1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
|
"""
EMBL format (:mod:`skbio.io.format.embl`)
=========================================
.. currentmodule:: skbio.io.format.embl
EMBL format stores sequence and its annotation together. The start of the
annotation section is marked by a line beginning with the word "ID". The start
of sequence section is marked by a line beginning with the word "SQ".
The "//" (terminator) line also contains no data or comments and designates
the end of an entry. More information on EMBL file format can be found
here [1]_.
The EMBL file may end with .embl or .txt extension. An example of EMBL file
can be seen here [2]_.
Feature Level Products
^^^^^^^^^^^^^^^^^^^^^^
As described in [3]_ *"Feature-level products contain nucleotide sequence
and related annotations derived from submitted ENA assembled and annotated
sequences. Data are distributed in flatfile format, similar to that of parent
ENA records, with each flatfile representing a single feature"*.
While only the sequence of the feature is included in such entries, features
are derived from the parent entry, and can't be applied as interval metadata.
For such reason, interval metatdata are ignored from Feature-level products,
as they will be ignored by subsetting a generic Sequence object.
Format Support
--------------
**Has Sniffer: Yes**
**NOTE: No protein support at the moment**
Current protein support development is tracked in issue-1499 [4]_
+------+------+---------------------------------------------------------------+
|Reader|Writer| Object Class |
+======+======+===============================================================+
|Yes |Yes |:mod:`skbio.sequence.Sequence` |
+------+------+---------------------------------------------------------------+
|Yes |Yes |:mod:`skbio.sequence.DNA` |
+------+------+---------------------------------------------------------------+
|Yes |Yes |:mod:`skbio.sequence.RNA` |
+------+------+---------------------------------------------------------------+
|No |No |:mod:`skbio.sequence.Protein` |
+------+------+---------------------------------------------------------------+
|Yes |Yes | generator of :mod:`skbio.sequence.Sequence` objects |
+------+------+---------------------------------------------------------------+
Format Specification
--------------------
**State: Experimental as of 0.5.1-dev.**
Sections before ``FH (Feature Header)``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All the sections before ``FH (Feature Header)`` will be read into the attribute
of ``metadata``. The header and its content of a section are stored as
key-value pairs in ``metadata``. For the ``RN (Reference Number)``
section, its value is stored as a list, as there are often multiple
reference sections in one EMBL record.
``FT`` section
^^^^^^^^^^^^^^
See :ref:`Genbank FEATURES section<genbank_feature_section>`
``SQ`` section
^^^^^^^^^^^^^^
The sequence in the ``SQ`` section is always in lowercase for
the EMBL files downloaded from ENA. For the RNA molecules, ``t``
(thymine), instead of ``u`` (uracil) is used in the sequence. All
EMBL writers follow these conventions while writing EMBL files.
Examples
--------
Reading EMBL Files
^^^^^^^^^^^^^^^^^^
Suppose we have the following EMBL file example:
>>> embl_str = '''
... ID X56734; SV 1; linear; mRNA; STD; PLN; 1859 BP.
... XX
... AC X56734; S46826;
... XX
... DT 12-SEP-1991 (Rel. 29, Created)
... DT 25-NOV-2005 (Rel. 85, Last updated, Version 11)
... XX
... DE Trifolium repens mRNA for non-cyanogenic beta-glucosidase
... XX
... KW beta-glucosidase.
... XX
... OS Trifolium repens (white clover)
... OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
... OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
... OC Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae;
... OC Trifolieae; Trifolium.
... XX
... RN [5]
... RP 1-1859
... RX DOI; 10.1007/BF00039495.
... RX PUBMED; 1907511.
... RA Oxtoby E., Dunn M.A., Pancoro A., Hughes M.A.;
... RT "Nucleotide and derived amino acid sequence of the cyanogenic
... RT beta-glucosidase (linamarase) from white clover
... RT (Trifolium repens L.)";
... RL Plant Mol. Biol. 17(2):209-219(1991).
... XX
... RN [6]
... RP 1-1859
... RA Hughes M.A.;
... RT ;
... RL Submitted (19-NOV-1990) to the INSDC.
... RL Hughes M.A., University of Newcastle Upon Tyne, Medical School,
... RL Newcastle
... RL Upon Tyne, NE2 4HH, UK
... XX
... DR MD5; 1e51ca3a5450c43524b9185c236cc5cc.
... XX
... FH Key Location/Qualifiers
... FH
... FT source 1..1859
... FT /organism="Trifolium repens"
... FT /mol_type="mRNA"
... FT /clone_lib="lambda gt10"
... FT /clone="TRE361"
... FT /tissue_type="leaves"
... FT /db_xref="taxon:3899"
... FT mRNA 1..1859
... FT /experiment="experimental evidence, no additional
... FT details recorded"
... FT CDS 14..1495
... FT /product="beta-glucosidase"
... FT /EC_number="3.2.1.21"
... FT /note="non-cyanogenic"
... FT /db_xref="GOA:P26204"
... FT /db_xref="InterPro:IPR001360"
... FT /db_xref="InterPro:IPR013781"
... FT /db_xref="InterPro:IPR017853"
... FT /db_xref="InterPro:IPR033132"
... FT /db_xref="UniProtKB/Swiss-Prot:P26204"
... FT /protein_id="CAA40058.1"
... FT /translation="MDFIVAIFALFVISSFTITSTNAVEASTLLDIGNLSRS
... FT SFPRGFIFGAGSSAYQFEGAVNEGGRGPSIWDTFTHKYPEKIRDGSNADITV
... FT DQYHRYKEDVGIMKDQNMDSYRFSISWPRILPKGKLSGGINHEGIKYYNNLI
... FT NELLANGIQPFVTLFHWDLPQVLEDEYGGFLNSGVINDFRDYTDLCFKEFGD
... FT RVRYWSTLNEPWVFSNSGYALGTNAPGRCSASNVAKPGDSGTGPYIVTHNQI
... FT LAHAEAVHVYKTKYQAYQKGKIGITLVSNWLMPLDDNSIPDIKAAERSLDFQ
... FT FGLFMEQLTTGDYSKSMRRIVKNRLPKFSKFESSLVNGSFDFIGINYYSSSY
... FT ISNAPSHGNAKPSYSTNPMTNISFEKHGIPLGPRAASIWIYVYPYMFIQEDF
... FT EIFCYILKINITILQFSITENGMNEFNDATLPVEEALLNTYRIDYYYRHLYY
... FT IRSAIRAGSNVKGFYAWSFLDCNEWFAGFTVRFGLNFVD"
... XX
... SQ Sequence 1859 BP; 609 A; 314 C; 355 G; 581 T; 0 other;
... aaacaaacca aatatggatt ttattgtagc catatttgct ctgtttgtta ttagctcatt
... cacaattact tccacaaatg cagttgaagc ttctactctt cttgacatag gtaacctgag
... tcggagcagt tttcctcgtg gcttcatctt tggtgctgga tcttcagcat accaatttga
... aggtgcagta aacgaaggcg gtagaggacc aagtatttgg gataccttca cccataaata
... tccagaaaaa ataagggatg gaagcaatgc agacatcacg gttgaccaat atcaccgcta
... caaggaagat gttgggatta tgaaggatca aaatatggat tcgtatagat tctcaatctc
... ttggccaaga atactcccaa agggaaagtt gagcggaggc ataaatcacg aaggaatcaa
... atattacaac aaccttatca acgaactatt ggctaacggt atacaaccat ttgtaactct
... ttttcattgg gatcttcccc aagtcttaga agatgagtat ggtggtttct taaactccgg
... tgtaataaat gattttcgag actatacgga tctttgcttc aaggaatttg gagatagagt
... gaggtattgg agtactctaa atgagccatg ggtgtttagc aattctggat atgcactagg
... aacaaatgca ccaggtcgat gttcggcctc caacgtggcc aagcctggtg attctggaac
... aggaccttat atagttacac acaatcaaat tcttgctcat gcagaagctg tacatgtgta
... taagactaaa taccaggcat atcaaaaggg aaagataggc ataacgttgg tatctaactg
... gttaatgcca cttgatgata atagcatacc agatataaag gctgccgaga gatcacttga
... cttccaattt ggattgttta tggaacaatt aacaacagga gattattcta agagcatgcg
... gcgtatagtt aaaaaccgat tacctaagtt ctcaaaattc gaatcaagcc tagtgaatgg
... ttcatttgat tttattggta taaactatta ctcttctagt tatattagca atgccccttc
... acatggcaat gccaaaccca gttactcaac aaatcctatg accaatattt catttgaaaa
... acatgggata cccttaggtc caagggctgc ttcaatttgg atatatgttt atccatatat
... gtttatccaa gaggacttcg agatcttttg ttacatatta aaaataaata taacaatcct
... gcaattttca atcactgaaa atggtatgaa tgaattcaac gatgcaacac ttccagtaga
... agaagctctt ttgaatactt acagaattga ttactattac cgtcacttat actacattcg
... ttctgcaatc agggctggct caaatgtgaa gggtttttac gcatggtcat ttttggactg
... taatgaatgg tttgcaggct ttactgttcg ttttggatta aactttgtag attagaaaga
... tggattaaaa aggtacccta agctttctgc ccaatggtac aagaactttc tcaaaagaaa
... ctagctagta ttattaaaag aactttgtag tagattacag tacatcgttt gaagttgagt
... tggtgcacct aattaaataa aagaggttac tcttaacata tttttaggcc attcgttgtg
... aagttgttag gctgttattt ctattatact atgttgtagt aataagtgca ttgttgtacc
... agaagctatg atcataacta taggttgatc cttcatgtat cagtttgatg ttgagaatac
... tttgaattaa aagtcttttt ttattttttt aaaaaaaaaa aaaaaaaaaa aaaaaaaaa
... //
... '''
Now we can read it as ``DNA`` object:
>>> import io
>>> from skbio import DNA, RNA, Sequence
>>> embl = io.StringIO(embl_str)
>>> dna_seq = DNA.read(embl)
>>> dna_seq
DNA
----------------------------------------------------------------------
Metadata:
'ACCESSION': 'X56734; S46826;'
'CROSS_REFERENCE': <class 'list'>
'DATE': <class 'list'>
'DBSOURCE': 'MD5; 1e51ca3a5450c43524b9185c236cc5cc.'
'DEFINITION': 'Trifolium repens mRNA for non-cyanogenic beta-
glucosidase'
'KEYWORDS': 'beta-glucosidase.'
'LOCUS': <class 'dict'>
'REFERENCE': <class 'list'>
'SOURCE': <class 'dict'>
'VERSION': 'X56734.1'
Interval metadata:
3 interval features
Stats:
length: 1859
has gaps: False
has degenerates: False
has definites: True
GC-content: 35.99%
----------------------------------------------------------------------
0 AAACAAACCA AATATGGATT TTATTGTAGC CATATTTGCT CTGTTTGTTA TTAGCTCATT
60 CACAATTACT TCCACAAATG CAGTTGAAGC TTCTACTCTT CTTGACATAG GTAACCTGAG
...
1740 AGAAGCTATG ATCATAACTA TAGGTTGATC CTTCATGTAT CAGTTTGATG TTGAGAATAC
1800 TTTGAATTAA AAGTCTTTTT TTATTTTTTT AAAAAAAAAA AAAAAAAAAA AAAAAAAAA
Since this is a mRNA molecule, we may want to read it as ``RNA``.
As the EMBL file usually have ``t`` instead of ``u`` in
the sequence, we can read it as ``RNA`` by converting ``t`` to ``u``:
>>> embl = io.StringIO(embl_str)
>>> rna_seq = RNA.read(embl)
>>> rna_seq
RNA
----------------------------------------------------------------------
Metadata:
'ACCESSION': 'X56734; S46826;'
'CROSS_REFERENCE': <class 'list'>
'DATE': <class 'list'>
'DBSOURCE': 'MD5; 1e51ca3a5450c43524b9185c236cc5cc.'
'DEFINITION': 'Trifolium repens mRNA for non-cyanogenic beta-
glucosidase'
'KEYWORDS': 'beta-glucosidase.'
'LOCUS': <class 'dict'>
'REFERENCE': <class 'list'>
'SOURCE': <class 'dict'>
'VERSION': 'X56734.1'
Interval metadata:
3 interval features
Stats:
length: 1859
has gaps: False
has degenerates: False
has definites: True
GC-content: 35.99%
----------------------------------------------------------------------
0 AAACAAACCA AAUAUGGAUU UUAUUGUAGC CAUAUUUGCU CUGUUUGUUA UUAGCUCAUU
60 CACAAUUACU UCCACAAAUG CAGUUGAAGC UUCUACUCUU CUUGACAUAG GUAACCUGAG
...
1740 AGAAGCUAUG AUCAUAACUA UAGGUUGAUC CUUCAUGUAU CAGUUUGAUG UUGAGAAUAC
1800 UUUGAAUUAA AAGUCUUUUU UUAUUUUUUU AAAAAAAAAA AAAAAAAAAA AAAAAAAAA
We can also ``trascribe`` a sequence and verify that it will be a ``RNA``
sequence
>>> rna_seq == dna_seq.transcribe()
True
Reading EMBL Files using generators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Soppose we have an EMBL file with multiple records: we can instantiate a
generator object to deal with multiple records
>>> import skbio
>>> embl = io.StringIO(embl_str)
>>> embl_gen = skbio.io.read(embl, format="embl")
>>> dna_seq = next(embl_gen)
For more informations, see :mod:`skbio.io`
References
----------
.. [1] ftp://ftp.ebi.ac.uk/pub/databases/embl/release/doc/usrman.txt
.. [2] http://www.ebi.ac.uk/ena/data/view/X56734&display=text
.. [3] http://www.ebi.ac.uk/ena/browse/feature-level-products
.. [4] https://github.com/biocore/scikit-bio/issues/1499
"""
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
# std modules
import re
import copy
import textwrap
from functools import partial
# skbio modules
from skbio.io import create_format, EMBLFormatError
from skbio.io.format._base import (_line_generator, _get_nth_sequence)
from skbio.io.format._sequence_feature_vocabulary import (
_yield_section, _parse_single_feature, _serialize_section_default,
_serialize_single_feature)
from skbio.metadata import IntervalMetadata
from skbio.sequence import Sequence, DNA, RNA, Protein
from skbio.util._misc import chunk_str
# look at skbio.io.registry to have an idea on how to define this class
embl = create_format('embl')
# This list is ordered used to read and write embl file. By processing those
# values one by one, I will write embl sections with the same order
_HEADERS = [
'LOCUS',
'ACCESSION',
'PARENT_ACCESSION',
'PROJECT_IDENTIFIER',
'DATE',
'DEFINITION',
'GENE_NAME',
'KEYWORDS',
'SOURCE',
'REFERENCE',
'DBSOURCE',
'COMMENT',
'FEATURES'
]
# embl has a series of keys different from genbank; moreover keys are not so
# easy to understand (eg. RA for AUTHORS). I want to use the same keys used by
# genbank both to convert between formats and to use the same methods to get
# info from Sequence and its derived objects Here is a dictionary of keys
# conversion (EMBL->GB). All the unspecified keys will remain in embl format
KEYS_TRANSLATOR = {
# identification
'ID': 'LOCUS',
'AC': 'ACCESSION',
# PA means PARENT ACCESSION (?) and applies to
# feature-level-products entries
'PA': 'PARENT_ACCESSION',
'PR': 'PROJECT_IDENTIFIER',
'DT': 'DATE',
'DE': 'DEFINITION',
'GN': 'GENE_NAME', # uniprot specific
'KW': 'KEYWORDS',
# Source (taxonomy and classification)
'OS': 'ORGANISM',
'OC': 'taxonomy',
'OG': 'organelle',
# reference keys
'RA': 'AUTHORS',
'RP': 'REFERENCE',
'RC': 'REFERENCE_COMMENT',
'RX': 'CROSS_REFERENCE',
'RG': 'GROUP',
'RT': 'TITLE',
'RL': 'JOURNAL',
# Cross references
'DR': 'DBSOURCE',
'CC': 'COMMENT',
# features
'FH': 'FEATURES',
'FT': 'FEATURES',
'SQ': 'ORIGIN',
}
# the inverse of KEYS_TRANSLATOR, for semplicity
REV_KEYS_TRANSLATOR = {v: k for k, v in KEYS_TRANSLATOR.items()}
# the original genbank _yield_section divides entries in sections relying on
# spaces (the same section has the same level of indentation). EMBL entries
# have a key for each line, so to divide record in sections I need to define a
# correspondance for each key to section, then I will divide a record in
# sections using these section name.
KEYS_2_SECTIONS = {
# identification
'ID': 'LOCUS',
'AC': 'ACCESSION',
# PA means PARENT ACCESSION (?) and applies to
# feature-level-products entries
'PA': 'PARENT_ACCESSION',
'PR': 'PROJECT_IDENTIFIER',
'DT': 'DATE',
'DE': 'DEFINITION',
'GN': 'GENE_NAME', # uniprot specific
'KW': 'KEYWORDS',
# Source (taxonomy and classification)
'OS': 'SOURCE',
'OC': 'SOURCE',
'OG': 'SOURCE',
# reference keys
'RA': 'REFERENCE',
'RP': 'REFERENCE',
'RC': 'REFERENCE',
'RX': 'REFERENCE',
'RG': 'REFERENCE',
'RT': 'REFERENCE',
'RL': 'REFERENCE',
# This shuold be Reference Number. However, to split
# between references with _embl_yield_section I need to
# change section after reading one reference. So a single
# reference is completed when I found a new RN. The
# reference number information will be the reference
# position in the final REFERENCE list metadata
'RN': 'SPACER',
# Cross references
'DR': 'DBSOURCE',
'CC': 'COMMENT',
'AH': 'ASSEMBLY',
'AS': 'ASSEMBLY',
'FH': 'FEATURES',
'FT': 'FEATURES',
# sequence
'SQ': 'ORIGIN',
' ': 'ORIGIN',
'CO': 'CONSTRUCTED',
# spacer (discarded)
'XX': 'SPACER'
}
# for convenience: I think such functions are more readadble while accessing
# values in lambda functions
def _get_embl_key(line):
"""Return first part of a string as a embl key (ie 'AC M14399;' -> 'AC')"""
# embl keys have a fixed size of 2 chars
return line[:2]
def _get_embl_section(line):
"""Return the embl section from uniprot key(ie 'RA' -> 'REFERENCE')"""
# get embl key
key = _get_embl_key(line)
# get embl section from key
section = KEYS_2_SECTIONS[key]
return section
def _translate_key(key):
"""A method to translate a single key from EMBL to genbank. Returns key
itself if no traslation is defined"""
return KEYS_TRANSLATOR.get(key, key)
# a method to translate keys from embl to genbank for a dict object. All keys
# not defined in the original dict will remain the same
def _translate_keys(data):
"""Translate a dictionary of uniprot key->value in a genbank like
dictionary of key values. Keep old keys if no translation is defined"""
# traslate keys and get a new_data object
new_data = {_translate_key(k): v for k, v in data.items()}
return new_data
# define a default textwrap.Wrapper for embl
def _get_embl_wrapper(embl_key, indent=5, subsequent_indent=None, width=80):
"""Returns a textwrap.TextWrapper for embl records (eg, write
<key> <string> by providing embl key and a string. Wrap text to
80 column"""
# define the string to prepen (eg "OC ")
prepend = '{key:<{indent}}'.format(key=embl_key, indent=indent)
# deal with 2° strings and more
if subsequent_indent is None:
subsequent_prepend = prepend
else:
subsequent_prepend = '{key:<{indent}}'.format(
key=embl_key, indent=subsequent_indent)
# define a text wrapper object
wrapper = textwrap.TextWrapper(
initial_indent=prepend,
subsequent_indent=subsequent_prepend,
width=width
)
return wrapper
def _serialize_list(embl_wrapper, data, sep="\n"):
"""Serialize a list of obj using a textwrap.TextWrapper instance. Returns
one string of wrapped embl objects"""
# the output array
output = []
for line in data:
output += embl_wrapper.wrap(line)
# merge dates in one string. Add final newline
output = sep.join(output) + "\n"
# return comupted string
return output
# Method to determine if file is in EMBL format or not. A uniprot embl format
# can't be parsed by this module (at the moment)
@embl.sniffer()
def _embl_sniffer(fh):
try:
line = next(_line_generator(fh, skip_blanks=True, strip=False))
except StopIteration:
return False, {}
try:
_parse_id([line])
except EMBLFormatError:
return False, {}
return True, {}
@embl.reader(None)
def _embl_to_generator(fh, constructor=None, **kwargs):
for record in _parse_embls(fh):
yield _construct(record, constructor, **kwargs)
# Method to read EMBL data as skbio.sequence.DNA
@embl.reader(Sequence)
def _embl_to_sequence(fh, seq_num=1, **kwargs):
record = _get_nth_sequence(_parse_embls(fh), seq_num)
return _construct(record, Sequence, **kwargs)
# Method to read EMBL data as skbio.sequence.DNA
@embl.reader(DNA)
def _embl_to_dna(fh, seq_num=1, **kwargs):
record = _get_nth_sequence(_parse_embls(fh), seq_num)
return _construct(record, DNA, **kwargs)
# Method to read EMBL data as skbio.sequence.DNA
@embl.reader(RNA)
def _embl_to_rna(fh, seq_num=1, **kwargs):
record = _get_nth_sequence(_parse_embls(fh), seq_num)
return _construct(record, RNA, **kwargs)
# No protein support at the moment
@embl.reader(Protein)
def _embl_to_protein(fh, seq_num=1, **kwargs):
# no protein support, at the moment
raise EMBLFormatError("There's no protein support for EMBL record. "
"Current status of EMBL protein support is "
"described in issue-1499 (https://github.com/"
"biocore/scikit-bio/issues/1499)")
# Writer methods
@embl.writer(None)
def _generator_to_embl(obj, fh):
for obj_i in obj:
_serialize_single_embl(obj_i, fh)
@embl.writer(Sequence)
def _sequence_to_embl(obj, fh):
_serialize_single_embl(obj, fh)
@embl.writer(DNA)
def _dna_to_embl(obj, fh):
_serialize_single_embl(obj, fh)
@embl.writer(RNA)
def _rna_to_embl(obj, fh):
_serialize_single_embl(obj, fh)
@embl.writer(Protein)
def _protein_to_embl(obj, fh):
# no protein support, at the moment
raise EMBLFormatError("There's no protein support for EMBL record. "
"Current status of EMBL protein support is "
"described in issue-1499 (https://github.com/"
"biocore/scikit-bio/issues/1499)")
def _construct(record, constructor=None, **kwargs):
'''Construct the object of Sequence, DNA, RNA, or Protein.'''
# sequence, metadata and interval metadata
seq, md, imd = record
if 'lowercase' not in kwargs:
kwargs['lowercase'] = True
if constructor is None:
unit = md['LOCUS']['unit']
if unit == 'bp':
# RNA mol type has T instead of U for genbank from from NCBI
constructor = DNA
elif unit == 'aa':
# no protein support, at the moment
# constructor = Protein
raise EMBLFormatError("There's no protein support for EMBL record")
if constructor == RNA:
return DNA(
seq, metadata=md, interval_metadata=imd, **kwargs).transcribe()
else:
return constructor(
seq, metadata=md, interval_metadata=imd, **kwargs)
# looks like the genbank _parse_genbank
def _parse_embls(fh):
"""Chunck multiple EMBL records by '//', and returns a generator"""
data_chunks = []
for line in _line_generator(fh, skip_blanks=True, strip=False):
if line.startswith('//'):
yield _parse_single_embl(data_chunks)
data_chunks = []
else:
data_chunks.append(line)
def _parse_single_embl(chunks):
metadata = {}
interval_metadata = None
sequence = ''
# define a section splitter with _embl_yield_section function defined in
# this module (return the embl section by embl key). returns generator for
# each block with different line type
section_splitter = _embl_yield_section(
lambda line: _get_embl_section(line),
skip_blanks=True,
strip=False)
# process each section, like genbank does.
for section, section_name in section_splitter(chunks):
# section is a list of records with the same session (eg RA, RP for
# for a single reference). section_name is the name of the section
# (eg REFERENCE for the section of the previous example)
# search for a specific method in PARSER_TABLE using section_name or
# set _embl_parse_section_default
parser = _PARSER_TABLE.get(
section_name, _embl_parse_section_default)
if section_name == 'FEATURES':
# This requires 'ID' line parsed before 'FEATURES', which should
# be true and is implicitly checked by the sniffer. This is true
# since the first section is parsed by the last else condition
if "PARENT_ACCESSION" in metadata:
# this is a feature-level-products entry and features are
# relative to parent accession; in the same way a subset of a
# Sequence object has no interval metadata, I will refuse to
# process interval metadata here
continue
# partials add arguments to previous defined functions, in this
# case length of Sequence object
parser = partial(
parser, length=metadata["LOCUS"]["size"])
elif section_name == "COMMENT":
# mantain newlines in comments
# partials add arguments to previous defined functions
parser = partial(
parser, join_delimiter="\n")
# call function on section
parsed = parser(section)
# reference can appear multiple times
if section_name == 'REFERENCE':
# genbank data hasn't CROSS_REFERENCE section, To have a similar
# metatadata object, I chose to remove CROSS_REFERENCE from
# each single reference and put them in metadata. Since I could
# have more references, I need a list of CROSS_REFERENCE, with
# None values when CROSS_REFERENCE are not defined: there are cases
# in which some references have a CROSS_REFERENCE and others not.
# So each reference will have it's cross reference in the same
# index position, defined or not
cross_reference = parsed.pop("CROSS_REFERENCE", None)
# fix REFERENCE metadata. Ask if is the first reference or not
# I need a reference number as genbank, this could be reference
# size
if section_name in metadata:
RN = len(metadata[section_name]) + 1
else:
RN = 1
# fix reference fields. Get RN->REFERENCE value from dict
positions = parsed.pop("REFERENCE", None)
parsed["REFERENCE"] = str(RN)
# append position to RN (eg "1 (bases 1 to 63)")
if positions:
parsed["REFERENCE"] += " %s" % (positions)
# cross_reference will be a list of cross reference; Also
# metadata[REFERENCE] is a list of references
if section_name in metadata:
# I've already seen a reference, append new one
metadata[section_name].append(parsed)
metadata["CROSS_REFERENCE"].append(cross_reference)
else:
# define a list for this first reference and its RX
metadata[section_name] = [parsed]
metadata["CROSS_REFERENCE"] = [cross_reference]
elif section_name == 'ORIGIN':
sequence = parsed
elif section_name == 'FEATURES':
interval_metadata = parsed
elif section_name == 'DATE':
# read data (list)
metadata[section_name] = parsed
# fix locus metadata using last date. Take only last date
date = metadata[section_name][-1].split()[0]
metadata["LOCUS"]["date"] = date
# parse all the others sections (SOURCE, ...)
else:
metadata[section_name] = parsed
# after metadata were read, add a VERSION section like genbank
# eval if entry is a feature level product or not
if "ACCESSION" in metadata:
metadata["VERSION"] = "{accession}.{version}".format(
accession=metadata["ACCESSION"].split(";")[0],
version=metadata["LOCUS"]["version"])
elif "PARENT_ACCESSION" in metadata:
# locus name is in the format
# <accession>.<version>:<feature location>:<feature name>[:ordinal]
# and ordinal could be present or not, depends on how many features
# are found in such location. Such entry couldn't be found in others
# database like NCBI (at the moment) so we will take the version
# relying on parent accession (hoping that an update in the parent
# accession will generate an update in all feature level products)
metadata["VERSION"] = metadata["PARENT_ACCESSION"]
# return a string, metatdata as a dictionary and IntervalMetadata object
return sequence, metadata, interval_metadata
def _write_serializer(fh, serializer, embl_key, data):
"""A simple method to write serializer to a file. Append 'XX'"""
# call the serializer function
out = serializer(embl_key, data)
# test if 'out' is a iterator.
# cf. Effective Python Item 17
if iter(out) is iter(out):
for s in out:
fh.write(s)
else:
fh.write(out)
# add spacer between sections
fh.write("XX\n")
# main function for writer methods
def _serialize_single_embl(obj, fh):
'''Write a EMBL record.
Always write it in ENA canonical way:
1. sequence in lowercase (uniprot are uppercase)
2. 'u' as 't' even in RNA molecules.
Parameters
----------
obj : Sequence or its child class
'''
# shortcut to deal with metadata
md = obj.metadata
# embl has a different magick number than embl
serialize_default = partial(
_serialize_section_default, indent=5)
# Now cicle for GB like headers (sections) in _HEADERS.
for header in _HEADERS:
# Get appropriate serializer method or default one
serializer = _SERIALIZER_TABLE.get(
header, serialize_default)
# headers needs to be converted into embl, or matained as they are
# if no conversion could be defined.
embl_key = REV_KEYS_TRANSLATOR.get(header, header)
# this is true also for locus line
if header in md:
# deal with special source case, add cross references if needed
if header == "REFERENCE":
serializer = partial(
serializer, cross_references=md.get("CROSS_REFERENCE"))
elif header == "LOCUS":
# pass also metadata (in case of entries from genbank)
serializer = partial(
serializer, metadata=md)
# call the serializer function
_write_serializer(fh, serializer, embl_key, md[header])
else:
# header not in metadata. Could be date read from GB?
if header == "DATE":
# Have I date in locus metadata?
if md["LOCUS"]["date"]:
# call serializer on date. Date is a list of values
_write_serializer(
fh, serializer, embl_key, [md["LOCUS"]["date"]])
if header == 'FEATURES':
if obj.has_interval_metadata():
# magic number 21: the amount of indentation before
# feature table starts as defined by INSDC
indent = 21
feature_key = "FH Key"
fh.write('{header:<{indent}}Location/Qualifiers\n'.format(
header=feature_key, indent=indent))
# add FH spacer
fh.write("FH\n")
for s in serializer(obj.interval_metadata._intervals, indent):
fh.write(s)
# add spacer between sections
fh.write("XX\n")
# write out the sequence
# always write RNA seq as DNA
if isinstance(obj, RNA):
obj = obj.reverse_transcribe()
# serialize sequence from a Sequence object
for s in _serialize_sequence(obj):
fh.write(s)
# terminate a embl record with
fh.write('//\n')
def _parse_id(lines):
"""
From EMBL user manual (Release 130, November 2016)
(ftp://ftp.ebi.ac.uk/pub/databases/embl/release/doc/usrman.txt)
The ID (IDentification) line is always the first line of an entry. The
format of the ID line is:
ID <1>; SV <2>; <3>; <4>; <5>; <6>; <7> BP.
The tokens represent:
1. Primary accession number
2. Sequence version number
3. Topology: 'circular' or 'linear'
4. Molecule type (see note 1 below)
5. Data class (see section 3.1 of EMBL user manual)
6. Taxonomic division (see section 3.2 of EMBL user manual)
7. Sequence length (see note 2 below)
Note 1 - Molecule type: this represents the type of molecule as stored and
can be any value from the list of current values for the mandatory mol_type
source qualifier. This item should be the same as the value in the mol_type
qualifier(s) in a given entry.
Note 2 - Sequence length: The last item on the ID line is the length of the
sequence (the total number of bases in the sequence). This number includes
base positions reported as present but undetermined (coded as "N").
An example of a complete identification line is shown below:
ID CD789012; SV 4; linear; genomic DNA; HTG; MAM; 500 BP.
"""
# get only the first line of EMBL record
line = lines[0]
# define a specific patter for EMBL
pattern = re.compile(r'ID'
r' +([^\s]+);' # ie: CD789012
r' +SV ([0-9]*);' # 4
r' +(\w+);' # linear
r' +([^;]+);' # genomic DNA
r' +(\w*);' # HTG
r' +(\w+);' # MAM
r' +(\d+)' # 500
r' +(\w+)\.$') # BP
# search it
matches = re.match(pattern, line)
try:
res = dict(zip(
['locus_name', 'version', 'shape', 'mol_type',
'class', 'division', 'size', 'unit'],
matches.groups()))
except AttributeError:
raise EMBLFormatError(
"Could not parse the ID line:\n%s" % line)
# check for CON entries:
if res['class'] == "CON":
# entries like http://www.ebi.ac.uk/ena/data/view/LT357133
# doesn't have sequence, so can't be read by skbio.sequence
raise EMBLFormatError(
"There's no support for embl CON record: for more information "
"see issue-1506 (https://github.com/biocore/scikit-bio/issues/"
"1506)")
# those values are integer
res['size'] = int(res['size'])
# version could be integer
if res['version']:
res['version'] = int(res['version'])
# unit are in lower cases in others modules
res['unit'] = res['unit'].lower()
# initialize a date record (for gb compatibility)
res['date'] = None
# returning parsed attributes
return res
def _serialize_id(header, obj, metadata={}, indent=5):
'''Serialize ID line.
Parameters
----------
obj : dict
'''
# get key->value pairs, or key->'' if values is None
kwargs = {k: '' if v is None else v for k, v in obj.items()}
# then unit is in upper cases
kwargs["unit"] = kwargs["unit"].upper()
# check for missing keys (eg from gb data). Keys in md are in uppercase
for key in ["version", "class"]:
if key not in kwargs:
if key.upper() in metadata:
kwargs[key] = metadata[key.upper()]
else:
kwargs[key] = ""
# version from genbank could be "M14399.1 GI:145229". I need an integer
version = kwargs["version"]
# version could by empty, integer or text
if version != '':
try:
int(kwargs["version"])
# could be a text like M14399.1
except ValueError:
match = re.search(r"^\w+\.([0-9]+)", version)
if match:
kwargs["version"] = match.groups()[0]
# return first line
return ('{header:<{indent}}{locus_name}; SV {version}; {shape}; '
'{mol_type}; {class}; {division}; {size} {unit}.\n').format(
header=header, indent=indent, **kwargs)
# similar to skbio.io.format._sequence_feature_vocabulary.__yield_section
# but applies to embl file format
def _embl_yield_section(get_line_key, **kwargs):
'''Returns function that returns successive sections from file.
Parameters
----------
get_line_key : callable
It takes a string as input and a key indicating the section
(could be the embl key or embl KEYS_2_SECTIONS)
kwargs : dict, optional
Keyword arguments will be passed to `_line_generator`.
Returns
-------
function
A function accept a list of lines as input and return
a generator to yield section one by one.
'''
def parser(lines):
curr = []
curr_type = None
for line in _line_generator(lines, **kwargs):
# if we find another line, return the previous section
line_type = get_line_key(line)
# changed line type
if line_type != curr_type:
if curr:
# returning block
yield curr, curr_type
# reset curr after yield
curr = []
# reset curr_type in any cases
curr_type = line_type
# don't append record if line type is a spacer
if 'SPACER' not in line_type:
curr.append(line)
# don't forget to return the last section in the file
if curr:
yield curr, curr_type
return parser
# replace skbio.io.format._sequence_feature_vocabulary._parse_section_default
def _embl_parse_section_default(
lines, label_delimiter=None, join_delimiter=' ', return_label=False):
'''Parse sections in default way.
Do 2 things:
1. split first line with label_delimiter for label
2. join all the lines into one str with join_delimiter.
'''
data = []
label = None
line = lines[0]
# take the first line, divide the key from the text
items = line.split(label_delimiter, 1)
if len(items) == 2:
label, section = items
else:
label = items[0]
section = ""
# append the text of the first element in a empty array
data.append(section)
# Then process all the elements with the same embl key. remove the key
# and append all the text in the data array
data.extend(line.split(label_delimiter, 1)[-1] for line in lines[1:])
# Now concatenate the text using join_delimiter. All content with the same
# key will be placed in the same string. Strip final "\n
data = join_delimiter.join(i.strip() for i in data)
# finally return the merged text content, and the key if needed
if return_label:
return label, data
else:
return data
# parse an embl reference record.
def _parse_reference(lines):
'''Parse single REFERENCE field.
'''
# parsed reference will be placed here
res = {}
# define a section splitter with _embl_yield_section function defined in
# this module
section_splitter = _embl_yield_section(lambda line: _get_embl_key(line),
skip_blanks=True, strip=False)
# now itereta along sections (lines of the same type)
for section, section_name in section_splitter(lines):
# this function append all data in the same keywords. A list of lines
# as input (see skbio.io.format._sequence_feature_vocabulary)
label, data = _embl_parse_section_default(
section, join_delimiter=' ', return_label=True)
res[label] = data
# now RX (CROSS_REFERENCE) is a joined string of multiple values. To get
# back to a list of values you can use: re.compile("([^;\s]*); ([^\s]*)")
# search for pubmed record, and add the PUBMED key
if "RX" in res:
match = re.search(r"PUBMED; (\d+)\.", res["RX"])
if match:
# add pubmed notation
res["PUBMED"] = match.groups()[0]
# fix RP field like genbank (if exists), Ie: (bases 1 to 63)
if "RP" in res:
match = re.search(r"(\d+)-(\d+)", res["RP"])
if match:
# fix rp fields
res["RP"] = "(bases {start} to {stop})".format(
start=match.groups()[0], stop=match.groups()[1])
# return translated keys (EMBL->GB)
return _translate_keys(res)
def _serialize_reference(header, obj, cross_references, indent=5):
"""Serialize a list of references"""
reference = []
sort_order = ["RC", "RP", "RX", "RG", "RA", "RT", "RL"]
# deal with RX pattern and RP pattern
RX = re.compile(r"([^;\s]*); ([^\s]*)")
RP = re.compile(r"bases (\d+) to (\d+)")
# create a copy of obj, that can be changed. I need to delete values or
# adding new ones
obj = copy.deepcopy(obj)
# obj is a list of references. Now is a copy of metadata[SOURCE]
for i, data in enumerate(obj):
# get the reference number (as the iteration number)
embl_key = "RN"
# get cross_references
if cross_references:
cross_reference = cross_references[i]
# append cross reference [i] to data (obj[i]) (if they exists)
if cross_reference:
data["CROSS_REFERENCE"] = cross_reference
# delete PUBMED key (already present in CROSS_REFERENCE)
if "PUBMED" in data:
del(data["PUBMED"])
else:
# no cross reference, do I have PUBMED in data?
if "PUBMED" in data:
# add a fake CROSS_REFERENCE
data["CROSS_REFERENCE"] = 'PUBMED; %s.' % data["PUBMED"]
# get an embl wrapper
wrapper = _get_embl_wrapper(embl_key, indent)
# define wrapped string and add RN to embl data
reference += wrapper.wrap("[{RN}]".format(RN=i+1))
# now process each record for references
for embl_key in sort_order:
# get internal key (genbank like key)
key = _translate_key(embl_key)
# have I this reference in my reference data?
if key not in data:
continue
# if yes, define wrapper
wrapper = _get_embl_wrapper(embl_key, indent)
# data could have newlines
records = data[key].split("\n")
for record in records:
# strip after newlines
record = record.strip()
# define wrapped string. beware RX
if embl_key == "RX":
for match in re.finditer(RX, record):
source, link = match.groups()
# join text
cross_reference = "; ".join([source, link])
reference += wrapper.wrap(cross_reference)
# RP case
elif embl_key == "RP":
match = re.search(RP, record)
# if I have position, re-define RP key
if match:
record = "%s-%s" % match.groups()
reference += wrapper.wrap(record)
# if not, ignore RP key
else:
continue
# all the other cases, go in wrapper as they are
else:
reference += wrapper.wrap(record)
# add a spacer between references (but no at the final reference)
# cause the caller will add spacer
if (i+1) < len(obj):
reference += ["XX"]
# now define a string and add a final "\n"
s = "\n".join(reference) + "\n"
# and return it
return s
# parse an embl reference record.
def _parse_source(lines):
'''Parse single SOURCE field.
'''
# parsed reference will be placed here
res = {}
# define a section splitter with _embl_yield_section function defined in
# this module
section_splitter = _embl_yield_section(lambda line: _get_embl_key(line),
skip_blanks=True, strip=False)
# now itereta along sections (lines of the same type)
for section, section_name in section_splitter(lines):
# this function append all data in the same keywords. A list of lines
# as input (see skbio.io.format._sequence_feature_vocabulary)
label, data = _embl_parse_section_default(
section, join_delimiter=' ', return_label=True)
res[label] = data
# return translated keys
return _translate_keys(res)
def _serialize_source(header, obj, indent=5):
'''Serialize SOURCE.
Parameters
----------
header: section header
obj : dict
indent : indent length
'''
source = []
# treat taxonomy and all others keys
for key in ["ORGANISM", "taxonomy", "organelle"]:
# get data to serielize
data = obj.get(key)
# if key is not defined (eg. organelle, continue)
if data is None:
continue
# get embl key for my key (eg, taxonomy -> OC)
embl_key = REV_KEYS_TRANSLATOR.get(key, key)
# get an embl wrapper
wrapper = _get_embl_wrapper(embl_key, indent)
# define wrapped string
source += wrapper.wrap(data)
# now define a string and add a final "\n"
s = "\n".join(source) + "\n"
# and return it
return s
def _parse_sequence(lines):
'''Parse the sequence section for sequence.'''
# result array
sequence = []
for line in lines:
# ignore record like:
# SQ Sequence 275 BP; 64 A; 73 C; 88 G; 50 T; 0 other;
if line.startswith('SQ'):
continue
# remove the numbers inside strings. revome spaces around string
items = [i for i in line.split() if not i.isdigit()]
# append each sequence items to sequence list
sequence += items
return ''.join(sequence)
def _serialize_sequence(obj, indent=5):
'''Serialize seq to SQ.
Parameters
----------
obj : DNA, RNA, Sequence Obj
'''
# a flag to determine if I wrote header or not
flag_header = False
# magic numbers: there will be 60 letters (AA, bp) on each line
chunk_size = 60
# letters (AA, bp) will be grouped by 10: each group is divided by
# one space from each other
frag_size = 10
# fasta sequence will have indent spaces on the left, chunk_size/frag_size
# groups of frag_size letters separated by n-1 groups of single spaces,
# then the sequence length aligned on the right to get a string of
# line_size. Setting left and right padding for semplicity
pad_right = 65 # there are also 5 columns for indentation
pad_left = 10 # sequence number will be in the last 10 columns
# get sequence as a string with lower letters (uniprot will be upper!)
seq = str(obj).lower()
# count bases in sequence. Frequencies returns a dictionary of occurences
# of A,C,G,T. Sequences are stored always in capital letters
freq = obj.frequencies()
# get values instead of popping them: I can't assure that the letter T,
# for example, is always present
n_a = freq.get('A', 0)
n_c = freq.get('C', 0)
n_g = freq.get('G', 0)
n_t = freq.get('T', 0)
# this will be the count of all others letters (more than ACGT)
n_others = len(obj) - (n_a + n_c + n_g + n_t)
# define SQ like this:
# SQ Sequence 275 BP; 63 A; 72 C; 88 G; 52 T; 0 other;
SQ = "SQ Sequence {size} {unit}; {n_a} A; {n_c} C; {n_g} G; " +\
"{n_t} T; {n_others} other;\n"
# TODO: deal with protein SQ: they have a sequence header like:
# SQ SEQUENCE 256 AA; 29735 MW; B4840739BF7D4121 CRC64;
# apply format
SQ = SQ.format(size=len(obj), unit=obj.metadata["LOCUS"]["unit"].upper(),
n_a=n_a, n_c=n_c, n_g=n_g, n_t=n_t, n_others=n_others)
for i in range(0, len(seq), chunk_size):
line = seq[i:i+chunk_size]
# pad string left and right
s = '{indent}{s:<{pad_right}}{pos:>{pad_left}}\n'.format(
indent=" "*indent,
s=chunk_str(line, frag_size, ' '),
pad_left=pad_left,
pos=i+len(line),
pad_right=pad_right)
if not flag_header:
# First time here. Add SQ header to sequence
s = SQ + s
# When I added header, I need to turn off this flag
flag_header = True
yield s
def _embl_parse_feature_table(lines, length):
"""Parse embl feature tables"""
# define interval metadata
imd = IntervalMetadata(length)
# get only FT records, and remove key from line
lines = [line[2:] for line in lines if line.startswith('FT')]
# magic number 19: after key removal, the lines of each feature
# are indented with 19 spaces.
feature_indent = ' ' * 19
section_splitter = _yield_section(
lambda x: not x.startswith(feature_indent),
skip_blanks=True, strip=False)
for section in section_splitter(lines):
_parse_single_feature(section, imd)
return imd
def _serialize_feature_table(intervals, indent=21):
'''
Parameters
----------
intervals : list of ``Interval``
'''
# define a embl wrapper object. I need to replace only the first two
# characters from _serialize_single_feature output
wrapper = _get_embl_wrapper("FT", indent=2, subsequent_indent=21)
for intvl in intervals:
tmp = _serialize_single_feature(intvl, indent)
output = []
# I need to remove two spaces, cause I will add a FT key
for line in tmp.split("\n"):
output += wrapper.wrap(line[2:])
# re add newline between elements, and a final "\n"
yield "\n".join(output) + "\n"
def _parse_date(lines, label_delimiter=None, return_label=False):
"""Parse embl date records"""
# take the first line, and derive a label
label = lines[0].split(label_delimiter, 1)[0]
# read all the others dates and append to data array
data = [line.split(label_delimiter, 1)[-1] for line in lines]
# strip returned data
data = [i.strip() for i in data]
# finally return data array, and the key if needed
if return_label:
return label, data
else:
return data
def _serialize_date(embl_key, date_list, indent=5):
'''Serialize date line.
Parameters
----------
header : embl key id
date_list : a list of dates
'''
# get an embl wrapper
wrapper = _get_embl_wrapper(embl_key, indent)
# # serialize date and return them as a string
return _serialize_list(wrapper, date_list)
def _serialize_comment(embl_key, obj, indent=5):
"""Serialize comment (like Assembly)"""
# obj is a string, Split it by newlines
data = obj.split("\n")
# get an embl wrapper
wrapper = _get_embl_wrapper(embl_key, indent)
# serialize data and return it
return _serialize_list(wrapper, data)
def _serialize_dbsource(embl_key, obj, indent=5):
"""Serialize DBSOURCE"""
# data are stored like 'SILVA-LSU; LK021130. SILVA-SSU; LK021130. ...
# I need to split string after final period (not AAT09660.1)
# deal with re pattern. A pattern to find a period as end of sentence
DR = re.compile(r"\.\s")
# splitting by this pattern, I will have
# ["SILVA-LSU; LK021130", "SILVA-SSU; LK021130", ...]
# I need that each of them will be in a DR record.
# get an embl wrapper
wrapper = _get_embl_wrapper(embl_key, indent)
# serialize data and return it. Split dbsource using re. Add a
# final period between elements since I removed it by splitting
return _serialize_list(wrapper, re.split(DR, obj), sep=".\n")
def _parse_assembly(lines):
"""Parse embl assembly records"""
output = []
# first line is header, skip it
for line in lines[1:]:
data = line.split()
# data could have comp feature or not. First element in data is 'AS'
if len(data) == 5:
res = dict(zip(
['local_span', 'primary_identifier', 'primary_span', 'comp'],
data[1:]))
elif len(data) == 4:
res = dict(zip(
['local_span', 'primary_identifier', 'primary_span', 'comp'],
data[1:]+['']))
else:
raise EMBLFormatError("Can't parse assembly line %s"
% line)
# append res to output
output += [res]
return output
# Map a function to each section of the entry
_PARSER_TABLE = {
'LOCUS': _parse_id,
'SOURCE': _parse_source,
'DATE': _parse_date,
'REFERENCE': _parse_reference,
'FEATURES': _embl_parse_feature_table,
'ORIGIN': _parse_sequence,
'ASSEMBLY': _parse_assembly,
}
# for writer functions
_SERIALIZER_TABLE = {
'LOCUS': _serialize_id,
'SOURCE': _serialize_source,
'DATE': _serialize_date,
'REFERENCE': _serialize_reference,
'FEATURES': _serialize_feature_table,
'COMMENT': _serialize_comment,
'DBSOURCE': _serialize_dbsource,
}
|