File: _tree.py

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (3100 lines) | stat: -rw-r--r-- 93,906 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

import warnings
from operator import or_, itemgetter
from copy import deepcopy
from itertools import combinations
from functools import reduce
from collections import defaultdict

import numpy as np
from scipy.stats import pearsonr

from skbio._base import SkbioObject
from skbio.stats.distance import DistanceMatrix
from ._exception import (NoLengthError, DuplicateNodeError, NoParentError,
                         MissingNodeError, TreeError)
from skbio.util import RepresentationWarning
from skbio.util._decorator import experimental, classonlymethod


def distance_from_r(m1, m2):
    r"""Estimates distance as (1-r)/2: neg correl = max distance

    Parameters
    ----------
    m1 : DistanceMatrix
        a distance matrix to compare
    m2 : DistanceMatrix
        a distance matrix to compare

    Returns
    -------
    float
        The distance between m1 and m2

    """
    return (1-pearsonr(m1.data.flat, m2.data.flat)[0])/2


class TreeNode(SkbioObject):
    r"""Representation of a node within a tree

    A `TreeNode` instance stores links to its parent and optional children
    nodes. In addition, the `TreeNode` can represent a `length` (e.g., a
    branch length) between itself and its parent. Within this object, the use
    of "children" and "descendants" is frequent in the documentation. A child
    is a direct descendant of a node, while descendants are all nodes that are
    below a given node (e.g., grand-children, etc).

    Parameters
    ----------
    name : str or None
        A node can have a name. It is common for tips in particular to have
        names, for instance, in a phylogenetic tree where the tips correspond
        to species.
    length : float, int, or None
        Distances between nodes can be used to represent evolutionary
        distances, time, etc.
    parent : TreeNode or None
        Connect this node to a parent
    children : list of TreeNode or None
        Connect this node to existing children

    Attributes
    ----------
    name
    length
    parent
    children
    id

    """
    default_write_format = 'newick'
    _exclude_from_copy = set(['parent', 'children', '_tip_cache',
                              '_non_tip_cache'])

    @experimental(as_of="0.4.0")
    def __init__(self, name=None, length=None, parent=None, children=None):
        self.name = name
        self.length = length
        self.parent = parent
        self._tip_cache = {}
        self._non_tip_cache = {}
        self._registered_caches = set()

        self.children = []
        self.id = None

        if children is not None:
            self.extend(children)

    @experimental(as_of="0.4.0")
    def __repr__(self):
        r"""Returns summary of the tree

        Returns
        -------
        str
            A summary of this node and all descendants

        Notes
        -----
        This method returns the name of the node and a count of tips and the
        number of internal nodes in the tree

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c, d)root;"])
        >>> repr(tree)
        '<TreeNode, name: root, internal node count: 1, tips count: 3>'

        """
        nodes = [n for n in self.traverse(include_self=False)]
        n_tips = sum([n.is_tip() for n in nodes])
        n_nontips = len(nodes) - n_tips
        classname = self.__class__.__name__
        name = self.name if self.name is not None else "unnamed"

        return "<%s, name: %s, internal node count: %d, tips count: %d>" % \
               (classname, name, n_nontips, n_tips)

    @experimental(as_of="0.4.0")
    def __str__(self):
        r"""Returns string version of self, with names and distances

        Returns
        -------
        str
            Returns a Newick representation of the tree

        See Also
        --------
        read
        write

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> str(tree)
        '((a,b)c);\n'

        """
        return str(''.join(self.write([])))

    @experimental(as_of="0.4.0")
    def __iter__(self):
        r"""Node iter iterates over the `children`."""
        return iter(self.children)

    @experimental(as_of="0.4.0")
    def __len__(self):
        return len(self.children)

    @experimental(as_of="0.4.0")
    def __getitem__(self, i):
        r"""Node delegates slicing to `children`."""
        return self.children[i]

    @experimental(as_of="0.4.0")
    def _adopt(self, node):
        r"""Update `parent` references but does NOT update `children`."""
        self.invalidate_caches()
        if node.parent is not None:
            node.parent.remove(node)
        node.parent = self
        return node

    @experimental(as_of="0.4.0")
    def append(self, node):
        r"""Appends a node to `children`, in-place, cleaning up refs

        `append` will invalidate any node lookup caches, remove an existing
        parent on `node` if one exists, set the parent of `node` to self
        and add the `node` to `self` `children`.

        Parameters
        ----------
        node : TreeNode
            An existing TreeNode object

        See Also
        --------
        extend

        Examples
        --------
        >>> from skbio import TreeNode
        >>> root = TreeNode(name="root")
        >>> child1 = TreeNode(name="child1")
        >>> child2 = TreeNode(name="child2")
        >>> root.append(child1)
        >>> root.append(child2)
        >>> print(root)
        (child1,child2)root;
        <BLANKLINE>

        """
        self.children.append(self._adopt(node))

    @experimental(as_of="0.4.0")
    def extend(self, nodes):
        r"""Append a `list` of `TreeNode` to `self`.

        `extend` will invalidate any node lookup caches, remove existing
        parents of the `nodes` if they have any, set their parents to self
        and add the nodes to `self` `children`.

        Parameters
        ----------
        nodes : list of TreeNode
            A list of TreeNode objects

        See Also
        --------
        append

        Examples
        --------
        >>> from skbio import TreeNode
        >>> root = TreeNode(name="root")
        >>> root.extend([TreeNode(name="child1"), TreeNode(name="child2")])
        >>> print(root)
        (child1,child2)root;
        <BLANKLINE>

        """
        self.children.extend([self._adopt(n) for n in nodes[:]])

    @experimental(as_of="0.4.0")
    def pop(self, index=-1):
        r"""Remove a `TreeNode` from `self`.

        Remove a child node by its index position. All node lookup caches
        are invalidated, and the parent reference for the popped node will be
        set to `None`.

        Parameters
        ----------
        index : int
            The index position in `children` to pop

        Returns
        -------
        TreeNode
            The popped child

        See Also
        --------
        remove
        remove_deleted

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(a,b)c;"])
        >>> print(tree.pop(0))
        a;
        <BLANKLINE>

        """
        return self._remove_node(index)

    def _remove_node(self, idx):
        r"""The actual (and only) method that performs node removal"""
        self.invalidate_caches()
        node = self.children.pop(idx)
        node.parent = None
        return node

    @experimental(as_of="0.4.0")
    def remove(self, node):
        r"""Remove a node from self

        Remove a `node` from `self` by identity of the node.

        Parameters
        ----------
        node : TreeNode
            The node to remove from self's children

        Returns
        -------
        bool
            `True` if the node was removed, `False` otherwise

        See Also
        --------
        pop
        remove_deleted

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(a,b)c;"])
        >>> tree.remove(tree.children[0])
        True

        """
        for (i, curr_node) in enumerate(self.children):
            if curr_node is node:
                self._remove_node(i)
                return True
        return False

    @experimental(as_of="0.4.0")
    def remove_deleted(self, func):
        r"""Delete nodes in which `func(node)` evaluates `True`.

        Remove all descendants from `self` that evaluate `True` from `func`.
        This has the potential to drop clades.

        Parameters
        ----------
        func : a function
            A function that evaluates `True` when a node should be deleted

        See Also
        --------
        pop
        remove

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(a,b)c;"])
        >>> tree.remove_deleted(lambda x: x.name == 'b')
        >>> print(tree)
        (a)c;
        <BLANKLINE>
        """
        for node in self.traverse(include_self=False):
            if func(node):
                node.parent.remove(node)

    @experimental(as_of="0.4.0")
    def prune(self):
        r"""Reconstructs correct topology after nodes have been removed.

        Internal nodes with only one child will be removed and new connections
        will be made to reflect change. This method is useful to call
        following node removals as it will clean up nodes with singular
        children.

        Names and properties of singular children will override the names and
        properties of their parents following the prune.

        Node lookup caches are invalidated.

        See Also
        --------
        shear
        remove
        pop
        remove_deleted

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> to_delete = tree.find('b')
        >>> tree.remove_deleted(lambda x: x == to_delete)
        >>> print(tree)
        ((a)c,(d,e)f)root;
        <BLANKLINE>
        >>> tree.prune()
        >>> print(tree)
        ((d,e)f,a)root;
        <BLANKLINE>

        """
        # build up the list of nodes to remove so the topology is not altered
        # while traversing
        nodes_to_remove = []
        for node in self.traverse(include_self=False):
            if len(node.children) == 1:
                nodes_to_remove.append(node)

        # clean up the single children nodes
        for node in nodes_to_remove:
            child = node.children[0]

            if child.length is None or node.length is None:
                child.length = child.length or node.length
            else:
                child.length += node.length

            if node.parent is None:
                continue

            node.parent.append(child)
            node.parent.remove(node)

        # if a single descendent from the root, the root adopts the childs
        # properties. we can't "delete" the root as that would be deleting
        # self.
        if len(self.children) == 1:
            node_to_copy = self.children[0]
            efc = self._exclude_from_copy
            for key in node_to_copy.__dict__:
                if key not in efc:
                    self.__dict__[key] = deepcopy(node_to_copy.__dict__[key])
            self.remove(node_to_copy)
            self.extend(node_to_copy.children)

    @experimental(as_of="0.4.0")
    def shear(self, names):
        """Lop off tips until the tree just has the desired tip names.

        Parameters
        ----------
        names : Iterable of str
            The tip names on the tree to keep

        Returns
        -------
        TreeNode
            The resulting tree

        Raises
        ------
        ValueError
            If the names do not exist in the tree

        See Also
        --------
        prune
        remove
        pop
        remove_deleted

        Examples
        --------
        >>> from skbio import TreeNode
        >>> t = TreeNode.read(['((H:1,G:1):2,(R:0.5,M:0.7):3);'])
        >>> sheared = t.shear(['G', 'M'])
        >>> print(sheared)
        (G:3.0,M:3.7);
        <BLANKLINE>

        """
        tcopy = self.deepcopy()
        all_tips = {n.name for n in tcopy.tips()}
        ids = set(names)

        if not ids.issubset(all_tips):
            raise ValueError("ids are not a subset of the tree.")

        marked = set()
        for tip in tcopy.tips():
            if tip.name in ids:
                marked.add(tip)
                for anc in tip.ancestors():
                    if anc in marked:
                        break
                    else:
                        marked.add(anc)

        for node in list(tcopy.traverse()):
            if node not in marked:
                node.parent.remove(node)

        tcopy.prune()

        return tcopy

    @experimental(as_of="0.4.0")
    def copy(self):
        r"""Returns a copy of self using an iterative approach

        Perform an iterative deepcopy of self. It is not assured that the copy
        of node attributes will be performed iteratively as that depends on
        the copy method of the types being copied

        Returns
        -------
        TreeNode
            A new copy of self

        See Also
        --------
        unrooted_deepcopy
        unrooted_copy

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> tree_copy = tree.copy()
        >>> tree_nodes = set([id(n) for n in tree.traverse()])
        >>> tree_copy_nodes = set([id(n) for n in tree_copy.traverse()])
        >>> print(len(tree_nodes.intersection(tree_copy_nodes)))
        0

        """
        def __copy_node(node_to_copy):
            r"""Helper method to copy a node"""
            # this is _possibly_ dangerous, we're assuming the node to copy is
            # of the same class as self, and has the same exclusion criteria.
            # however, it is potentially dangerous to mix TreeNode subclasses
            # within a tree, so...
            result = self.__class__()
            efc = self._exclude_from_copy
            for key in node_to_copy.__dict__:
                if key not in efc:
                    result.__dict__[key] = deepcopy(node_to_copy.__dict__[key])
            return result

        root = __copy_node(self)
        nodes_stack = [[root, self, len(self.children)]]

        while nodes_stack:
            # check the top node, any children left unvisited?
            top = nodes_stack[-1]
            new_top_node, old_top_node, unvisited_children = top

            if unvisited_children:
                top[2] -= 1
                old_child = old_top_node.children[-unvisited_children]
                new_child = __copy_node(old_child)
                new_top_node.append(new_child)
                nodes_stack.append([new_child, old_child,
                                    len(old_child.children)])
            else:  # no unvisited children
                nodes_stack.pop()
        return root

    __copy__ = copy
    __deepcopy__ = deepcopy = copy

    @experimental(as_of="0.4.0")
    def unrooted_deepcopy(self, parent=None):
        r"""Walks the tree unrooted-style and returns a new copy

        Perform a deepcopy of self and return a new copy of the tree as an
        unrooted copy. This is useful for defining new roots of the tree as
        the `TreeNode`.

        This method calls `TreeNode.unrooted_copy` which is recursive.

        Parameters
        ----------
        parent : TreeNode or None
            Used to avoid infinite loops when performing the unrooted traverse

        Returns
        -------
        TreeNode
            A new copy of the tree

        See Also
        --------
        copy
        unrooted_copy
        root_at

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> new_tree = tree.find('d').unrooted_deepcopy()
        >>> print(new_tree)
        (b,c,(a,((f,g)h)e)d)root;
        <BLANKLINE>

        """
        root = self.root()
        root.assign_ids()

        new_tree = root.copy()
        new_tree.assign_ids()

        new_tree_self = new_tree.find_by_id(self.id)
        return new_tree_self.unrooted_copy(parent)

    @experimental(as_of="0.4.0")
    def unrooted_copy(self, parent=None):
        r"""Walks the tree unrooted-style and returns a copy

        Perform a copy of self and return a new copy of the tree as an
        unrooted copy. This is useful for defining new roots of the tree as
        the `TreeNode`.

        This method is recursive.

        Warning, this is _NOT_ a deepcopy

        Parameters
        ----------
        parent : TreeNode or None
            Used to avoid infinite loops when performing the unrooted traverse

        Returns
        -------
        TreeNode
            A new copy of the tree

        See Also
        --------
        copy
        unrooted_deepcopy
        root_at

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> new_tree = tree.find('d').unrooted_copy()
        >>> print(new_tree)
        (b,c,(a,((f,g)h)e)d)root;
        <BLANKLINE>

        """
        neighbors = self.neighbors(ignore=parent)
        children = [c.unrooted_copy(parent=self) for c in neighbors]

        # we might be walking UP the tree, so:
        if parent is None:
            # base edge
            edgename = None
            length = None
        elif parent.parent is self:
            # self's parent is becoming self's child
            edgename = parent.name
            length = parent.length
        else:
            assert parent is self.parent
            edgename = self.name
            length = self.length

        result = self.__class__(name=edgename, children=children,
                                length=length)

        if parent is None:
            result.name = "root"

        return result

    @experimental(as_of="0.4.0")
    def count(self, tips=False):
        """Get the count of nodes in the tree

        Parameters
        ----------
        tips : bool
            If `True`, only return the count of the number of tips

        Returns
        -------
        int
            The number of nodes or tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> print(tree.count())
        9
        >>> print(tree.count(tips=True))
        5

        """
        if tips:
            return len(list(self.tips()))
        else:
            return len(list(self.traverse(include_self=True)))

    @experimental(as_of="0.4.1")
    def observed_node_counts(self, tip_counts):
        """Returns counts of node observations from counts of tip observations

        Parameters
        ----------
        tip_counts : dict of ints
            Counts of observations of tips. Keys correspond to tip names in
            ``self``, and counts are unsigned ints.

        Returns
        -------
        dict
            Counts of observations of nodes. Keys correspond to node names
            (internal nodes or tips), and counts are unsigned ints.

        Raises
        ------
        ValueError
            If a count less than one is observed.
        MissingNodeError
            If a count is provided for a tip not in the tree, or for an
            internal node.

        """
        result = defaultdict(int)
        for tip_name, count in tip_counts.items():
            if count < 1:
                raise ValueError("All tip counts must be greater than zero.")
            else:
                t = self.find(tip_name)
                if not t.is_tip():
                    raise MissingNodeError(
                        "Counts can only be for tips in the tree. %s is an "
                        "internal node." % t.name)
                result[t] += count
                for internal_node in t.ancestors():
                    result[internal_node] += count
        return result

    @experimental(as_of="0.4.0")
    def subtree(self, tip_list=None):
        r"""Make a copy of the subtree"""
        raise NotImplementedError()

    @experimental(as_of="0.4.0")
    def subset(self):
        r"""Returns set of names that descend from specified node

        Get the set of `name` on tips that descend from this node.

        Returns
        -------
        frozenset
            The set of names at the tips of the clade that descends from self

        See Also
        --------
        subsets
        compare_subsets

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> sorted(tree.subset())
        ['a', 'b', 'c', 'f', 'g']
        """
        return frozenset({i.name for i in self.tips()})

    @experimental(as_of="0.4.0")
    def subsets(self):
        r"""Return all sets of names that come from self and its descendants

        Compute all subsets of tip names over `self`, or, represent a tree as a
        set of nested sets.

        Returns
        -------
        frozenset
            A frozenset of frozensets of str

        See Also
        --------
        subset
        compare_subsets

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(((a,b)c,(d,e)f)h)root;"])
        >>> subsets = tree.subsets()
        >>> len(subsets)
        3

        """
        sets = []
        for i in self.postorder(include_self=False):
            if not i.children:
                i.__leaf_set = frozenset([i.name])
            else:
                leaf_set = reduce(or_, [c.__leaf_set for c in i.children])
                if len(leaf_set) > 1:
                    sets.append(leaf_set)
                i.__leaf_set = leaf_set
        return frozenset(sets)

    @experimental(as_of="0.4.0")
    def root_at(self, node):
        r"""Return a new tree rooted at the provided node.

        This can be useful for drawing unrooted trees with an orientation that
        reflects knowledge of the true root location.

        Parameters
        ----------
        node : TreeNode or str
            The node to root at

        Returns
        -------
        TreeNode
            A new copy of the tree

        Raises
        ------
        TreeError
            Raises a `TreeError` if a tip is specified as the new root

        See Also
        --------
        root_at_midpoint
        unrooted_deepcopy

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(((a,b)c,(d,e)f)g,h)i;"])
        >>> print(tree.root_at('c'))
        (a,b,((d,e)f,(h)g)c)root;
        <BLANKLINE>

        """
        if isinstance(node, str):
            node = self.find(node)

        if not node.children:
            raise TreeError("Can't use a tip (%s) as the root" %
                            repr(node.name))
        return node.unrooted_deepcopy()

    @experimental(as_of="0.4.0")
    def root_at_midpoint(self):
        r"""Return a new tree rooted at midpoint of the two tips farthest apart

        This method doesn't preserve the internal node naming or structure,
        but does keep tip to tip distances correct. Uses `unrooted_copy` but
        operates on a full copy of the tree.

        Raises
        ------
        TreeError
            If a tip ends up being the mid point

        Returns
        -------
        TreeNode
            A tree rooted at its midpoint
        LengthError
            Midpoint rooting requires `length` and will raise (indirectly) if
            evaluated nodes don't have length.

        See Also
        --------
        root_at
        unrooted_deepcopy

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(((d:1,e:1,(g:1)f:1)c:1)b:1,h:1)a:1;"])
        >>> print(tree.root_at_midpoint())
        ((d:1.0,e:1.0,(g:1.0)f:1.0)c:0.5,((h:1.0)b:1.0):0.5)root;
        <BLANKLINE>

        """
        tree = self.copy()
        max_dist, tips = tree.get_max_distance()
        half_max_dist = max_dist / 2.0

        if max_dist == 0.0:  # only pathological cases with no lengths
            return tree

        tip1 = tree.find(tips[0])
        tip2 = tree.find(tips[1])
        lca = tree.lowest_common_ancestor([tip1, tip2])

        if tip1.accumulate_to_ancestor(lca) > half_max_dist:
            climb_node = tip1
        else:
            climb_node = tip2

        dist_climbed = 0.0
        while dist_climbed + climb_node.length < half_max_dist:
            dist_climbed += climb_node.length
            climb_node = climb_node.parent

        # now midpt is either at on the branch to climb_node's  parent
        # or midpt is at climb_node's parent
        if dist_climbed + climb_node.length == half_max_dist:
            # climb to midpoint spot
            climb_node = climb_node.parent
            if climb_node.is_tip():
                raise TreeError('error trying to root tree at tip')
            else:
                return climb_node.unrooted_copy()

        else:
            # make a new node on climb_node's branch to its parent
            old_br_len = climb_node.length

            new_root = tree.__class__()
            climb_node.parent.append(new_root)
            new_root.append(climb_node)

            climb_node.length = half_max_dist - dist_climbed
            new_root.length = old_br_len - climb_node.length

            return new_root.unrooted_copy()

    @experimental(as_of="0.4.0")
    def is_tip(self):
        r"""Returns `True` if the current node has no `children`.

        Returns
        -------
        bool
            `True` if the node is a tip

        See Also
        --------
        is_root
        has_children

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> print(tree.is_tip())
        False
        >>> print(tree.find('a').is_tip())
        True

        """
        return not self.children

    @experimental(as_of="0.4.0")
    def is_root(self):
        r"""Returns `True` if the current is a root, i.e. has no `parent`.

        Returns
        -------
        bool
            `True` if the node is the root

        See Also
        --------
        is_tip
        has_children

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> print(tree.is_root())
        True
        >>> print(tree.find('a').is_root())
        False

        """
        return self.parent is None

    @experimental(as_of="0.4.0")
    def has_children(self):
        r"""Returns `True` if the node has `children`.

        Returns
        -------
        bool
            `True` if the node has children.

        See Also
        --------
        is_tip
        is_root

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> print(tree.has_children())
        True
        >>> print(tree.find('a').has_children())
        False

        """
        return not self.is_tip()

    @experimental(as_of="0.4.0")
    def traverse(self, self_before=True, self_after=False, include_self=True):
        r"""Returns iterator over descendants

        This is a depth-first traversal. Since the trees are not binary,
        preorder and postorder traversals are possible, but inorder traversals
        would depend on the data in the tree and are not handled here.

        Parameters
        ----------
        self_before : bool
            includes each node before its descendants if True
        self_after : bool
            includes each node after its descendants if True
        include_self : bool
            include the initial node if True

        `self_before` and `self_after` are independent. If neither is `True`,
        only terminal nodes will be returned.

        Note that if self is terminal, it will only be included once even if
        `self_before` and `self_after` are both `True`.

        Yields
        ------
        TreeNode
            Traversed node.

        See Also
        --------
        preorder
        postorder
        pre_and_postorder
        levelorder
        tips
        non_tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> for node in tree.traverse():
        ...     print(node.name)
        None
        c
        a
        b

        """
        if self_before:
            if self_after:
                return self.pre_and_postorder(include_self=include_self)
            else:
                return self.preorder(include_self=include_self)
        else:
            if self_after:
                return self.postorder(include_self=include_self)
            else:
                return self.tips(include_self=include_self)

    @experimental(as_of="0.4.0")
    def preorder(self, include_self=True):
        r"""Performs preorder iteration over tree

        Parameters
        ----------
        include_self : bool
            include the initial node if True

        Yields
        ------
        TreeNode
            Traversed node.

        See Also
        --------
        traverse
        postorder
        pre_and_postorder
        levelorder
        tips
        non_tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> for node in tree.preorder():
        ...     print(node.name)
        None
        c
        a
        b

        """
        stack = [self]
        while stack:
            curr = stack.pop()
            if include_self or (curr is not self):
                yield curr
            if curr.children:
                stack.extend(curr.children[::-1])

    @experimental(as_of="0.4.0")
    def postorder(self, include_self=True):
        r"""Performs postorder iteration over tree.

        This is somewhat inelegant compared to saving the node and its index
        on the stack, but is 30% faster in the average case and 3x faster in
        the worst case (for a comb tree).

        Parameters
        ----------
        include_self : bool
            include the initial node if True

        Yields
        ------
        TreeNode
            Traversed node.

        See Also
        --------
        traverse
        preorder
        pre_and_postorder
        levelorder
        tips
        non_tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> for node in tree.postorder():
        ...     print(node.name)
        a
        b
        c
        None

        """
        child_index_stack = [0]
        curr = self
        curr_children = self.children
        curr_children_len = len(curr_children)
        while 1:
            curr_index = child_index_stack[-1]
            # if there are children left, process them
            if curr_index < curr_children_len:
                curr_child = curr_children[curr_index]
                # if the current child has children, go there
                if curr_child.children:
                    child_index_stack.append(0)
                    curr = curr_child
                    curr_children = curr.children
                    curr_children_len = len(curr_children)
                    curr_index = 0
                # otherwise, yield that child
                else:
                    yield curr_child
                    child_index_stack[-1] += 1
            # if there are no children left, return self, and move to
            # self's parent
            else:
                if include_self or (curr is not self):
                    yield curr
                if curr is self:
                    break
                curr = curr.parent
                curr_children = curr.children
                curr_children_len = len(curr_children)
                child_index_stack.pop()
                child_index_stack[-1] += 1

    @experimental(as_of="0.4.0")
    def pre_and_postorder(self, include_self=True):
        r"""Performs iteration over tree, visiting node before and after

        Parameters
        ----------
        include_self : bool
            include the initial node if True

        Yields
        ------
        TreeNode
            Traversed node.

        See Also
        --------
        traverse
        postorder
        preorder
        levelorder
        tips
        non_tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> for node in tree.pre_and_postorder():
        ...     print(node.name)
        None
        c
        a
        b
        c
        None

        """
        # handle simple case first
        if not self.children:
            if include_self:
                yield self
            return
        child_index_stack = [0]
        curr = self
        curr_children = self.children
        while 1:
            curr_index = child_index_stack[-1]
            if not curr_index:
                if include_self or (curr is not self):
                    yield curr
            # if there are children left, process them
            if curr_index < len(curr_children):
                curr_child = curr_children[curr_index]
                # if the current child has children, go there
                if curr_child.children:
                    child_index_stack.append(0)
                    curr = curr_child
                    curr_children = curr.children
                    curr_index = 0
                # otherwise, yield that child
                else:
                    yield curr_child
                    child_index_stack[-1] += 1
            # if there are no children left, return self, and move to
            # self's parent
            else:
                if include_self or (curr is not self):
                    yield curr
                if curr is self:
                    break
                curr = curr.parent
                curr_children = curr.children
                child_index_stack.pop()
                child_index_stack[-1] += 1

    @experimental(as_of="0.4.0")
    def levelorder(self, include_self=True):
        r"""Performs levelorder iteration over tree

        Parameters
        ----------
        include_self : bool
            include the initial node if True

        Yields
        ------
        TreeNode
            Traversed node.

        See Also
        --------
        traverse
        postorder
        preorder
        pre_and_postorder
        tips
        non_tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> for node in tree.levelorder():
        ...     print(node.name)
        None
        c
        f
        a
        b
        d
        e

        """
        queue = [self]
        while queue:
            curr = queue.pop(0)
            if include_self or (curr is not self):
                yield curr
            if curr.children:
                queue.extend(curr.children)

    @experimental(as_of="0.4.0")
    def tips(self, include_self=False):
        r"""Iterates over tips descended from `self`.

        Node order is consistent between calls and is ordered by a
        postorder traversal of the tree.

        Parameters
        ----------
        include_self : bool
            include the initial node if True

        Yields
        ------
        TreeNode
            Traversed node.

        See Also
        --------
        traverse
        postorder
        preorder
        pre_and_postorder
        levelorder
        non_tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> for node in tree.tips():
        ...     print(node.name)
        a
        b
        d
        e

        """
        for n in self.postorder(include_self=False):
            if n.is_tip():
                yield n

    @experimental(as_of="0.4.0")
    def non_tips(self, include_self=False):
        r"""Iterates over nontips descended from self

        `include_self`, if `True` (default is False), will return the current
        node as part of non_tips if it is a non_tip. Node order is consistent
        between calls and is ordered by a postorder traversal of the tree.


        Parameters
        ----------
        include_self : bool
            include the initial node if True

        Yields
        ------
        TreeNode
            Traversed node.

        See Also
        --------
        traverse
        postorder
        preorder
        pre_and_postorder
        levelorder
        tips

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> for node in tree.non_tips():
        ...     print(node.name)
        c
        f

        """
        for n in self.postorder(include_self):
            if not n.is_tip():
                yield n

    @experimental(as_of="0.4.0")
    def invalidate_caches(self, attr=True):
        r"""Delete lookup and attribute caches

        Parameters
        ----------
        attr : bool, optional
            If ``True``, invalidate attribute caches created by
            `TreeNode.cache_attr`.

        See Also
        --------
        create_caches
        cache_attr
        find

        """
        if not self.is_root():
            self.root().invalidate_caches()
        else:
            self._tip_cache = {}
            self._non_tip_cache = {}

            if self._registered_caches and attr:
                for n in self.traverse():
                    for cache in self._registered_caches:
                        if hasattr(n, cache):
                            delattr(n, cache)

    @experimental(as_of="0.4.0")
    def create_caches(self):
        r"""Construct an internal lookups to facilitate searching by name

        This method will not cache nodes in which the .name is None. This
        method will raise `DuplicateNodeError` if a name conflict in the tips
        is discovered, but will not raise if on internal nodes. This is
        because, in practice, the tips of a tree are required to be unique
        while no such requirement holds for internal nodes.

        Raises
        ------
        DuplicateNodeError
            The tip cache requires that names are unique (with the exception of
            names that are None)

        See Also
        --------
        invalidate_caches
        cache_attr
        find

        """
        if not self.is_root():
            self.root().create_caches()
        else:
            if self._tip_cache and self._non_tip_cache:
                return

            self.invalidate_caches(attr=False)

            tip_cache = {}
            non_tip_cache = defaultdict(list)

            for node in self.postorder():
                name = node.name

                if name is None:
                    continue

                if node.is_tip():
                    if name in tip_cache:
                        raise DuplicateNodeError("Tip with name '%s' already "
                                                 "exists." % name)

                    tip_cache[name] = node
                else:
                    non_tip_cache[name].append(node)

            self._tip_cache = tip_cache
            self._non_tip_cache = non_tip_cache

    @experimental(as_of="0.4.0")
    def find_all(self, name):
        r"""Find all nodes that match `name`

        The first call to `find_all` will cache all nodes in the tree on the
        assumption that additional calls to `find_all` will be made.

        Parameters
        ----------
        name : TreeNode or str
            The name or node to find. If `name` is `TreeNode` then all other
            nodes with the same name will be returned.

        Raises
        ------
        MissingNodeError
            Raises if the node to be searched for is not found

        Returns
        -------
        list of TreeNode
            The nodes found

        See Also
        --------
        find
        find_by_id
        find_by_func

        Examples
        --------
        >>> from skbio.tree import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)d,(f,g)c);"])
        >>> for node in tree.find_all('c'):
        ...     print(node.name, node.children[0].name, node.children[1].name)
        c a b
        c f g
        >>> for node in tree.find_all('d'):
        ...     print(node.name, str(node))
        d (d,e)d;
        <BLANKLINE>
        d d;
        <BLANKLINE>
        """
        root = self.root()

        # if what is being passed in looks like a node, just return it
        if isinstance(name, root.__class__):
            return [name]

        root.create_caches()

        tip = root._tip_cache.get(name, None)
        nodes = root._non_tip_cache.get(name, [])

        nodes.append(tip) if tip is not None else None

        if not nodes:
            raise MissingNodeError("Node %s is not in self" % name)
        else:
            return nodes

    @experimental(as_of="0.4.0")
    def find(self, name):
        r"""Find a node by `name`.

        The first call to `find` will cache all nodes in the tree on the
        assumption that additional calls to `find` will be made.

        `find` will first attempt to find the node in the tips. If it cannot
        find a corresponding tip, then it will search through the internal
        nodes of the tree. In practice, phylogenetic trees and other common
        trees in biology do not have unique internal node names. As a result,
        this find method will only return the first occurance of an internal
        node encountered on a postorder traversal of the tree.

        Parameters
        ----------
        name : TreeNode or str
            The name or node to find. If `name` is `TreeNode` then it is
            simply returned

        Raises
        ------
        MissingNodeError
            Raises if the node to be searched for is not found

        Returns
        -------
        TreeNode
            The found node

        See Also
        --------
        find_all
        find_by_id
        find_by_func

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> print(tree.find('c').name)
        c
        """
        root = self.root()

        # if what is being passed in looks like a node, just return it
        if isinstance(name, root.__class__):
            return name

        root.create_caches()
        node = root._tip_cache.get(name, None)

        if node is None:
            node = root._non_tip_cache.get(name, [None])[0]

        if node is None:
            raise MissingNodeError("Node %s is not in self" % name)
        else:
            return node

    @experimental(as_of="0.4.0")
    def find_by_id(self, node_id):
        r"""Find a node by `id`.

        This search method is based from the root.

        Parameters
        ----------
        node_id : int
            The `id` of a node in the tree

        Returns
        -------
        TreeNode
            The tree node with the matcing id

        Notes
        -----
        This method does not cache id associations. A full traversal of the
        tree is performed to find a node by an id on every call.

        Raises
        ------
        MissingNodeError
            This method will raise if the `id` cannot be found

        See Also
        --------
        find
        find_all
        find_by_func

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> print(tree.find_by_id(2).name)
        d

        """
        # if this method gets used frequently, then we should cache by ID
        # as well
        root = self.root()
        root.assign_ids()

        node = None
        for n in self.traverse(include_self=True):
            if n.id == node_id:
                node = n
                break

        if node is None:
            raise MissingNodeError("ID %d is not in self" % node_id)
        else:
            return node

    @experimental(as_of="0.4.0")
    def find_by_func(self, func):
        r"""Find all nodes given a function

        This search method is based on the current subtree, not the root.

        Parameters
        ----------
        func : a function
            A function that accepts a TreeNode and returns `True` or `False`,
            where `True` indicates the node is to be yielded

        Yields
        ------
        TreeNode
            Node found by `func`.

        See Also
        --------
        find
        find_all
        find_by_id

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> func = lambda x: x.parent == tree.find('c')
        >>> [n.name for n in tree.find_by_func(func)]
        ['a', 'b']
        """
        for node in self.traverse(include_self=True):
            if func(node):
                yield node

    @experimental(as_of="0.4.0")
    def ancestors(self):
        r"""Returns all ancestors back to the root

        This call will return all nodes in the path back to root, but does not
        include the node instance that the call was made from.

        Returns
        -------
        list of TreeNode
            The path, toward the root, from self

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> [node.name for node in tree.find('a').ancestors()]
        ['c', 'root']

        """
        result = []
        curr = self
        while not curr.is_root():
            result.append(curr.parent)
            curr = curr.parent

        return result

    @experimental(as_of="0.4.0")
    def root(self):
        r"""Returns root of the tree `self` is in

        Returns
        -------
        TreeNode
            The root of the tree

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> tip_a = tree.find('a')
        >>> root = tip_a.root()
        >>> root == tree
        True

        """
        curr = self
        while not curr.is_root():
            curr = curr.parent
        return curr

    @experimental(as_of="0.4.0")
    def siblings(self):
        r"""Returns all nodes that are `children` of `self` `parent`.

        This call excludes `self` from the list.

        Returns
        -------
        list of TreeNode
            The list of sibling nodes relative to self

        See Also
        --------
        neighbors

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e,f)g)root;"])
        >>> tip_e = tree.find('e')
        >>> [n.name for n in tip_e.siblings()]
        ['d', 'f']

        """
        if self.is_root():
            return []

        result = self.parent.children[:]
        result.remove(self)

        return result

    @experimental(as_of="0.4.0")
    def neighbors(self, ignore=None):
        r"""Returns all nodes that are connected to self

        This call does not include `self` in the result

        Parameters
        ----------
        ignore : TreeNode
            A node to ignore

        Returns
        -------
        list of TreeNode
            The list of all nodes that are connected to self

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> node_c = tree.find('c')
        >>> [n.name for n in node_c.neighbors()]
        ['a', 'b', 'root']

        """
        nodes = [n for n in self.children + [self.parent] if n is not None]
        if ignore is None:
            return nodes
        else:
            return [n for n in nodes if n is not ignore]

    @experimental(as_of="0.4.0")
    def lowest_common_ancestor(self, tipnames):
        r"""Lowest common ancestor for a list of tips

        Parameters
        ----------
        tipnames : list of TreeNode or str
            The nodes of interest

        Returns
        -------
        TreeNode
            The lowest common ancestor of the passed in nodes

        Raises
        ------
        ValueError
            If no tips could be found in the tree, or if not all tips were
            found.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> nodes = [tree.find('a'), tree.find('b')]
        >>> lca = tree.lowest_common_ancestor(nodes)
        >>> print(lca.name)
        c
        >>> nodes = [tree.find('a'), tree.find('e')]
        >>> lca = tree.lca(nodes)  # lca is an alias for convience
        >>> print(lca.name)
        root

        """
        if len(tipnames) == 1:
            return self.find(tipnames[0])

        tips = [self.find(name) for name in tipnames]

        if len(tips) == 0:
            raise ValueError("No tips found.")

        nodes_to_scrub = []

        for t in tips:
            if t.is_root():
                # has to be the LCA...
                return t

            prev = t
            curr = t.parent

            while curr and not hasattr(curr, 'black'):
                setattr(curr, 'black', [prev])
                nodes_to_scrub.append(curr)
                prev = curr
                curr = curr.parent

            # increase black count, multiple children lead to here
            if curr:
                curr.black.append(prev)

        curr = self
        while len(curr.black) == 1:
            curr = curr.black[0]

        # clean up tree
        for n in nodes_to_scrub:
            delattr(n, 'black')

        return curr

    lca = lowest_common_ancestor  # for convenience

    @classonlymethod
    @experimental(as_of="0.4.0")
    def from_taxonomy(cls, lineage_map):
        """Construct a tree from a taxonomy

        Parameters
        ----------
        lineage_map : iterable of tuple
            A id to lineage mapping where the first index is an ID and the
            second index is an iterable of the lineage.

        Returns
        -------
        TreeNode
            The constructed taxonomy

        Examples
        --------
        >>> from skbio.tree import TreeNode
        >>> lineages = [
        ...     ('1', ['Bacteria', 'Firmicutes', 'Clostridia']),
        ...     ('2', ['Bacteria', 'Firmicutes', 'Bacilli']),
        ...     ('3', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
        ...     ('4', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
        ...     ('5', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
        ...     ('6', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
        ...     ('7', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
        ...     ('8', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
        ...     ('9', ['Bacteria', 'Bacteroidetes', 'Cytophagia'])]
        >>> tree = TreeNode.from_taxonomy(lineages)
        >>> print(tree.ascii_art())
                                      /Clostridia-1
                            /Firmicutes
                           |          \Bacilli- /-2
                  /Bacteria|
                 |         |                    /-3
                 |         |          /Sphingobacteria
                 |          \Bacteroidetes      \-8
                 |                   |
        ---------|                    \Cytophagia-9
                 |
                 |                              /-4
                 |                    /Thermoplasmata
                 |                   |          \-5
                  \Archaea- /Euryarchaeota
                                     |          /-6
                                      \Halobacteria
                                                \-7

        """
        root = cls(name=None)
        root._lookup = {}

        for id_, lineage in lineage_map:
            cur_node = root

            # for each name, see if we've seen it, if not, add that puppy on
            for name in lineage:
                if name in cur_node._lookup:
                    cur_node = cur_node._lookup[name]
                else:
                    new_node = cls(name=name)
                    new_node._lookup = {}
                    cur_node._lookup[name] = new_node
                    cur_node.append(new_node)
                    cur_node = new_node

            cur_node.append(cls(name=id_))

        # scrub the lookups
        for node in root.non_tips(include_self=True):
            del node._lookup

        return root

    def _balanced_distance_to_tip(self):
        """Return the distance to tip from this node.

        The distance to every tip from this node must be equal for this to
        return a correct result.

        Returns
        -------
        int
            The distance to tip of a length-balanced tree

        """
        node = self
        distance = 0
        while node.has_children():
            distance += node.children[0].length
            node = node.children[0]
        return distance

    @classonlymethod
    @experimental(as_of="0.4.0")
    def from_linkage_matrix(cls, linkage_matrix, id_list):
        """Return tree from SciPy linkage matrix.

        Parameters
        ----------
        linkage_matrix : ndarray
            A SciPy linkage matrix as returned by
            `scipy.cluster.hierarchy.linkage`
        id_list : list
            The indices of the `id_list` will be used in the linkage_matrix

        Returns
        -------
        TreeNode
            An unrooted bifurcated tree

        See Also
        --------
        scipy.cluster.hierarchy.linkage

        """
        tip_width = len(id_list)
        cluster_count = len(linkage_matrix)
        lookup_len = cluster_count + tip_width
        node_lookup = np.empty(lookup_len, dtype=cls)

        for i, name in enumerate(id_list):
            node_lookup[i] = cls(name=name)

        for i in range(tip_width, lookup_len):
            node_lookup[i] = cls()

        newest_cluster_index = cluster_count + 1
        for link in linkage_matrix:
            child_a = node_lookup[int(link[0])]
            child_b = node_lookup[int(link[1])]

            path_length = link[2] / 2
            child_a.length = path_length - child_a._balanced_distance_to_tip()
            child_b.length = path_length - child_b._balanced_distance_to_tip()

            new_cluster = node_lookup[newest_cluster_index]
            new_cluster.append(child_a)
            new_cluster.append(child_b)

            newest_cluster_index += 1

        return node_lookup[-1]

    @experimental(as_of="0.4.0")
    def to_taxonomy(self, allow_empty=False, filter_f=None):
        """Returns a taxonomy representation of self

        Parameters
        ----------
        allow_empty : bool, optional
            Allow gaps the taxonomy (e.g., internal nodes without names).
        filter_f : function, optional
            Specify a filtering function that returns True if the lineage is
            to be returned. This function must accept a ``TreeNode`` as its
            first parameter, and a ``list`` that represents the lineage as the
            second parameter.

        Yields
        ------
        tuple
            ``(tip, [lineage])`` where ``tip`` corresponds to a tip in the tree
            and ``[lineage]`` is the expanded names from root to tip. ``None``
            and empty strings are omitted from the lineage.

        Notes
        -----
        If ``allow_empty`` is ``True`` and the root node does not have a name,
        then that name will not be included. This is because it is common to
        have multiple domains represented in the taxonomy, which would result
        in a root node that does not have a name and does not make sense to
        represent in the output.

        Examples
        --------
        >>> from skbio.tree import TreeNode
        >>> lineages = {'1': ['Bacteria', 'Firmicutes', 'Clostridia'],
        ...             '2': ['Bacteria', 'Firmicutes', 'Bacilli'],
        ...             '3': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
        ...             '4': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
        ...             '5': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
        ...             '6': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
        ...             '7': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
        ...             '8': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
        ...             '9': ['Bacteria', 'Bacteroidetes', 'Cytophagia']}
        >>> tree = TreeNode.from_taxonomy(lineages.items())
        >>> lineages = sorted([(n.name, l) for n, l in tree.to_taxonomy()])
        >>> for name, lineage in lineages:
        ...     print(name, '; '.join(lineage))
        1 Bacteria; Firmicutes; Clostridia
        2 Bacteria; Firmicutes; Bacilli
        3 Bacteria; Bacteroidetes; Sphingobacteria
        4 Archaea; Euryarchaeota; Thermoplasmata
        5 Archaea; Euryarchaeota; Thermoplasmata
        6 Archaea; Euryarchaeota; Halobacteria
        7 Archaea; Euryarchaeota; Halobacteria
        8 Bacteria; Bacteroidetes; Sphingobacteria
        9 Bacteria; Bacteroidetes; Cytophagia

        """
        if filter_f is None:
            def filter_f(a, b):
                return True

        self.assign_ids()
        seen = set()
        lineage = []

        # visit internal nodes while traversing out to the tips, and on the
        # way back up
        for node in self.traverse(self_before=True, self_after=True):
            if node.is_tip():
                if filter_f(node, lineage):
                    yield (node, lineage[:])
            else:
                if allow_empty:
                    if node.is_root() and not node.name:
                        continue
                else:
                    if not node.name:
                        continue

                if node.id in seen:
                    lineage.pop(-1)
                else:
                    lineage.append(node.name)
                    seen.add(node.id)

    @experimental(as_of="0.4.0")
    def to_array(self, attrs=None, nan_length_value=None):
        """Return an array representation of self

        Parameters
        ----------
        attrs : list of tuple or None
            The attributes and types to return. The expected form is
            [(attribute_name, type)]. If `None`, then `name`, `length`, and
            `id` are returned.
        nan_length_value : float, optional
            If provided, replaces any `nan` in the branch length vector
            (i.e., ``result['length']``) with this value. `nan` branch lengths
            can arise from an edge not having a length (common for the root
            node parent edge), which can making summing problematic.

        Returns
        -------
        dict of array
            {id_index: {id: TreeNode},
             child_index: ((node_id, left_child_id, right_child_id)),
             attr_1: array(...),
             ...
             attr_N: array(...)}

        Notes
        -----
        Attribute arrays are in index order such that TreeNode.id can be used
        as a lookup into the array.

        Examples
        --------
        >>> from pprint import pprint
        >>> from skbio import TreeNode
        >>> t = TreeNode.read(['(((a:1,b:2,c:3)x:4,(d:5)y:6)z:7);'])
        >>> res = t.to_array()
        >>> sorted(res.keys())
        ['child_index', 'id', 'id_index', 'length', 'name']
        >>> res['child_index']
        array([[4, 0, 2],
               [5, 3, 3],
               [6, 4, 5],
               [7, 6, 6]])
        >>> for k, v in res['id_index'].items():
        ...     print(k, v)
        ...
        0 a:1.0;
        <BLANKLINE>
        1 b:2.0;
        <BLANKLINE>
        2 c:3.0;
        <BLANKLINE>
        3 d:5.0;
        <BLANKLINE>
        4 (a:1.0,b:2.0,c:3.0)x:4.0;
        <BLANKLINE>
        5 (d:5.0)y:6.0;
        <BLANKLINE>
        6 ((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0;
        <BLANKLINE>
        7 (((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0);
        <BLANKLINE>
        >>> res['id']
        array([0, 1, 2, 3, 4, 5, 6, 7])
        >>> res['name']
        array(['a', 'b', 'c', 'd', 'x', 'y', 'z', None], dtype=object)

        """
        if attrs is None:
            attrs = [('name', object), ('length', float), ('id', int)]
        else:
            for attr, dtype in attrs:
                if not hasattr(self, attr):
                    raise AttributeError("Invalid attribute '%s'." % attr)

        id_index, child_index = self.index_tree()
        n = self.id + 1  # assign_ids starts at 0
        tmp = [np.zeros(n, dtype=dtype) for attr, dtype in attrs]

        for node in self.traverse(include_self=True):
            n_id = node.id
            for idx, (attr, dtype) in enumerate(attrs):
                tmp[idx][n_id] = getattr(node, attr)

        results = {'id_index': id_index, 'child_index': child_index}
        results.update({attr: arr for (attr, dtype), arr in zip(attrs, tmp)})
        if nan_length_value is not None:
            length_v = results['length']
            length_v[np.isnan(length_v)] = nan_length_value
        return results

    def _ascii_art(self, char1='-', show_internal=True, compact=False):
        LEN = 10
        PAD = ' ' * LEN
        PA = ' ' * (LEN - 1)
        namestr = self.name or ''  # prevents name of NoneType
        if self.children:
            mids = []
            result = []
            for c in self.children:
                if c is self.children[0]:
                    char2 = '/'
                elif c is self.children[-1]:
                    char2 = '\\'
                else:
                    char2 = '-'
                (clines, mid) = c._ascii_art(char2, show_internal, compact)
                mids.append(mid + len(result))
                result.extend(clines)
                if not compact:
                    result.append('')
            if not compact:
                result.pop()
            (lo, hi, end) = (mids[0], mids[-1], len(result))
            prefixes = [PAD] * (lo + 1) + [PA + '|'] * \
                (hi - lo - 1) + [PAD] * (end - hi)
            mid = np.int(np.trunc((lo + hi) / 2))
            prefixes[mid] = char1 + '-' * (LEN - 2) + prefixes[mid][-1]
            result = [p + l for (p, l) in zip(prefixes, result)]
            if show_internal:
                stem = result[mid]
                result[mid] = stem[0] + namestr + stem[len(namestr) + 1:]
            return (result, mid)
        else:
            return ([char1 + '-' + namestr], 0)

    @experimental(as_of="0.4.0")
    def ascii_art(self, show_internal=True, compact=False):
        r"""Returns a string containing an ascii drawing of the tree

        Note, this method calls a private recursive function and is not safe
        for large trees.

        Parameters
        ----------
        show_internal : bool
            includes internal edge names
        compact : bool
            use exactly one line per tip

        Returns
        -------
        str
            an ASCII formatted version of the tree

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -root----|
                 |          /-d
                  \f-------|
                            \-e
        """
        (lines, mid) = self._ascii_art(show_internal=show_internal,
                                       compact=compact)
        return '\n'.join(lines)

    @experimental(as_of="0.4.0")
    def accumulate_to_ancestor(self, ancestor):
        r"""Return the sum of the distance between self and ancestor

        Parameters
        ----------
        ancestor : TreeNode
            The node of the ancestor to accumulate distance too

        Returns
        -------
        float
            The sum of lengths between self and ancestor

        Raises
        ------
        NoParentError
            A NoParentError is raised if the ancestor is not an ancestor of
            self
        NoLengthError
            A NoLengthError is raised if one of the nodes between self and
            ancestor (including self) lacks a `length` attribute

        See Also
        --------
        distance

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> root = tree
        >>> tree.find('a').accumulate_to_ancestor(root)
        4.0
        """
        accum = 0.0
        curr = self
        while curr is not ancestor:
            if curr.is_root():
                raise NoParentError("Provided ancestor is not in the path")

            if curr.length is None:
                raise NoLengthError("No length on node %s found." %
                                    curr.name or "unnamed")

            accum += curr.length
            curr = curr.parent

        return accum

    @experimental(as_of="0.4.0")
    def distance(self, other):
        """Return the distance between self and other

        This method can be used to compute the distances between two tips,
        however, it is not optimized for computing pairwise tip distances.

        Parameters
        ----------
        other : TreeNode
            The node to compute a distance to

        Returns
        -------
        float
            The distance between two nodes

        Raises
        ------
        NoLengthError
            A NoLengthError will be raised if a node without `length` is
            encountered

        See Also
        --------
        tip_tip_distances
        accumulate_to_ancestor
        compare_tip_distances
        get_max_distance

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> tip_a = tree.find('a')
        >>> tip_d = tree.find('d')
        >>> tip_a.distance(tip_d)
        14.0
        """
        if self is other:
            return 0.0

        self_ancestors = [self] + list(self.ancestors())
        other_ancestors = [other] + list(other.ancestors())

        if self in other_ancestors:
            return other.accumulate_to_ancestor(self)
        elif other in self_ancestors:
            return self.accumulate_to_ancestor(other)
        else:
            root = self.root()
            lca = root.lowest_common_ancestor([self, other])
            accum = self.accumulate_to_ancestor(lca)
            accum += other.accumulate_to_ancestor(lca)

            return accum

    def _set_max_distance(self):
        """Propagate tip distance information up the tree

        This method was originally implemented by Julia Goodrich with the
        intent of being able to determine max tip to tip distances between
        nodes on large trees efficiently. The code has been modified to track
        the specific tips the distance is between
        """
        maxkey = itemgetter(0)

        for n in self.postorder():
            if n.is_tip():
                n.MaxDistTips = ((0.0, n), (0.0, n))
            else:
                if len(n.children) == 1:
                    raise TreeError("No support for single descedent nodes")
                else:
                    tip_info = [(max(c.MaxDistTips, key=maxkey), c)
                                for c in n.children]

                    dists = [i[0][0] for i in tip_info]
                    best_idx = np.argsort(dists)[-2:]
                    (tip_a_d, tip_a), child_a = tip_info[best_idx[0]]
                    (tip_b_d, tip_b), child_b = tip_info[best_idx[1]]
                    tip_a_d += child_a.length or 0.0
                    tip_b_d += child_b.length or 0.0
                n.MaxDistTips = ((tip_a_d, tip_a), (tip_b_d, tip_b))

    def _get_max_distance_singledesc(self):
        """returns the max distance between any pair of tips

        Also returns the tip names  that it is between as a tuple"""
        distmtx = self.tip_tip_distances()
        idx_max = divmod(distmtx.data.argmax(), distmtx.shape[1])
        max_pair = (distmtx.ids[idx_max[0]], distmtx.ids[idx_max[1]])
        return distmtx[idx_max], max_pair

    @experimental(as_of="0.4.0")
    def get_max_distance(self):
        """Returns the max tip tip distance between any pair of tips

        Returns
        -------
        float
            The distance between the two most distant tips in the tree
        tuple of TreeNode
            The two most distant tips in the tree

        Raises
        ------
        NoLengthError
            A NoLengthError will be thrown if a node without length is
            encountered

        See Also
        --------
        distance
        tip_tip_distances
        compare_tip_distances

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> dist, tips = tree.get_max_distance()
        >>> dist
        16.0
        >>> [n.name for n in tips]
        ['b', 'e']
        """
        if not hasattr(self, 'MaxDistTips'):
            # _set_max_distance will throw a TreeError if a node with a single
            # child is encountered
            try:
                self._set_max_distance()
            except TreeError:  #
                return self._get_max_distance_singledesc()

        longest = 0.0
        tips = [None, None]
        for n in self.non_tips(include_self=True):
            tip_a, tip_b = n.MaxDistTips
            dist = (tip_a[0] + tip_b[0])

            if dist > longest:
                longest = dist
                tips = [tip_a[1], tip_b[1]]
        return longest, tips

    @experimental(as_of="0.4.0")
    def tip_tip_distances(self, endpoints=None):
        """Returns distance matrix between pairs of tips, and a tip order.

        By default, all pairwise distances are calculated in the tree. If
        `endpoints` are specified, then only the distances between those tips
        are computed.

        Parameters
        ----------
        endpoints : list of TreeNode or str, or None
            A list of TreeNode objects or names of TreeNode objects

        Returns
        -------
        DistanceMatrix
            The distance matrix

        Raises
        ------
        ValueError
            If any of the specified `endpoints` are not tips

        See Also
        --------
        distance
        compare_tip_distances

        Notes
        -----
        If a node does not have an associated length, 0.0 will be used and a
        ``RepresentationWarning`` will be raised.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> mat = tree.tip_tip_distances()
        >>> print(mat)
        4x4 distance matrix
        IDs:
        'a', 'b', 'd', 'e'
        Data:
        [[  0.   3.  14.  15.]
         [  3.   0.  15.  16.]
         [ 14.  15.   0.   9.]
         [ 15.  16.   9.   0.]]

        """
        all_tips = list(self.tips())
        if endpoints is None:
            tip_order = all_tips
        else:
            tip_order = [self.find(n) for n in endpoints]
            for n in tip_order:
                if not n.is_tip():
                    raise ValueError("Node with name '%s' is not a tip." %
                                     n.name)

        # linearize all tips in postorder
        # .__start, .__stop compose the slice in tip_order.
        for i, node in enumerate(all_tips):
            node.__start, node.__stop = i, i + 1

        # the result map provides index in the result matrix
        result_map = {n.__start: i for i, n in enumerate(tip_order)}
        num_all_tips = len(all_tips)  # total number of tips
        num_tips = len(tip_order)  # total number of tips in result
        result = np.zeros((num_tips, num_tips), float)  # tip by tip matrix
        distances = np.zeros((num_all_tips), float)  # dist from tip to tip

        def update_result():
            # set tip_tip distance between tips of different child
            for child1, child2 in combinations(node.children, 2):
                for tip1 in range(child1.__start, child1.__stop):
                    if tip1 not in result_map:
                        continue
                    t1idx = result_map[tip1]
                    for tip2 in range(child2.__start, child2.__stop):
                        if tip2 not in result_map:
                            continue
                        t2idx = result_map[tip2]
                        result[t1idx, t2idx] = distances[
                            tip1] + distances[tip2]

        for node in self.postorder():
            if not node.children:
                continue
            # subtree with solved child wedges
            # can possibly use np.zeros
            starts, stops = [], []  # to calc ._start and ._stop for curr node
            for child in node.children:
                length = child.length
                if length is None:
                    warnings.warn(
                        "`TreeNode.tip_tip_distances`: Node with name %r does "
                        "not have an associated length, so a length of 0.0 "
                        "will be used." % child.name, RepresentationWarning)
                    length = 0.0
                distances[child.__start:child.__stop] += length

                starts.append(child.__start)
                stops.append(child.__stop)

            node.__start, node.__stop = min(starts), max(stops)

            if len(node.children) > 1:
                update_result()

        return DistanceMatrix(result + result.T, [n.name for n in tip_order])

    @experimental(as_of="0.4.0")
    def compare_rfd(self, other, proportion=False):
        """Calculates the Robinson and Foulds symmetric difference

        Parameters
        ----------
        other : TreeNode
            A tree to compare against
        proportion : bool
            Return a proportional difference

        Returns
        -------
        float
            The distance between the trees

        Notes
        -----
        Implementation based off of code by Julia Goodrich. The original
        description of the algorithm can be found in [1]_.

        Raises
        ------
        ValueError
            If the tip names between `self` and `other` are equal.

        See Also
        --------
        compare_subsets
        compare_tip_distances

        References
        ----------
        .. [1] Comparison of phylogenetic trees. Robinson and Foulds.
           Mathematical Biosciences. 1981. 53:131-141

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree1 = TreeNode.read(["((a,b),(c,d));"])
        >>> tree2 = TreeNode.read(["(((a,b),c),d);"])
        >>> tree1.compare_rfd(tree2)
        2.0

        """
        t1names = {n.name for n in self.tips()}
        t2names = {n.name for n in other.tips()}

        if t1names != t2names:
            if t1names < t2names:
                tree1 = self
                tree2 = other.shear(t1names)
            else:
                tree1 = self.shear(t2names)
                tree2 = other
        else:
            tree1 = self
            tree2 = other

        tree1_sets = tree1.subsets()
        tree2_sets = tree2.subsets()

        not_in_both = tree1_sets.symmetric_difference(tree2_sets)

        dist = float(len(not_in_both))

        if proportion:
            total_subsets = len(tree1_sets) + len(tree2_sets)
            dist = dist / total_subsets

        return dist

    @experimental(as_of="0.4.0")
    def compare_subsets(self, other, exclude_absent_taxa=False):
        """Returns fraction of overlapping subsets where self and other differ.

        Names present in only one of the two trees will count as mismatches,
        if you don't want this behavior, strip out the non-matching tips first.

        Parameters
        ----------
        other : TreeNode
            The tree to compare
        exclude_absent_taxa : bool
            Strip out names that don't occur in both trees

        Returns
        -------
        float
            The fraction of overlapping subsets that differ between the trees

        See Also
        --------
        compare_rfd
        compare_tip_distances
        subsets

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree1 = TreeNode.read(["((a,b),(c,d));"])
        >>> tree2 = TreeNode.read(["(((a,b),c),d);"])
        >>> tree1.compare_subsets(tree2)
        0.5

        """
        self_sets, other_sets = self.subsets(), other.subsets()

        if exclude_absent_taxa:
            in_both = self.subset() & other.subset()
            self_sets = (i & in_both for i in self_sets)
            self_sets = frozenset({i for i in self_sets if len(i) > 1})
            other_sets = (i & in_both for i in other_sets)
            other_sets = frozenset({i for i in other_sets if len(i) > 1})

        total_subsets = len(self_sets) + len(other_sets)
        intersection_length = len(self_sets & other_sets)

        if not total_subsets:  # no common subsets after filtering, so max dist
            return 1

        return 1 - (2 * intersection_length / float(total_subsets))

    @experimental(as_of="0.4.0")
    def compare_tip_distances(self, other, sample=None, dist_f=distance_from_r,
                              shuffle_f=np.random.shuffle):
        """Compares self to other using tip-to-tip distance matrices.

        Value returned is `dist_f(m1, m2)` for the two matrices. Default is
        to use the Pearson correlation coefficient, with +1 giving a distance
        of 0 and -1 giving a distance of +1 (the maximum possible value).
        Depending on the application, you might instead want to use
        distance_from_r_squared, which counts correlations of both +1 and -1
        as identical (0 distance).

        Note: automatically strips out the names that don't match (this is
        necessary for this method because the distance between non-matching
        names and matching names is undefined in the tree where they don't
        match, and because we need to reorder the names in the two trees to
        match up the distance matrices).

        Parameters
        ----------
        other : TreeNode
            The tree to compare
        sample : int or None
            Randomly subsample the tips in common between the trees to
            compare. This is useful when comparing very large trees.
        dist_f : function
            The distance function used to compare two the tip-tip distance
            matrices
        shuffle_f : function
            The shuffling function used if `sample` is not None

        Returns
        -------
        float
            The distance between the trees

        Raises
        ------
        ValueError
            A ValueError is raised if there does not exist common tips
            between the trees

        See Also
        --------
        compare_subsets
        compare_rfd

        Examples
        --------
        >>> from skbio import TreeNode
        >>> # note, only three common taxa between the trees
        >>> tree1 = TreeNode.read(["((a:1,b:1):2,(c:0.5,X:0.7):3);"])
        >>> tree2 = TreeNode.read(["(((a:1,b:1,Y:1):2,c:3):1,Z:4);"])
        >>> dist = tree1.compare_tip_distances(tree2)
        >>> print("%.9f" % dist)
        0.000133446

        """
        self_names = {i.name: i for i in self.tips()}
        other_names = {i.name: i for i in other.tips()}
        common_names = frozenset(self_names) & frozenset(other_names)
        common_names = list(common_names)

        if not common_names:
            raise ValueError("No tip names in common between the two trees.")

        if len(common_names) <= 2:
            return 1  # the two trees must match by definition in this case

        if sample is not None:
            shuffle_f(common_names)
            common_names = common_names[:sample]

        self_nodes = [self_names[k] for k in common_names]
        other_nodes = [other_names[k] for k in common_names]

        self_matrix = self.tip_tip_distances(endpoints=self_nodes)
        other_matrix = other.tip_tip_distances(endpoints=other_nodes)

        return dist_f(self_matrix, other_matrix)

    @experimental(as_of="0.4.2")
    def bifurcate(self, insert_length=None):
        r"""Reorders the tree into a bifurcating tree.

        All nodes that have more than 2 children will
        have additional intermediate nodes inserted to ensure that
        every node has only 2 children.

        Parameters
        ----------
        insert_length : int, optional
            The branch length assigned to all inserted nodes.

        See Also
        --------
        prune

        Notes
        -----
        Any nodes that have a single child can be collapsed using the
        prune method to create strictly bifurcating trees.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b,g,h)c,(d,e)f)root;"])
        >>> print(tree.ascii_art())
                            /-a
                           |
                           |--b
                  /c-------|
                 |         |--g
                 |         |
        -root----|          \-h
                 |
                 |          /-d
                  \f-------|
                            \-e
        >>> tree.bifurcate()
        >>> print(tree.ascii_art())
                            /-h
                  /c-------|
                 |         |          /-g
                 |          \--------|
                 |                   |          /-a
        -root----|                    \--------|
                 |                              \-b
                 |
                 |          /-d
                  \f-------|
                            \-e
        """
        for n in self.traverse(include_self=True):
            if len(n.children) > 2:
                stack = n.children
                while len(stack) > 2:
                    ind = stack.pop()
                    intermediate = self.__class__()
                    intermediate.length = insert_length
                    intermediate.extend(stack)
                    n.append(intermediate)
                    for k in stack:
                        n.remove(k)
                    n.extend([ind, intermediate])

    @experimental(as_of="0.4.0")
    def index_tree(self):
        """Index a tree for rapid lookups within a tree array

        Indexes nodes in-place as `n._leaf_index`.

        Returns
        -------
        dict
            A mapping {node_id: TreeNode}
        np.array of ints
            This arrays describes the IDs of every internal node, and the ID
            range of the immediate descendents. The first column in the array
            corresponds to node_id. The second column is the left most
            descendent's ID. The third column is the right most descendent's
            ID.
        """
        self.assign_ids()

        id_index = {}
        child_index = []

        for n in self.postorder():
            for c in n.children:
                id_index[c.id] = c

                if c:
                    # c has children itself, so need to add to result
                    child_index.append((c.id,
                                        c.children[0].id,
                                        c.children[-1].id))

        # handle root, which should be t itself
        id_index[self.id] = self

        # only want to add to the child_index if self has children...
        if self.children:
            child_index.append((self.id,
                                self.children[0].id,
                                self.children[-1].id))
        child_index = np.asarray(child_index)
        child_index = np.atleast_2d(child_index)

        return id_index, child_index

    @experimental(as_of="0.4.0")
    def assign_ids(self):
        """Assign topologically stable unique ids to self

        Following the call, all nodes in the tree will have their id
        attribute set
        """
        curr_index = 0
        for n in self.postorder():
            for c in n.children:
                c.id = curr_index
                curr_index += 1

        self.id = curr_index

    @experimental(as_of="0.4.0")
    def descending_branch_length(self, tip_subset=None):
        """Find total descending branch length from self or subset of self tips

        Parameters
        ----------
        tip_subset : Iterable, or None
            If None, the total descending branch length for all tips in the
            tree will be returned. If a list of tips is provided then only the
            total descending branch length associated with those tips will be
            returned.

        Returns
        -------
        float
            The total descending branch length for the specified set of tips.

        Raises
        ------
        ValueError
            A ValueError is raised if the list of tips supplied to tip_subset
            contains internal nodes or non-tips.

        Notes
        -----
        This function replicates cogent's totalDescendingBranch Length method
        and extends that method to allow the calculation of total descending
        branch length of a subset of the tips if requested. The postorder
        guarantees that the function will always be able to add the descending
        branch length if the node is not a tip.

        Nodes with no length will have their length set to 0. The root length
        (if it exists) is ignored.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tr = TreeNode.read(["(((A:.1,B:1.2)C:.6,(D:.9,E:.6)F:.9)G:2.4,"
        ...                     "(H:.4,I:.5)J:1.3)K;"])
        >>> tdbl = tr.descending_branch_length()
        >>> sdbl = tr.descending_branch_length(['A','E'])
        >>> print(round(tdbl, 1), round(sdbl, 1))
        8.9 2.2
        """
        self.assign_ids()
        if tip_subset is not None:
            all_tips = self.subset()
            if not set(tip_subset).issubset(all_tips):
                raise ValueError('tip_subset contains ids that aren\'t tip '
                                 'names.')

            lca = self.lowest_common_ancestor(tip_subset)
            ancestors = {}
            for tip in tip_subset:
                curr = self.find(tip)
                while curr is not lca:
                    ancestors[curr.id] = curr.length if curr.length is not \
                        None else 0.0
                    curr = curr.parent
            return sum(ancestors.values())

        else:
            return sum(n.length for n in self.postorder(include_self=True) if
                       n.length is not None)

    @experimental(as_of="0.4.0")
    def cache_attr(self, func, cache_attrname, cache_type=list):
        """Cache attributes on internal nodes of the tree

        Parameters
        ----------
        func : function
            func will be provided the node currently being evaluated and must
            return a list of item (or items) to cache from that node or an
            empty list.
        cache_attrname : str
            Name of the attribute to decorate on containing the cached values
        cache_type : {set, frozenset, list}
            The type of the cache

        Notes
        -----
        This method is particularly useful if you need to frequently look up
        attributes that would normally require a traversal of the tree.

        WARNING: any cache created by this method will be invalidated if the
        topology of the tree changes (e.g., if `TreeNode.invalidate_caches` is
        called).

        Raises
        ------
        TypeError
            If an cache_type that is not a `set` or a `list` is specified.

        Examples
        --------
        Cache the tip names of the tree on its internal nodes

        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b,(c,d)e)f,(g,h)i)root;"])
        >>> f = lambda n: [n.name] if n.is_tip() else []
        >>> tree.cache_attr(f, 'tip_names')
        >>> for n in tree.traverse(include_self=True):
        ...     print("Node name: %s, cache: %r" % (n.name, n.tip_names))
        Node name: root, cache: ['a', 'b', 'c', 'd', 'g', 'h']
        Node name: f, cache: ['a', 'b', 'c', 'd']
        Node name: a, cache: ['a']
        Node name: b, cache: ['b']
        Node name: e, cache: ['c', 'd']
        Node name: c, cache: ['c']
        Node name: d, cache: ['d']
        Node name: i, cache: ['g', 'h']
        Node name: g, cache: ['g']
        Node name: h, cache: ['h']

        """
        if cache_type in [set, frozenset]:
            def reduce_f(a, b):
                return a | b

        elif cache_type == list:
            def reduce_f(a, b):
                return a + b

        else:
            raise TypeError("Only list, set and frozenset are supported.")

        for node in self.postorder(include_self=True):
            node._registered_caches.add(cache_attrname)

            cached = [getattr(c, cache_attrname) for c in node.children]
            cached.append(cache_type(func(node)))
            setattr(node, cache_attrname, reduce(reduce_f, cached))

    @experimental(as_of="0.4.0")
    def shuffle(self, k=None, names=None, shuffle_f=np.random.shuffle, n=1):
        """Yield trees with shuffled tip names

        Parameters
        ----------
        k : int, optional
            The number of tips to shuffle. If k is not `None`, k tips are
            randomly selected, and only those names will be shuffled.
        names : list, optional
            The specific tip names to shuffle. k and names cannot be specified
            at the same time.
        shuffle_f : func
            Shuffle method, this function must accept a list and modify
            inplace.
        n : int, optional
            The number of iterations to perform. Value must be > 0 and `np.inf`
            can be specified for an infinite number of iterations.

        Notes
        -----
        Tip names are shuffled inplace. If neither `k` nor `names` are
        provided, all tips are shuffled.

        Yields
        ------
        TreeNode
            Tree with shuffled tip names.

        Raises
        ------
        ValueError
            If `k` is < 2
            If `n` is < 1
        ValueError
            If both `k` and `names` are specified
        MissingNodeError
            If `names` is specified but one of the names cannot be found

        Examples
        --------
        Alternate the names on two of the tips, 'a', and 'b', and do this 5
        times.

        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b),(c,d));"])
        >>> rev = lambda items: items.reverse()
        >>> shuffler = tree.shuffle(names=['a', 'b'], shuffle_f=rev, n=5)
        >>> for shuffled_tree in shuffler:
        ...     print(shuffled_tree)
        ((b,a),(c,d));
        <BLANKLINE>
        ((a,b),(c,d));
        <BLANKLINE>
        ((b,a),(c,d));
        <BLANKLINE>
        ((a,b),(c,d));
        <BLANKLINE>
        ((b,a),(c,d));
        <BLANKLINE>

        """
        if k is not None and k < 2:
            raise ValueError("k must be None or >= 2")
        if k is not None and names is not None:
            raise ValueError("n and names cannot be specified at the sametime")
        if n < 1:
            raise ValueError("n must be > 0")

        self.assign_ids()

        if names is None:
            all_tips = list(self.tips())

            if n is None:
                n = len(all_tips)

            shuffle_f(all_tips)
            names = [tip.name for tip in all_tips[:k]]

        nodes = [self.find(name) for name in names]

        # Since the names are being shuffled, the association between ID and
        # name is no longer reliable
        self.invalidate_caches()

        counter = 0
        while counter < n:
            shuffle_f(names)
            for node, name in zip(nodes, names):
                node.name = name

            yield self
            counter += 1