File: test_nj.py

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (208 lines) | stat: -rw-r--r-- 8,925 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io
from unittest import TestCase, main

from skbio import DistanceMatrix, TreeNode, nj
from skbio.tree._nj import (
    _compute_q, _compute_collapsed_dm, _lowest_index, _otu_to_new_node,
    _pair_members_to_new_node)


class NjTests(TestCase):

    def setUp(self):
        data1 = [[0,  5,  9,  9,  8],
                 [5,  0, 10, 10,  9],
                 [9, 10,  0,  8,  7],
                 [9, 10,  8,  0,  3],
                 [8,  9,  7,  3,  0]]
        ids1 = list('abcde')
        self.dm1 = DistanceMatrix(data1, ids1)
        # this newick string was confirmed against http://www.trex.uqam.ca/
        # which generated the following (isomorphic) newick string:
        # (d:2.0000,e:1.0000,(c:4.0000,(a:2.0000,b:3.0000):3.0000):2.0000);
        self.expected1_str = ("(d:2.000000, (c:4.000000, (b:3.000000,"
                              " a:2.000000):3.000000):2.000000, e:1.000000);")
        self.expected1_TreeNode = TreeNode.read(
                io.StringIO(self.expected1_str))

        # this example was pulled from the Phylip manual
        # http://evolution.genetics.washington.edu/phylip/doc/neighbor.html
        data2 = [[0.0000, 1.6866, 1.7198, 1.6606, 1.5243, 1.6043, 1.5905],
                 [1.6866, 0.0000, 1.5232, 1.4841, 1.4465, 1.4389, 1.4629],
                 [1.7198, 1.5232, 0.0000, 0.7115, 0.5958, 0.6179, 0.5583],
                 [1.6606, 1.4841, 0.7115, 0.0000, 0.4631, 0.5061, 0.4710],
                 [1.5243, 1.4465, 0.5958, 0.4631, 0.0000, 0.3484, 0.3083],
                 [1.6043, 1.4389, 0.6179, 0.5061, 0.3484, 0.0000, 0.2692],
                 [1.5905, 1.4629, 0.5583, 0.4710, 0.3083, 0.2692, 0.0000]]
        ids2 = ["Bovine", "Mouse", "Gibbon", "Orang", "Gorilla", "Chimp",
                "Human"]
        self.dm2 = DistanceMatrix(data2, ids2)
        self.expected2_str = ("(Mouse:0.76891, (Gibbon:0.35793, (Orang:0.28469"
                              ", (Gorilla:0.15393, (Chimp:0.15167, Human:0.117"
                              "53):0.03982):0.02696):0.04648):0.42027, Bovine:"
                              "0.91769);")
        self.expected2_TreeNode = TreeNode.read(
                io.StringIO(self.expected2_str))

        data3 = [[0, 5, 4, 7, 6, 8],
                 [5, 0, 7, 10, 9, 11],
                 [4, 7, 0, 7, 6, 8],
                 [7, 10, 7, 0, 5, 8],
                 [6, 9, 6, 5, 0, 8],
                 [8, 11, 8, 8, 8, 0]]
        ids3 = map(str, range(6))
        self.dm3 = DistanceMatrix(data3, ids3)
        self.expected3_str = ("((((0:1.000000,1:4.000000):1.000000,2:2.000000"
                              "):1.250000,5:4.750000):0.750000,3:2.750000,4:2."
                              "250000);")
        self.expected3_TreeNode = TreeNode.read(
                io.StringIO(self.expected3_str))

        # this dm can yield negative branch lengths
        data4 = [[0,  5,  9,  9,  800],
                 [5,  0, 10, 10,  9],
                 [9, 10,  0,  8,  7],
                 [9, 10,  8,  0,  3],
                 [800,  9,  7,  3,  0]]
        ids4 = list('abcde')
        self.dm4 = DistanceMatrix(data4, ids4)

    def test_nj_dm1(self):
        self.assertEqual(nj(self.dm1, result_constructor=str),
                         self.expected1_str)
        # what is the correct way to compare TreeNode objects for equality?
        actual_TreeNode = nj(self.dm1)
        self.assertEqual(actual_TreeNode.compare_tip_distances(
            self.expected1_TreeNode), 0.0)

    def test_nj_dm2(self):
        actual_TreeNode = nj(self.dm2)
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.expected2_TreeNode), 0.0)

    def test_nj_dm3(self):
        actual_TreeNode = nj(self.dm3)
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.expected3_TreeNode), 0.0)

    def test_nj_zero_branch_length(self):
        # no nodes have negative branch length when we disallow negative
        # branch length. self is excluded as branch length is None
        tree = nj(self.dm4)
        for n in tree.postorder(include_self=False):
            self.assertTrue(n.length >= 0)
        # only tips associated with the large distance in the input
        # have positive branch lengths when we allow negative branch
        # length
        tree = nj(self.dm4, False)
        self.assertTrue(tree.find('a').length > 0)
        self.assertTrue(tree.find('b').length < 0)
        self.assertTrue(tree.find('c').length < 0)
        self.assertTrue(tree.find('d').length < 0)
        self.assertTrue(tree.find('e').length > 0)

    def test_nj_trivial(self):
        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        dm = DistanceMatrix(data, list('abc'))
        expected_str = "(b:2.000000, a:1.000000, c:1.000000);"
        self.assertEqual(nj(dm, result_constructor=str), expected_str)

    def test_nj_error(self):
        data = [[0, 3],
                [3, 0]]
        dm = DistanceMatrix(data, list('ab'))
        self.assertRaises(ValueError, nj, dm)

    def test_compute_q(self):
        expected_data = [[0, -50, -38, -34, -34],
                         [-50,   0, -38, -34, -34],
                         [-38, -38,   0, -40, -40],
                         [-34, -34, -40,   0, -48],
                         [-34, -34, -40, -48,   0]]
        expected_ids = list('abcde')
        expected = DistanceMatrix(expected_data, expected_ids)
        self.assertEqual(_compute_q(self.dm1), expected)

        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        dm = DistanceMatrix(data, list('abc'))
        # computed this manually
        expected_data = [[0, -8, -8],
                         [-8,  0, -8],
                         [-8, -8,  0]]
        expected = DistanceMatrix(expected_data, list('abc'))
        self.assertEqual(_compute_q(dm), expected)

    def test_compute_collapsed_dm(self):
        expected_data = [[0,  7,  7,  6],
                         [7,  0,  8,  7],
                         [7,  8,  0,  3],
                         [6,  7,  3,  0]]
        expected_ids = ['x', 'c', 'd', 'e']
        expected1 = DistanceMatrix(expected_data, expected_ids)
        self.assertEqual(_compute_collapsed_dm(self.dm1, 'a', 'b', True, 'x'),
                         expected1)

        # computed manually
        expected_data = [[0, 4, 3],
                         [4, 0, 3],
                         [3, 3, 0]]
        expected_ids = ['yy', 'd', 'e']
        expected2 = DistanceMatrix(expected_data, expected_ids)
        self.assertEqual(
            _compute_collapsed_dm(expected1, 'x', 'c', True, 'yy'), expected2)

    def test_lowest_index(self):
        self.assertEqual(_lowest_index(self.dm1), (4, 3))
        self.assertEqual(_lowest_index(_compute_q(self.dm1)), (1, 0))

    def test_otu_to_new_node(self):
        self.assertEqual(_otu_to_new_node(self.dm1, 'a', 'b', 'c', True), 7)
        self.assertEqual(_otu_to_new_node(self.dm1, 'a', 'b', 'd', True), 7)
        self.assertEqual(_otu_to_new_node(self.dm1, 'a', 'b', 'e', True), 6)

    def test_otu_to_new_node_zero_branch_length(self):
        data = [[0, 40, 3],
                [40, 0, 3],
                [3, 3, 0]]
        ids = ['a', 'b', 'c']
        dm = DistanceMatrix(data, ids)
        self.assertEqual(_otu_to_new_node(dm, 'a', 'b', 'c', True), 0)
        self.assertEqual(_otu_to_new_node(dm, 'a', 'b', 'c', False), -17)

    def test_pair_members_to_new_node(self):
        self.assertEqual(_pair_members_to_new_node(self.dm1, 'a', 'b', True),
                         (2, 3))
        self.assertEqual(_pair_members_to_new_node(self.dm1, 'a', 'c', True),
                         (4, 5))
        self.assertEqual(_pair_members_to_new_node(self.dm1, 'd', 'e', True),
                         (2, 1))

    def test_pair_members_to_new_node_zero_branch_length(self):
        # the values in this example don't really make sense
        # (I'm not sure how you end up with these distances between
        # three sequences), but that doesn't really matter for the sake
        # of this test
        data = [[0, 4, 2],
                [4, 0, 38],
                [2, 38, 0]]
        ids = ['a', 'b', 'c']
        dm = DistanceMatrix(data, ids)
        self.assertEqual(_pair_members_to_new_node(dm, 'a', 'b', True), (0, 4))
        # this makes it clear why negative branch lengths don't make sense...
        self.assertEqual(
            _pair_members_to_new_node(dm, 'a', 'b', False), (-16, 20))

if __name__ == "__main__":
    main()