1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import numpy as np
from ._base import osd
from skbio.diversity._util import _validate_counts_vector
from skbio.util._decorator import experimental
@experimental(as_of="0.4.0")
def chao1(counts, bias_corrected=True):
r"""Calculate chao1 richness estimator.
Uses the bias-corrected version unless `bias_corrected` is ``False`` *and*
there are both singletons and doubletons.
Parameters
----------
counts : 1-D array_like, int
Vector of counts.
bias_corrected : bool, optional
Indicates whether or not to use the bias-corrected version of the
equation. If ``False`` *and* there are both singletons and doubletons,
the uncorrected version will be used. The biased-corrected version will
be used otherwise.
Returns
-------
double
Computed chao1 richness estimator.
See Also
--------
chao1_ci
Notes
-----
The uncorrected version is based on Equation 6 in [1]_:
.. math::
chao1=S_{obs}+\frac{F_1^2}{2F_2}
where :math:`F_1` and :math:`F_2` are the count of singletons and
doubletons, respectively.
The bias-corrected version is defined as
.. math::
chao1=S_{obs}+\frac{F_1(F_1-1)}{2(F_2+1)}
References
----------
.. [1] Chao, A. 1984. Non-parametric estimation of the number of classes in
a population. Scandinavian Journal of Statistics 11, 265-270.
"""
counts = _validate_counts_vector(counts)
o, s, d = osd(counts)
if not bias_corrected and s and d:
return o + s ** 2 / (d * 2)
else:
return o + s * (s - 1) / (2 * (d + 1))
@experimental(as_of="0.4.0")
def chao1_ci(counts, bias_corrected=True, zscore=1.96):
"""Calculate chao1 confidence interval.
Parameters
----------
counts : 1-D array_like, int
Vector of counts.
bias_corrected : bool, optional
Indicates whether or not to use the bias-corrected version of the
equation. If ``False`` *and* there are both singletons and doubletons,
the uncorrected version will be used. The biased-corrected version will
be used otherwise.
zscore : scalar, optional
Score to use for confidence. Default of 1.96 is for a 95% confidence
interval.
Returns
-------
tuple
chao1 confidence interval as ``(lower_bound, upper_bound)``.
See Also
--------
chao1
Notes
-----
The implementation here is based on the equations in the EstimateS manual
[1]_. Different equations are employed to calculate the chao1 variance and
confidence interval depending on `bias_corrected` and the presence/absence
of singletons and/or doubletons.
Specifically, the following EstimateS equations are used:
1. No singletons, Equation 14.
2. Singletons but no doubletons, Equations 7, 13.
3. Singletons and doubletons, ``bias_corrected=True``, Equations 6, 13.
4. Singletons and doubletons, ``bias_corrected=False``, Equations 5, 13.
References
----------
.. [1] http://viceroy.eeb.uconn.edu/estimates/
"""
counts = _validate_counts_vector(counts)
o, s, d = osd(counts)
if s:
chao = chao1(counts, bias_corrected)
chaovar = _chao1_var(counts, bias_corrected)
return _chao_confidence_with_singletons(chao, o, chaovar, zscore)
else:
n = counts.sum()
return _chao_confidence_no_singletons(n, o, zscore)
def _chao1_var(counts, bias_corrected=True):
"""Calculates chao1 variance using decision rules in EstimateS."""
o, s, d = osd(counts)
if not d:
c = chao1(counts, bias_corrected)
return _chao1_var_no_doubletons(s, c)
if not s:
n = counts.sum()
return _chao1_var_no_singletons(n, o)
if bias_corrected:
return _chao1_var_bias_corrected(s, d)
else:
return _chao1_var_uncorrected(s, d)
def _chao1_var_uncorrected(singles, doubles):
"""Calculates chao1, uncorrected.
From EstimateS manual, equation 5.
"""
r = singles / doubles
return doubles * (.5 * r ** 2 + r ** 3 + .24 * r ** 4)
def _chao1_var_bias_corrected(s, d):
"""Calculates chao1 variance, bias-corrected.
`s` is the number of singletons and `d` is the number of doubletons.
From EstimateS manual, equation 6.
"""
return (s * (s - 1) / (2 * (d + 1)) + (s * (2 * s - 1) ** 2) /
(4 * (d + 1) ** 2) + (s ** 2 * d * (s - 1) ** 2) /
(4 * (d + 1) ** 4))
def _chao1_var_no_doubletons(s, chao1):
"""Calculates chao1 variance in absence of doubletons.
From EstimateS manual, equation 7.
`s` is the number of singletons, and `chao1` is the estimate of the mean of
Chao1 from the same dataset.
"""
return s * (s - 1) / 2 + s * (2 * s - 1) ** 2 / 4 - s ** 4 / (4 * chao1)
def _chao1_var_no_singletons(n, o):
"""Calculates chao1 variance in absence of singletons.
`n` is the number of individuals and `o` is the number of observed OTUs.
From EstimateS manual, equation 8.
"""
return o * np.exp(-n / o) * (1 - np.exp(-n / o))
def _chao_confidence_with_singletons(chao, observed, var_chao, zscore=1.96):
"""Calculates confidence bounds for chao1 or chao2.
Uses Eq. 13 of EstimateS manual.
`zscore` is the score to use for confidence. The default of 1.96 is for 95%
confidence.
"""
T = chao - observed
# if no diff betweeh chao and observed, CI is just point estimate of
# observed
if T == 0:
return observed, observed
K = np.exp(abs(zscore) * np.sqrt(np.log(1 + (var_chao / T ** 2))))
return observed + T / K, observed + T * K
def _chao_confidence_no_singletons(n, s, zscore=1.96):
"""Calculates confidence bounds for chao1/chao2 in absence of singletons.
Uses Eq. 14 of EstimateS manual.
`n` is the number of individuals and `s` is the number of OTUs.
"""
P = np.exp(-n / s)
return (max(s, s / (1 - P) - zscore * np.sqrt((s * P / (1 - P)))),
s / (1 - P) + zscore * np.sqrt(s * P / (1 - P)))
|