File: ssw.c

package info (click to toggle)
python-skbio 0.5.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 17,492 kB
  • sloc: python: 46,829; ansic: 672; makefile: 184; javascript: 50; sh: 19
file content (862 lines) | stat: -rw-r--r-- 32,010 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/* The MIT License

   Copyright (c) 2012-1015 Boston College.

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   "Software"), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be
   included in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
   ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
   SOFTWARE.    
*/

/* Contact: Mengyao Zhao <zhangmp@bc.edu> */

/*
 *  ssw.c
 *
 *  Created by Mengyao Zhao on 6/22/10.
 *  Copyright 2010 Boston College. All rights reserved.
 *  Version 0.1.4
 *  Last revision by Mengyao Zhao on 12/07/12.
 *
 */

#define SIMDE_ENABLE_NATIVE_ALIASES
#include "simde/x86/sse2.h"
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "ssw.h"

#ifdef __GNUC__
#define LIKELY(x) __builtin_expect((x),1)
#define UNLIKELY(x) __builtin_expect((x),0)
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif

/* Convert the coordinate in the scoring matrix into the coordinate in one line of the band. */
#define set_u(u, w, i, j) { int x=(i)-(w); x=x>0?x:0; (u)=(j)-x+1; }

/* Convert the coordinate in the direction matrix into the coordinate in one line of the band. */
#define set_d(u, w, i, j, p) { int x=(i)-(w); x=x>0?x:0; x=(j)-x; (u)=x*3+p; }

/*! @function
  @abstract  Round an integer to the next closest power-2 integer.
  @param  x  integer to be rounded (in place)
  @discussion x will be modified.
 */
#define kroundup32(x) (--(x), (x)|=(x)>>1, (x)|=(x)>>2, (x)|=(x)>>4, (x)|=(x)>>8, (x)|=(x)>>16, ++(x))

typedef struct {
    uint16_t score;
    int32_t ref;     //0-based position 
    int32_t read;    //alignment ending position on read, 0-based 
} alignment_end;

typedef struct {
    uint32_t* seq;
    int32_t length;
} cigar;

struct _profile{
    __m128i* profile_byte;  // 0: none
    __m128i* profile_word;  // 0: none
    const int8_t* read;
    const int8_t* mat;
    int32_t readLen;
    int32_t n;
    uint8_t bias;
};

/* Generate query profile rearrange query sequence & calculate the weight of match/mismatch. */
__m128i* qP_byte (const int8_t* read_num,
                  const int8_t* mat,
                  const int32_t readLen,
                  const int32_t n,  /* the edge length of the squre matrix mat */
                  uint8_t bias) {
 
    int32_t segLen = (readLen + 15) / 16; /* Split the 128 bit register into 16 pieces. 
                                     Each piece is 8 bit. Split the read into 16 segments. 
                                     Calculat 16 segments in parallel.
                                   */
    __m128i* vProfile = (__m128i*)malloc(n * segLen * sizeof(__m128i));
    int8_t* t = (int8_t*)vProfile;
    int32_t nt, i, j, segNum;
    
    /* Generate query profile rearrange query sequence & calculate the weight of match/mismatch */
    for (nt = 0; LIKELY(nt < n); nt ++) {
        for (i = 0; i < segLen; i ++) {
            j = i; 
            for (segNum = 0; LIKELY(segNum < 16) ; segNum ++) {
                *t++ = j>= readLen ? bias : mat[nt * n + read_num[j]] + bias;
                j += segLen;
            }
        }
    }
    return vProfile;
}

/* Striped Smith-Waterman
   Record the highest score of each reference position. 
   Return the alignment score and ending position of the best alignment, 2nd best alignment, etc. 
   Gap begin and gap extension are different. 
   wight_match > 0, all other weights < 0.
   The returned positions are 0-based.
 */ 
alignment_end* sw_sse2_byte (const int8_t* ref,
                             int8_t ref_dir,    // 0: forward ref; 1: reverse ref
                             int32_t refLen,
                             int32_t readLen, 
                             const uint8_t weight_gapO, /* will be used as - */
                             const uint8_t weight_gapE, /* will be used as - */
                             __m128i* vProfile,
                             uint8_t terminate, /* the best alignment score: used to terminate 
                                                   the matrix calculation when locating the 
                                                   alignment beginning point. If this score 
                                                   is set to 0, it will not be used */
                             uint8_t bias,  /* Shift 0 point to a positive value. */
                             int32_t maskLen) {  
      
#define max16(m, vm) (vm) = _mm_max_epu8((vm), _mm_srli_si128((vm), 8)); \
                      (vm) = _mm_max_epu8((vm), _mm_srli_si128((vm), 4)); \
                      (vm) = _mm_max_epu8((vm), _mm_srli_si128((vm), 2)); \
                      (vm) = _mm_max_epu8((vm), _mm_srli_si128((vm), 1)); \
                      (m) = _mm_extract_epi16((vm), 0)

    uint8_t max = 0;                             /* the max alignment score */
    int32_t end_read = readLen - 1;
    int32_t end_ref = -1; /* 0_based best alignment ending point; Initialized as isn't aligned -1. */
    int32_t segLen = (readLen + 15) / 16; /* number of segment */
    
    /* array to record the largest score of each reference position */
    uint8_t* maxColumn = (uint8_t*) calloc(refLen, 1); 
    
    /* array to record the alignment read ending position of the largest score of each reference position */
    int32_t* end_read_column = (int32_t*) calloc(refLen, sizeof(int32_t));
    
    /* Define 16 byte 0 vector. */
    __m128i vZero = _mm_set1_epi32(0);

    __m128i* pvHStore = (__m128i*) calloc(segLen, sizeof(__m128i));
    __m128i* pvHLoad = (__m128i*) calloc(segLen, sizeof(__m128i));
    __m128i* pvE = (__m128i*) calloc(segLen, sizeof(__m128i));
    __m128i* pvHmax = (__m128i*) calloc(segLen, sizeof(__m128i));

    int32_t i, j;
    /* 16 byte insertion begin vector */
    __m128i vGapO = _mm_set1_epi8(weight_gapO);
    
    /* 16 byte insertion extension vector */
    __m128i vGapE = _mm_set1_epi8(weight_gapE); 
    
    /* 16 byte bias vector */
    __m128i vBias = _mm_set1_epi8(bias);    

    __m128i vMaxScore = vZero; /* Trace the highest score of the whole SW matrix. */
    __m128i vMaxMark = vZero; /* Trace the highest score till the previous column. */   
    __m128i vTemp;
    int32_t edge, begin = 0, end = refLen, step = 1; 
//  int32_t distance = readLen * 2 / 3;
//  int32_t distance = readLen / 2;
//  int32_t distance = readLen;

    /* outer loop to process the reference sequence */
    if (ref_dir == 1) {
        begin = refLen - 1;
        end = -1;
        step = -1;
    }
    for (i = begin; LIKELY(i != end); i += step) {
        int32_t cmp;
        __m128i e = vZero, vF = vZero, vMaxColumn = vZero; /* Initialize F value to 0. 
                               Any errors to vH values will be corrected in the Lazy_F loop. 
                             */
//      max16(maxColumn[i], vMaxColumn);
//      fprintf(stderr, "middle[%d]: %d\n", i, maxColumn[i]);

        __m128i vH = pvHStore[segLen - 1];
        vH = _mm_slli_si128 (vH, 1); /* Shift the 128-bit value in vH left by 1 byte. */
        __m128i* vP = vProfile + ref[i] * segLen; /* Right part of the vProfile */

        /* Swap the 2 H buffers. */
        __m128i* pv = pvHLoad;
        pvHLoad = pvHStore;
        pvHStore = pv;
        
        /* inner loop to process the query sequence */
        for (j = 0; LIKELY(j < segLen); ++j) {
            vH = _mm_adds_epu8(vH, _mm_load_si128(vP + j));
            vH = _mm_subs_epu8(vH, vBias); /* vH will be always > 0 */
    //  max16(maxColumn[i], vH);
    //  fprintf(stderr, "H[%d]: %d\n", i, maxColumn[i]);
//  int8_t* t;
//  int32_t ti;
//for (t = (int8_t*)&vH, ti = 0; ti < 16; ++ti) fprintf(stderr, "%d\t", *t++);

            /* Get max from vH, vE and vF. */
            e = _mm_load_si128(pvE + j);
            vH = _mm_max_epu8(vH, e);
            vH = _mm_max_epu8(vH, vF);
            vMaxColumn = _mm_max_epu8(vMaxColumn, vH);
            
    //  max16(maxColumn[i], vMaxColumn);
    //  fprintf(stderr, "middle[%d]: %d\n", i, maxColumn[i]);
//  for (t = (int8_t*)&vMaxColumn, ti = 0; ti < 16; ++ti) fprintf(stderr, "%d\t", *t++);

            /* Save vH values. */
            _mm_store_si128(pvHStore + j, vH);

            /* Update vE value. */
            vH = _mm_subs_epu8(vH, vGapO); /* saturation arithmetic, result >= 0 */
            e = _mm_subs_epu8(e, vGapE);
            e = _mm_max_epu8(e, vH);
            _mm_store_si128(pvE + j, e);
            
            /* Update vF value. */
            vF = _mm_subs_epu8(vF, vGapE);
            vF = _mm_max_epu8(vF, vH);
            
            /* Load the next vH. */
            vH = _mm_load_si128(pvHLoad + j);
        }

        /* Lazy_F loop: has been revised to disallow adjecent insertion and then deletion, so don't update E(i, j), learn from SWPS3 */
        /* reset pointers to the start of the saved data */
        j = 0;
        vH = _mm_load_si128 (pvHStore + j);

        /*  the computed vF value is for the given column.  since */
        /*  we are at the end, we need to shift the vF value over */
        /*  to the next column. */
        vF = _mm_slli_si128 (vF, 1);
        vTemp = _mm_subs_epu8 (vH, vGapO);
        vTemp = _mm_subs_epu8 (vF, vTemp);
        vTemp = _mm_cmpeq_epi8 (vTemp, vZero);
        cmp  = _mm_movemask_epi8 (vTemp);

        while (cmp != 0xffff) 
        {
            vH = _mm_max_epu8 (vH, vF);
            vMaxColumn = _mm_max_epu8(vMaxColumn, vH);
            _mm_store_si128 (pvHStore + j, vH);
            vF = _mm_subs_epu8 (vF, vGapE);
            j++;
            if (j >= segLen)
            {
                j = 0;
                vF = _mm_slli_si128 (vF, 1);
            }
            vH = _mm_load_si128 (pvHStore + j);

            vTemp = _mm_subs_epu8 (vH, vGapO);
            vTemp = _mm_subs_epu8 (vF, vTemp);
            vTemp = _mm_cmpeq_epi8 (vTemp, vZero);
            cmp  = _mm_movemask_epi8 (vTemp);
        }

        vMaxScore = _mm_max_epu8(vMaxScore, vMaxColumn);
        vTemp = _mm_cmpeq_epi8(vMaxMark, vMaxScore);
        cmp = _mm_movemask_epi8(vTemp);
        if (cmp != 0xffff) {
            uint8_t temp; 
            vMaxMark = vMaxScore;
            max16(temp, vMaxScore);
            vMaxScore = vMaxMark;
            
            if (LIKELY(temp > max)) {
                max = temp;
                if (max + bias >= 255) break;   //overflow
                end_ref = i;
            
                /* Store the column with the highest alignment score in order to trace the alignment ending position on read. */
                for (j = 0; LIKELY(j < segLen); ++j) pvHmax[j] = pvHStore[j];
            }
        }

        /* Record the max score of current column. */   
        max16(maxColumn[i], vMaxColumn);
//      fprintf(stderr, "maxColumn[%d]: %d\n", i, maxColumn[i]);
        if (maxColumn[i] == terminate) break;
    }
    
    /* Trace the alignment ending position on read. */
    uint8_t *t = (uint8_t*)pvHmax;
    int32_t column_len = segLen * 16;
    for (i = 0; LIKELY(i < column_len); ++i, ++t) {
        int32_t temp;
        if (*t == max) {
            temp = i / 16 + i % 16 * segLen;
            if (temp < end_read) end_read = temp;
        }
    }

    free(pvHmax);
    free(pvE);
    free(pvHLoad);
    free(pvHStore);     

    /* Find the most possible 2nd best alignment. */
    alignment_end* bests = (alignment_end*) calloc(2, sizeof(alignment_end));
    bests[0].score = max + bias >= 255 ? 255 : max;
    bests[0].ref = end_ref;
    bests[0].read = end_read;
    
    bests[1].score = 0;
    bests[1].ref = 0;
    bests[1].read = 0;

    edge = (end_ref - maskLen) > 0 ? (end_ref - maskLen) : 0;
    for (i = 0; i < edge; i ++) {
//          fprintf (stderr, "maxColumn[%d]: %d\n", i, maxColumn[i]); 
        if (maxColumn[i] > bests[1].score) {
            bests[1].score = maxColumn[i];
            bests[1].ref = i;
        }
    }
    edge = (end_ref + maskLen) > refLen ? refLen : (end_ref + maskLen);
    for (i = edge + 1; i < refLen; i ++) {
//          fprintf (stderr, "refLen: %d\tmaxColumn[%d]: %d\n", refLen, i, maxColumn[i]); 
        if (maxColumn[i] > bests[1].score) {
            bests[1].score = maxColumn[i];
            bests[1].ref = i;
        }
    }
    
    free(maxColumn);
    free(end_read_column);
    return bests;
}

__m128i* qP_word (const int8_t* read_num,
                  const int8_t* mat,
                  const int32_t readLen,
                  const int32_t n) { 
                    
    int32_t segLen = (readLen + 7) / 8; 
    __m128i* vProfile = (__m128i*)malloc(n * segLen * sizeof(__m128i));
    int16_t* t = (int16_t*)vProfile;
    int32_t nt, i, j;
    int32_t segNum;
    
    /* Generate query profile rearrange query sequence & calculate the weight of match/mismatch */
    for (nt = 0; LIKELY(nt < n); nt ++) {
        for (i = 0; i < segLen; i ++) {
            j = i; 
            for (segNum = 0; LIKELY(segNum < 8) ; segNum ++) {
                *t++ = j>= readLen ? 0 : mat[nt * n + read_num[j]];
                j += segLen;
            }
        }
    }
    return vProfile;
}

alignment_end* sw_sse2_word (const int8_t* ref, 
                             int8_t ref_dir,    // 0: forward ref; 1: reverse ref
                             int32_t refLen,
                             int32_t readLen, 
                             const uint8_t weight_gapO, /* will be used as - */
                             const uint8_t weight_gapE, /* will be used as - */
                             __m128i* vProfile,
                             uint16_t terminate, 
                             int32_t maskLen) { 

#define max8(m, vm) (vm) = _mm_max_epi16((vm), _mm_srli_si128((vm), 8)); \
                    (vm) = _mm_max_epi16((vm), _mm_srli_si128((vm), 4)); \
                    (vm) = _mm_max_epi16((vm), _mm_srli_si128((vm), 2)); \
                    (m) = _mm_extract_epi16((vm), 0)
    
    uint16_t max = 0;                            /* the max alignment score */
    int32_t end_read = readLen - 1;
    int32_t end_ref = 0; /* 1_based best alignment ending point; Initialized as isn't aligned - 0. */
    int32_t segLen = (readLen + 7) / 8; /* number of segment */
    
    /* array to record the largest score of each reference position */
    uint16_t* maxColumn = (uint16_t*) calloc(refLen, 2); 
    
    /* array to record the alignment read ending position of the largest score of each reference position */
    int32_t* end_read_column = (int32_t*) calloc(refLen, sizeof(int32_t));
    
    /* Define 16 byte 0 vector. */
    __m128i vZero = _mm_set1_epi32(0);

    __m128i* pvHStore = (__m128i*) calloc(segLen, sizeof(__m128i));
    __m128i* pvHLoad = (__m128i*) calloc(segLen, sizeof(__m128i));
    __m128i* pvE = (__m128i*) calloc(segLen, sizeof(__m128i));
    __m128i* pvHmax = (__m128i*) calloc(segLen, sizeof(__m128i));

    int32_t i, j, k;
    /* 16 byte insertion begin vector */
    __m128i vGapO = _mm_set1_epi16(weight_gapO);
    
    /* 16 byte insertion extension vector */
    __m128i vGapE = _mm_set1_epi16(weight_gapE);    

    /* 16 byte bias vector */
    __m128i vMaxScore = vZero; /* Trace the highest score of the whole SW matrix. */
    __m128i vMaxMark = vZero; /* Trace the highest score till the previous column. */   
    __m128i vTemp;
    int32_t edge, begin = 0, end = refLen, step = 1;

    /* outer loop to process the reference sequence */
    if (ref_dir == 1) {
        begin = refLen - 1;
        end = -1;
        step = -1;
    }
    for (i = begin; LIKELY(i != end); i += step) {
        int32_t cmp;
        __m128i e = vZero, vF = vZero; /* Initialize F value to 0. 
                               Any errors to vH values will be corrected in the Lazy_F loop. 
                             */
        __m128i vH = pvHStore[segLen - 1];
        vH = _mm_slli_si128 (vH, 2); /* Shift the 128-bit value in vH left by 2 byte. */
        
        /* Swap the 2 H buffers. */
        __m128i* pv = pvHLoad;
        
        __m128i vMaxColumn = vZero; /* vMaxColumn is used to record the max values of column i. */
        
        __m128i* vP = vProfile + ref[i] * segLen; /* Right part of the vProfile */
        pvHLoad = pvHStore;
        pvHStore = pv;
        
        /* inner loop to process the query sequence */
        for (j = 0; LIKELY(j < segLen); j ++) {
            vH = _mm_adds_epi16(vH, _mm_load_si128(vP + j));

            /* Get max from vH, vE and vF. */
            e = _mm_load_si128(pvE + j);
            vH = _mm_max_epi16(vH, e);
            vH = _mm_max_epi16(vH, vF);
            vMaxColumn = _mm_max_epi16(vMaxColumn, vH);
            
            /* Save vH values. */
            _mm_store_si128(pvHStore + j, vH);

            /* Update vE value. */
            vH = _mm_subs_epu16(vH, vGapO); /* saturation arithmetic, result >= 0 */
            e = _mm_subs_epu16(e, vGapE);
            e = _mm_max_epi16(e, vH);
            _mm_store_si128(pvE + j, e);

            /* Update vF value. */
            vF = _mm_subs_epu16(vF, vGapE);
            vF = _mm_max_epi16(vF, vH);
            
            /* Load the next vH. */
            vH = _mm_load_si128(pvHLoad + j);
        }

        /* Lazy_F loop: has been revised to disallow adjecent insertion and then deletion, so don't update E(i, j), learn from SWPS3 */
        for (k = 0; LIKELY(k < 8); ++k) {
            vF = _mm_slli_si128 (vF, 2);
            for (j = 0; LIKELY(j < segLen); ++j) {
                vH = _mm_load_si128(pvHStore + j);
                vH = _mm_max_epi16(vH, vF);
                _mm_store_si128(pvHStore + j, vH);
                vH = _mm_subs_epu16(vH, vGapO);
                vF = _mm_subs_epu16(vF, vGapE);
                if (UNLIKELY(! _mm_movemask_epi8(_mm_cmpgt_epi16(vF, vH)))) goto end;
            }
        }

end:    
        vMaxScore = _mm_max_epi16(vMaxScore, vMaxColumn);   
        vTemp = _mm_cmpeq_epi16(vMaxMark, vMaxScore);
        cmp = _mm_movemask_epi8(vTemp);
        if (cmp != 0xffff) {
            uint16_t temp; 
            vMaxMark = vMaxScore;
            max8(temp, vMaxScore);
            vMaxScore = vMaxMark;
            
            if (LIKELY(temp > max)) {
                max = temp;
                end_ref = i;
                for (j = 0; LIKELY(j < segLen); ++j) pvHmax[j] = pvHStore[j];
            }
        }
        
        /* Record the max score of current column. */   
        max8(maxColumn[i], vMaxColumn);
        if (maxColumn[i] == terminate) break;
    }   

    /* Trace the alignment ending position on read. */
    uint16_t *t = (uint16_t*)pvHmax;
    int32_t column_len = segLen * 8;
    for (i = 0; LIKELY(i < column_len); ++i, ++t) {
        int32_t temp;
        if (*t == max) {
            temp = i / 8 + i % 8 * segLen;
            if (temp < end_read) end_read = temp;
        }
    }

    free(pvHmax);
    free(pvE);
    free(pvHLoad);
    free(pvHStore); 
    
    /* Find the most possible 2nd best alignment. */
    alignment_end* bests = (alignment_end*) calloc(2, sizeof(alignment_end));
    bests[0].score = max;
    bests[0].ref = end_ref;
    bests[0].read = end_read;
    
    bests[1].score = 0;
    bests[1].ref = 0;
    bests[1].read = 0;

    edge = (end_ref - maskLen) > 0 ? (end_ref - maskLen) : 0;
    for (i = 0; i < edge; i ++) {
        if (maxColumn[i] > bests[1].score) { 
            bests[1].score = maxColumn[i];
            bests[1].ref = i;
        }
    }
    edge = (end_ref + maskLen) > refLen ? refLen : (end_ref + maskLen);
    for (i = edge; i < refLen; i ++) {
        if (maxColumn[i] > bests[1].score) {
            bests[1].score = maxColumn[i];
            bests[1].ref = i;
        }
    }
    
    free(maxColumn);
    free(end_read_column);
    return bests;
}

cigar* banded_sw (const int8_t* ref,
                 const int8_t* read, 
                 int32_t refLen, 
                 int32_t readLen,
                 int32_t score,
                 const uint32_t weight_gapO,  /* will be used as - */
                 const uint32_t weight_gapE,  /* will be used as - */
                 int32_t band_width,
                 const int8_t* mat, /* pointer to the weight matrix */
                 int32_t n) {   

    uint32_t *c = (uint32_t*)malloc(16 * sizeof(uint32_t)), *c1;
    int32_t i, j, e, f, temp1, temp2, s = 16, s1 = 8, s2 = 1024, l, max = 0;
    int32_t width, width_d, *h_b, *e_b, *h_c;
    int8_t *direction, *direction_line;
    cigar* result = (cigar*)malloc(sizeof(cigar));
    h_b = (int32_t*)malloc(s1 * sizeof(int32_t)); 
    e_b = (int32_t*)malloc(s1 * sizeof(int32_t)); 
    h_c = (int32_t*)malloc(s1 * sizeof(int32_t)); 
    direction = (int8_t*)malloc(s2 * sizeof(int8_t));

    do {
        width = band_width * 2 + 3, width_d = band_width * 2 + 1;
        while (width >= s1) {
            ++s1;
            kroundup32(s1);
            h_b = (int32_t*)realloc(h_b, s1 * sizeof(int32_t)); 
            e_b = (int32_t*)realloc(e_b, s1 * sizeof(int32_t)); 
            h_c = (int32_t*)realloc(h_c, s1 * sizeof(int32_t)); 
        }
        while (width_d * readLen * 3 >= s2) {
            ++s2;
            kroundup32(s2);
            if (s2 < 0) {
                fprintf(stderr, "Alignment score and position are not consensus.\n");
                exit(1);
            }
            direction = (int8_t*)realloc(direction, s2 * sizeof(int8_t)); 
        }
        direction_line = direction;
        for (j = 1; LIKELY(j < width - 1); j ++) h_b[j] = 0;
        for (i = 0; LIKELY(i < readLen); i ++) {
            int32_t beg = 0, end = refLen - 1, u = 0, edge;
            j = i - band_width; beg = beg > j ? beg : j; // band start
            j = i + band_width; end = end < j ? end : j; // band end
            edge = end + 1 < width - 1 ? end + 1 : width - 1;
            f = h_b[0] = e_b[0] = h_b[edge] = e_b[edge] = h_c[0] = 0;
            direction_line = direction + width_d * i * 3;

            for (j = beg; LIKELY(j <= end); j ++) {
                int32_t b, e1, f1, d, de, df, dh;
                set_u(u, band_width, i, j); set_u(e, band_width, i - 1, j); 
                set_u(b, band_width, i, j - 1); set_u(d, band_width, i - 1, j - 1);
                set_d(de, band_width, i, j, 0);
                set_d(df, band_width, i, j, 1);
                set_d(dh, band_width, i, j, 2);

                temp1 = i == 0 ? -weight_gapO : h_b[e] - weight_gapO;
                temp2 = i == 0 ? -weight_gapE : e_b[e] - weight_gapE;
                e_b[u] = temp1 > temp2 ? temp1 : temp2;
                direction_line[de] = temp1 > temp2 ? 3 : 2;
        
                temp1 = h_c[b] - weight_gapO;
                temp2 = f - weight_gapE;
                f = temp1 > temp2 ? temp1 : temp2;
                direction_line[df] = temp1 > temp2 ? 5 : 4;
                
                e1 = e_b[u] > 0 ? e_b[u] : 0;
                f1 = f > 0 ? f : 0;
                temp1 = e1 > f1 ? e1 : f1;
                temp2 = h_b[d] + mat[ref[j] * n + read[i]];
                h_c[u] = temp1 > temp2 ? temp1 : temp2;
        
                if (h_c[u] > max) max = h_c[u];
        
                if (temp1 <= temp2) direction_line[dh] = 1;
                else direction_line[dh] = e1 > f1 ? direction_line[de] : direction_line[df];
            }
            for (j = 1; j <= u; j ++) h_b[j] = h_c[j];
        }
        band_width *= 2;
    } while (LIKELY(max < score));
    band_width /= 2;

    // trace back
    i = readLen - 1;
    j = refLen - 1;
    e = 0;  // Count the number of M, D or I.
    l = 0;  // record length of current cigar
    f = max = 0; // M
    temp2 = 2;  // h
    while (LIKELY(i > 0)) {
        set_d(temp1, band_width, i, j, temp2);
        switch (direction_line[temp1]) {
            case 1: 
                --i;
                --j;
                temp2 = 2;
                direction_line -= width_d * 3;
                f = 0;  // M
                break;
            case 2:
                --i;
                temp2 = 0;  // e
                direction_line -= width_d * 3;
                f = 1;  // I
                break;      
            case 3:
                --i;
                temp2 = 2;
                direction_line -= width_d * 3;
                f = 1;  // I
                break;
            case 4:
                --j;
                temp2 = 1;
                f = 2;  // D
                break;
            case 5:
                --j;
                temp2 = 2;
                f = 2;  // D
                break;
            default: 
                fprintf(stderr, "Trace back error: %d.\n", direction_line[temp1 - 1]);
                return 0;
        }
        if (f == max) ++e;
        else {
            ++l;
            while (l >= s) {
                ++s;
                kroundup32(s);
                c = (uint32_t*)realloc(c, s * sizeof(uint32_t));
            }
            c[l - 1] = e<<4|max;
            max = f;
            e = 1;
        }
    }
    if (f == 0) {
        ++l;
        while (l >= s) {
            ++s;
            kroundup32(s);
            c = (uint32_t*)realloc(c, s * sizeof(uint32_t));
        }
        c[l - 1] = (e+1)<<4;
    }else {
        l += 2;
        while (l >= s) {
            ++s;
            kroundup32(s);
            c = (uint32_t*)realloc(c, s * sizeof(uint32_t));
        }
        c[l - 2] = e<<4|f;
        c[l - 1] = 16;  // 1M
    }

    // reverse cigar
    c1 = (uint32_t*)malloc(l * sizeof(uint32_t));
    s = 0;
    e = l - 1;
    while (LIKELY(s <= e)) {            
        c1[s] = c[e];       
        c1[e] = c[s];       
        ++ s;                   
        -- e;                       
    }                               
    result->seq = c1;
    result->length = l;

    free(direction);
    free(h_c);
    free(e_b);
    free(h_b);
    free(c);
    return result;
}

int8_t* seq_reverse(const int8_t* seq, int32_t end) /* end is 0-based alignment ending position */  
{                                   
    int8_t* reverse = (int8_t*)calloc(end + 1, sizeof(int8_t)); 
    int32_t start = 0;
    while (LIKELY(start <= end)) {          
        reverse[start] = seq[end];      
        reverse[end] = seq[start];      
        ++ start;                   
        -- end;                     
    }                               
    return reverse;                 
}
        
s_profile* ssw_init (const int8_t* read, const int32_t readLen, const int8_t* mat, const int32_t n, const int8_t score_size) {
    s_profile* p = (s_profile*)calloc(1, sizeof(struct _profile));
    p->profile_byte = 0;
    p->profile_word = 0;
    p->bias = 0;
    
    if (score_size == 0 || score_size == 2) {
        /* Find the bias to use in the substitution matrix */
        int32_t bias = 0, i;
        for (i = 0; i < n*n; i++) if (mat[i] < bias) bias = mat[i];
        bias = abs(bias);

        p->bias = bias;
        p->profile_byte = qP_byte (read, mat, readLen, n, bias);
    }
    if (score_size == 1 || score_size == 2) p->profile_word = qP_word (read, mat, readLen, n);
    p->read = read;
    p->mat = mat;
    p->readLen = readLen;
    p->n = n;
    return p;
}

void init_destroy (s_profile* p) {
    free(p->profile_byte);
    free(p->profile_word);
    free(p);
}

s_align* ssw_align (const s_profile* prof, 
                    const int8_t* ref, 
                    int32_t refLen, 
                    const uint8_t weight_gapO, 
                    const uint8_t weight_gapE, 
                    const uint8_t flag, //  (from high to low) bit 5: return the best alignment beginning position; 6: if (ref_end1 - ref_begin1 <= filterd) && (read_end1 - read_begin1 <= filterd), return cigar; 7: if max score >= filters, return cigar; 8: always return cigar; if 6 & 7 are both setted, only return cigar when both filter fulfilled
                    const uint16_t filters,
                    const int32_t filterd,
                    const int32_t maskLen) {

    alignment_end* bests = 0, *bests_reverse = 0;
    __m128i* vP = 0;
    int32_t word = 0, band_width = 0, readLen = prof->readLen;
    int8_t* read_reverse = 0;
    cigar* path;
    s_align* r = (s_align*)calloc(1, sizeof(s_align));
    r->ref_begin1 = -1;
    r->read_begin1 = -1;
    r->cigar = 0;
    r->cigarLen = 0;
    if (maskLen < 15) {
        fprintf(stderr, "When maskLen < 15, the function ssw_align doesn't return 2nd best alignment information.\n");
    }

    // Find the alignment scores and ending positions
    if (prof->profile_byte) {
        bests = sw_sse2_byte(ref, 0, refLen, readLen, weight_gapO, weight_gapE, prof->profile_byte, -1, prof->bias, maskLen);
        if (prof->profile_word && bests[0].score == 255) {
            free(bests);
            bests = sw_sse2_word(ref, 0, refLen, readLen, weight_gapO, weight_gapE, prof->profile_word, -1, maskLen);
            word = 1;
        } else if (bests[0].score == 255) {
            fprintf(stderr, "Please set 2 to the score_size parameter of the function ssw_init, otherwise the alignment results will be incorrect.\n");
            return 0;
        }
    }else if (prof->profile_word) {
        bests = sw_sse2_word(ref, 0, refLen, readLen, weight_gapO, weight_gapE, prof->profile_word, -1, maskLen);
        word = 1;
    }else {
        fprintf(stderr, "Please call the function ssw_init before ssw_align.\n");
        return 0;
    }
    r->score1 = bests[0].score;
    r->ref_end1 = bests[0].ref;
    r->read_end1 = bests[0].read;
    if (maskLen >= 15) {
        r->score2 = bests[1].score;
        r->ref_end2 = bests[1].ref;
    } else {
        r->score2 = 0;
        r->ref_end2 = -1;
    }
    free(bests);
    if (flag == 0 || (flag == 2 && r->score1 < filters)) goto end;

    // Find the beginning position of the best alignment.
    read_reverse = seq_reverse(prof->read, r->read_end1);
    if (word == 0) {
        vP = qP_byte(read_reverse, prof->mat, r->read_end1 + 1, prof->n, prof->bias);
        bests_reverse = sw_sse2_byte(ref, 1, r->ref_end1 + 1, r->read_end1 + 1, weight_gapO, weight_gapE, vP, r->score1, prof->bias, maskLen);
    } else {
        vP = qP_word(read_reverse, prof->mat, r->read_end1 + 1, prof->n);
        bests_reverse = sw_sse2_word(ref, 1, r->ref_end1 + 1, r->read_end1 + 1, weight_gapO, weight_gapE, vP, r->score1, maskLen);
    }
    free(vP);
    free(read_reverse);
    r->ref_begin1 = bests_reverse[0].ref;
    r->read_begin1 = r->read_end1 - bests_reverse[0].read;
    free(bests_reverse);
    if ((7&flag) == 0 || ((2&flag) != 0 && r->score1 < filters) || ((4&flag) != 0 && (r->ref_end1 - r->ref_begin1 > filterd || r->read_end1 - r->read_begin1 > filterd))) goto end;

    // Generate cigar.
    refLen = r->ref_end1 - r->ref_begin1 + 1;
    readLen = r->read_end1 - r->read_begin1 + 1;
    band_width = abs(refLen - readLen) + 1;
    path = banded_sw(ref + r->ref_begin1, prof->read + r->read_begin1, refLen, readLen, r->score1, weight_gapO, weight_gapE, band_width, prof->mat, prof->n);
    if (path == 0) r = 0;
    else {
        r->cigar = path->seq;
        r->cigarLen = path->length;
        free(path);
    }
    
end: 
    return r;
}

void align_destroy (s_align* a) {
    free(a->cigar);
    free(a);
}