.4.0")
def distance(self, other):
"""Return the distance between self and other
This method can be used to compute the distances between two tips,
however, it is not optimized for computing pairwise tip distances.
Parameters
----------
other : TreeNode
The node to compute a distance to
Returns
-------
float
The distance between two nodes
Raises
------
NoLengthError
A NoLengthError will be raised if a node without `length` is
encountered
See Also
--------
tip_tip_distances
accumulate_to_ancestor
compare_tip_distances
get_max_distance
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> tip_a = tree.find('a')
>>> tip_d = tree.find('d')
>>> tip_a.distance(tip_d)
14.0
"""
if self is other:
return 0.0
self_ancestors = [self] + list(self.ancestors())
other_ancestors = [other] + list(other.ancestors())
if self in other_ancestors:
return other.accumulate_to_ancestor(self)
elif other in self_ancestors:
return self.accumulate_to_ancestor(other)
else:
root = self.root()
lca = root.lowest_common_ancestor([self, other])
accum = self.accumulate_to_ancestor(lca)
accum += other.accumulate_to_ancestor(lca)
return accum
def _set_max_distance(self):
"""Propagate tip distance information up the tree
This method was originally implemented by Julia Goodrich with the
intent of being able to determine max tip to tip distances between
nodes on large trees efficiently. The code has been modified to track
the specific tips the distance is between
"""
maxkey = itemgetter(0)
for n in self.postorder():
if n.is_tip():
n.MaxDistTips = ((0.0, n), (0.0, n))
else:
if len(n.children) == 1:
raise TreeError("No support for single descedent nodes")
else:
tip_info = [(max(c.MaxDistTips, key=maxkey), c)
for c in n.children]
dists = [i[0][0] for i in tip_info]
best_idx = np.argsort(dists)[-2:]
(tip_a_d, tip_a), child_a = tip_info[best_idx[0]]
(tip_b_d, tip_b), child_b = tip_info[best_idx[1]]
tip_a_d += child_a.length or 0.0
tip_b_d += child_b.length or 0.0
n.MaxDistTips = ((tip_a_d, tip_a), (tip_b_d, tip_b))
def _get_max_distance_singledesc(self):
"""returns the max distance between any pair of tips
Also returns the tip names that it is between as a tuple"""
distmtx = self.tip_tip_distances()
idx_max = divmod(distmtx.data.argmax(), distmtx.shape[1])
max_pair = (distmtx.ids[idx_max[0]], distmtx.ids[idx_max[1]])
return distmtx[idx_max], max_pair
@experimental(as_of="0.4.0")
def get_max_distance(self):
"""Returns the max tip tip distance between any pair of tips
Returns
-------
float
The distance between the two most distant tips in the tree
tuple of TreeNode
The two most distant tips in the tree
Raises
------
NoLengthError
A NoLengthError will be thrown if a node without length is
encountered
See Also
--------
distance
tip_tip_distances
compare_tip_distances
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> dist, tips = tree.get_max_distance()
>>> dist
16.0
>>> [n.name for n in tips]
['b', 'e']
"""
if not hasattr(self, 'MaxDistTips'):
# _set_max_distance will throw a TreeError if a node with a single
# child is encountered
try:
self._set_max_distance()
except TreeError: #
return self._get_max_distance_singledesc()
longest = 0.0
tips = [None, None]
for n in self.non_tips(include_self=True):
tip_a, tip_b = n.MaxDistTips
dist = (tip_a[0] + tip_b[0])
if dist > longest:
longest = dist
tips = [tip_a[1], tip_b[1]]
return longest, tips
@experimental(as_of="0.4.0")
def tip_tip_distances(self, endpoints=None):
"""Returns distance matrix between pairs of tips, and a tip order.
By default, all pairwise distances are calculated in the tree. If
`endpoints` are specified, then only the distances between those tips
are computed.
Parameters
----------
endpoints : list of TreeNode or str, or None
A list of TreeNode objects or names of TreeNode objects
Returns
-------
DistanceMatrix
The distance matrix
Raises
------
ValueError
If any of the specified `endpoints` are not tips
See Also
--------
distance
compare_tip_distances
Notes
-----
If a node does not have an associated length, 0.0 will be used and a
``RepresentationWarning`` will be raised.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> mat = tree.tip_tip_distances()
>>> print(mat)
4x4 distance matrix
IDs:
'a', 'b', 'd', 'e'
Data:
[[ 0. 3. 14. 15.]
[ 3. 0. 15. 16.]
[ 14. 15. 0. 9.]
[ 15. 16. 9. 0.]]
"""
all_tips = list(self.tips())
if endpoints is None:
tip_order = all_tips
else:
tip_order = [self.find(n) for n in endpoints]
for n in tip_order:
if not n.is_tip():
raise ValueError("Node with name '%s' is not a tip." %
n.name)
# linearize all tips in postorder
# .__start, .__stop compose the slice in tip_order.
for i, node in enumerate(all_tips):
node.__start, node.__stop = i, i + 1
# the result map provides index in the result matrix
result_map = {n.__start: i for i, n in enumerate(tip_order)}
num_all_tips = len(all_tips) # total number of tips
num_tips = len(tip_order) # total number of tips in result
result = np.zeros((num_tips, num_tips), float) # tip by tip matrix
distances = np.zeros((num_all_tips), float) # dist from tip to tip
def update_result():
# set tip_tip distance between tips of different child
for child1, child2 in combinations(node.children, 2):
for tip1 in range(child1.__start, child1.__stop):
if tip1 not in result_map:
continue
t1idx = result_map[tip1]
for tip2 in range(child2.__start, child2.__stop):
if tip2 not in result_map:
continue
t2idx = result_map[tip2]
result[t1idx, t2idx] = distances[
tip1] + distances[tip2]
for node in self.postorder():
if not node.children:
continue
# subtree with solved child wedges
# can possibly use np.zeros
starts, stops = [], [] # to calc ._start and ._stop for curr node
for child in node.children:
length = child.length
if length is None:
warnings.warn(
"`TreeNode.tip_tip_distances`: Node with name %r does "
"not have an associated length, so a length of 0.0 "
"will be used." % child.name, RepresentationWarning)
length = 0.0
distances[child.__start:child.__stop] += length
starts.append(child.__start)
stops.append(child.__stop)
node.__start, node.__stop = min(starts), max(stops)
if len(node.children) > 1:
update_result()
return DistanceMatrix(result + result.T, [n.name for n in tip_order])
@experimental(as_of="0.4.0")
def compare_rfd(self, other, proportion=False):
"""Calculates the Robinson and Foulds symmetric difference
Parameters
----------
other : TreeNode
A tree to compare against
proportion : bool
Return a proportional difference
Returns
-------
float
The distance between the trees
Notes
-----
Implementation based off of code by Julia Goodrich. The original
description of the algorithm can be found in [1]_.
Raises
------
ValueError
If the tip names between `self` and `other` are equal.
See Also
--------
compare_subsets
compare_tip_distances
References
----------
.. [1] Comparison of phylogenetic trees. Robinson and Foulds.
Mathematical Biosciences. 1981. 53:131-141
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a,b),(c,d));"])
>>> tree2 = TreeNode.read(["(((a,b),c),d);"])
>>> tree1.compare_rfd(tree2)
2.0
"""
t1names = {n.name for n in self.tips()}
t2names = {n.name for n in other.tips()}
if t1names != t2names:
if t1names < t2names:
tree1 = self
tree2 = other.shear(t1names)
else:
tree1 = self.shear(t2names)
tree2 = other
else:
tree1 = self
tree2 = other
tree1_sets = tree1.subsets()
tree2_sets = tree2.subsets()
not_in_both = tree1_sets.symmetric_difference(tree2_sets)
dist = float(len(not_in_both))
if proportion:
total_subsets = len(tree1_sets) + len(tree2_sets)
dist = dist / total_subsets
return dist
@experimental(as_of="0.4.0")
def compare_subsets(self, other, exclude_absent_taxa=False):
"""Returns fraction of overlapping subsets where self and other differ.
Names present in only one of the two trees will count as mismatches,
if you don't want this behavior, strip out the non-matching tips first.
Parameters
----------
other : TreeNode
The tree to compare
exclude_absent_taxa : bool
Strip out names that don't occur in both trees
Returns
-------
float
The fraction of overlapping subsets that differ between the trees
See Also
--------
compare_rfd
compare_tip_distances
subsets
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a,b),(c,d));"])
>>> tree2 = TreeNode.read(["(((a,b),c),d);"])
>>> tree1.compare_subsets(tree2)
0.5
"""
self_sets, other_sets = self.subsets(), other.subsets()
if exclude_absent_taxa:
in_both = self.subset() & other.subset()
self_sets = (i & in_both for i in self_sets)
self_sets = frozenset({i for i in self_sets if len(i) > 1})
other_sets = (i & in_both for i in other_sets)
other_sets = frozenset({i for i in other_sets if len(i) > 1})
total_subsets = len(self_sets) + len(other_sets)
intersection_length = len(self_sets & other_sets)
if not total_subsets: # no common subsets after filtering, so max dist
return 1
return 1 - (2 * intersection_length / float(total_subsets))
@experimental(as_of="0.4.0")
def compare_tip_distances(self, other, sample=None, dist_f=distance_from_r,
shuffle_f=np.random.shuffle):
"""Compares self to other using tip-to-tip distance matrices.
Value returned is `dist_f(m1, m2)` for the two matrices. Default is
to use the Pearson correlation coefficient, with +1 giving a distance
of 0 and -1 giving a distance of +1 (the maximum possible value).
Depending on the application, you might instead want to use
distance_from_r_squared, which counts correlations of both +1 and -1
as identical (0 distance).
Note: automatically strips out the names that don't match (this is
necessary for this method because the distance between non-matching
names and matching names is undefined in the tree where they don't
match, and because we need to reorder the names in the two trees to
match up the distance matrices).
Parameters
----------
other : TreeNode
The tree to compare
sample : int or None
Randomly subsample the tips in common between the trees to
compare. This is useful when comparing very large trees.
dist_f : function
The distance function used to compare two the tip-tip distance
matrices
shuffle_f : function
The shuffling function used if `sample` is not None
Returns
-------
float
The distance between the trees
Raises
------
ValueError
A ValueError is raised if there does not exist common tips
between the trees
See Also
--------
compare_subsets
compare_rfd
Examples
--------
>>> from skbio import TreeNode
>>> # note, only three common taxa between the trees
>>> tree1 = TreeNode.read(["((a:1,b:1):2,(c:0.5,X:0.7):3);"])
>>> tree2 = TreeNode.read(["(((a:1,b:1,Y:1):2,c:3):1,Z:4);"])
>>> dist = tree1.compare_tip_distances(tree2)
>>> print("%.9f" % dist)
0.000133446
"""
self_names = {i.name: i for i in self.tips()}
other_names = {i.name: i for i in other.tips()}
common_names = frozenset(self_names) & frozenset(other_names)
common_names = list(common_names)
if not common_names:
raise ValueError("No tip names in common between the two trees.")
if len(common_names) <= 2:
return 1 # the two trees must match by definition in this case
if sample is not None:
shuffle_f(common_names)
common_names = common_names[:sample]
self_nodes = [self_names[k] for k in common_names]
other_nodes = [other_names[k] for k in common_names]
self_matrix = self.tip_tip_distances(endpoints=self_nodes)
other_matrix = other.tip_tip_distances(endpoints=other_nodes)
return dist_f(self_matrix, other_matrix)
@experimental(as_of="0.4.2")
def bifurcate(self, insert_length=None):
r"""Reorders the tree into a bifurcating tree.
All nodes that have more than 2 children will
have additional intermediate nodes inserted to ensure that
every node has only 2 children.
Parameters
----------
insert_length : int, optional
The branch length assigned to all inserted nodes.
See Also
--------
prune
Notes
-----
Any nodes that have a single child can be collapsed using the
prune method to create strictly bifurcating trees.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b,g,h)c,(d,e)f)root;"])
>>> print(tree.ascii_art())
/-a
|
|--b
/c-------|
| |--g
| |
-root----| \-h
|
| /-d
\f-------|
\-e
>>> tree.bifurcate()
>>> print(tree.ascii_art())
/-h
/c-------|
| | /-g
| \--------|
| | /-a
-root----| \--------|
| \-b
|
| /-d
\f-------|
\-e
"""
for n in self.traverse(include_self=True):
if len(n.children) > 2:
stack = n.children
while len(stack) > 2:
ind = stack.pop()
intermediate = self.__class__()
intermediate.length = insert_length
intermediate.extend(stack)
n.append(intermediate)
for k in stack:
n.remove(k)
n.extend([ind, intermediate])
@experimental(as_of="0.4.0")
def index_tree(self):
"""Index a tree for rapid lookups within a tree array
Indexes nodes in-place as `n._leaf_index`.
Returns
-------
dict
A mapping {node_id: TreeNode}
np.array of ints
This arrays describes the IDs of every internal node, and the ID
range of the immediate descendents. The first column in the array
corresponds to node_id. The second column is the left most
descendent's ID. The third column is the right most descendent's
ID.
"""
self.assign_ids()
id_index = {}
child_index = []
for n in self.postorder():
for c in n.children:
id_index[c.id] = c
if c:
# c has children itself, so need to add to result
child_index.append((c.id,
c.children[0].id,
c.children[-1].id))
# handle root, which should be t itself
id_index[self.id] = self
# only want to add to the child_index if self has children...
if self.children:
child_index.append((self.id,
self.children[0].id,
self.children[-1].id))
child_index = np.asarray(child_index)
child_index = np.atleast_2d(child_index)
return id_index, child_index
@experimental(as_of="0.4.0")
def assign_ids(self):
"""Assign topologically stable unique ids to self
Following the call, all nodes in the tree will have their id
attribute set
"""
curr_index = 0
for n in self.postorder():
for c in n.children:
c.id = curr_index
curr_index += 1
self.id = curr_index
@experimental(as_of="0.4.0")
def descending_branch_length(self, tip_subset=None):
"""Find total descending branch length from self or subset of self tips
Parameters
----------
tip_subset : Iterable, or None
If None, the total descending branch length for all tips in the
tree will be returned. If a list of tips is provided then only the
total descending branch length associated with those tips will be
returned.
Returns
-------
float
The total descending branch length for the specified set of tips.
Raises
------
ValueError
A ValueError is raised if the list of tips supplied to tip_subset
contains internal nodes or non-tips.
Notes
-----
This function replicates cogent's totalDescendingBranch Length method
and extends that method to allow the calculation of total descending
branch length of a subset of the tips if requested. The postorder
guarantees that the function will always be able to add the descending
branch length if the node is not a tip.
Nodes with no length will have their length set to 0. The root length
(if it exists) is ignored.
Examples
--------
>>> from skbio import TreeNode
>>> tr = TreeNode.read(["(((A:.1,B:1.2)C:.6,(D:.9,E:.6)F:.9)G:2.4,"
... "(H:.4,I:.5)J:1.3)K;"])
>>> tdbl = tr.descending_branch_length()
>>> sdbl = tr.descending_branch_length(['A','E'])
>>> print(round(tdbl, 1), round(sdbl, 1))
8.9 2.2
"""
self.assign_ids()
if tip_subset is not None:
all_tips = self.subset()
if not set(tip_subset).issubset(all_tips):
raise ValueError('tip_subset contains ids that aren\'t tip '
'names.')
lca = self.lowest_common_ancestor(tip_subset)
ancestors = {}
for tip in tip_subset:
curr = self.find(tip)
while curr is not lca:
ancestors[curr.id] = curr.length if curr.length is not \
None else 0.0
curr = curr.parent
return sum(ancestors.values())
else:
return sum(n.length for n in self.postorder(include_self=True) if
n.length is not None)
@experimental(as_of="0.4.0")
def cache_attr(self, func, cache_attrname, cache_type=list):
"""Cache attributes on internal nodes of the tree
Parameters
----------
func : function
func will be provided the node currently being evaluated and must
return a list of item (or items) to cache from that node or an
empty list.
cache_attrname : str
Name of the attribute to decorate on containing the cached values
cache_type : {set, frozenset, list}
The type of the cache
Notes
-----
This method is particularly useful if you need to frequently look up
attributes that would normally require a traversal of the tree.
WARNING: any cache created by this method will be invalidated if the
topology of the tree changes (e.g., if `TreeNode.invalidate_caches` is
called).
Raises
------
TypeError
If an cache_type that is not a `set` or a `list` is specified.
Examples
--------
Cache the tip names of the tree on its internal nodes
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b,(c,d)e)f,(g,h)i)root;"])
>>> f = lambda n: [n.name] if n.is_tip() else []
>>> tree.cache_attr(f, 'tip_names')
>>> for n in tree.traverse(include_self=True):
... print("Node name: %s, cache: %r" % (n.name, n.tip_names))
Node name: root, cache: ['a', 'b', 'c', 'd', 'g', 'h']
Node name: f, cache: ['a', 'b', 'c', 'd']
Node name: a, cache: ['a']
Node name: b, cache: ['b']
Node name: e, cache: ['c', 'd']
Node name: c, cache: ['c']
Node name: d, cache: ['d']
Node name: i, cache: ['g', 'h']
Node name: g, cache: ['g']
Node name: h, cache: ['h']
"""
if cache_type in [set, frozenset]:
def reduce_f(a, b):
return a | b
elif cache_type == list:
def reduce_f(a, b):
return a + b
else:
raise TypeError("Only list, set and frozenset are supported.")
for node in self.postorder(include_self=True):
node._registered_caches.add(cache_attrname)
cached = [getattr(c, cache_attrname) for c in node.children]
cached.append(cache_type(func(node)))
setattr(node, cache_attrname, reduce(reduce_f, cached))
@experimental(as_of="0.4.0")
def shuffle(self, k=None, names=None, shuffle_f=np.random.shuffle, n=1):
"""Yield trees with shuffled tip names
Parameters
----------
k : int, optional
The number of tips to shuffle. If k is not `None`, k tips are
randomly selected, and only those names will be shuffled.
names : list, optional
The specific tip names to shuffle. k and names cannot be specified
at the same time.
shuffle_f : func
Shuffle method, this function must accept a list and modify
inplace.
n : int, optional
The number of iterations to perform. Value must be > 0 and `np.inf`
can be specified for an infinite number of iterations.
Notes
-----
Tip names are shuffled inplace. If neither `k` nor `names` are
provided, all tips are shuffled.
Yields
------
TreeNode
Tree with shuffled tip names.
Raises
------
ValueError
If `k` is < 2
If `n` is < 1
ValueError
If both `k` and `names` are specified
MissingNodeError
If `names` is specified but one of the names cannot be found
Examples
--------
Alternate the names on two of the tips, 'a', and 'b', and do this 5
times.
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b),(c,d));"])
>>> rev = lambda items: items.reverse()
>>> shuffler = tree.shuffle(names=['a', 'b'], shuffle_f=rev, n=5)
>>> for shuffled_tree in shuffler:
... print(shuffled_tree)
((b,a),(c,d));
<BLANKLINE>
((a,b),(c,d));
<BLANKLINE>
((b,a),(c,d));
<BLANKLINE>
((a,b),(c,d));
<BLANKLINE>
((b,a),(c,d));
<BLANKLINE>
"""
if k is not None and k < 2:
raise ValueError("k must be None or >= 2")
if k is not None and names is not None:
raise ValueError("n and names cannot be specified at the sametime")
if n < 1:
raise ValueError("n must be > 0")
self.assign_ids()
if names is None:
all_tips = list(self.tips())
if n is None:
n = len(all_tips)
shuffle_f(all_tips)
names = [tip.name for tip in all_tips[:k]]
nodes = [self.find(name) for name in names]
# Since the names are being shuffled, the association between ID and
# name is no longer reliable
self.invalidate_caches()
counter = 0
while counter < n:
shuffle_f(names)
for node, name in zip(nodes, names):
node.name = name
yield self
counter += 1
|