| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 
 | # ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import re
import collections
import numbers
from contextlib import contextmanager
import numpy as np
import pandas as pd
import skbio.sequence.distance
from skbio._base import SkbioObject
from skbio.metadata._mixin import (MetadataMixin, PositionalMetadataMixin,
                                   IntervalMetadataMixin)
from skbio.metadata import IntervalMetadata
from skbio.sequence._repr import _SequenceReprBuilder
from skbio.util._decorator import (stable, experimental, classonlymethod,
                                   overrides)
class Sequence(MetadataMixin, PositionalMetadataMixin, IntervalMetadataMixin,
               collections.Sequence, SkbioObject):
    """Store generic sequence data and optional associated metadata.
    ``Sequence`` objects do not enforce an alphabet or grammar and are thus the
    most generic objects for storing sequence data. ``Sequence`` objects do not
    necessarily represent biological sequences. For example, ``Sequence`` can
    be used to represent a position in a multiple sequence alignment.
    Subclasses ``DNA``, ``RNA``, and ``Protein`` enforce the IUPAC character
    set [1]_ for, and provide operations specific to, each respective molecule
    type.
    ``Sequence`` objects consist of the underlying sequence data, as well
    as optional metadata and positional metadata. The underlying sequence
    is immutable, while the metdata and positional metadata are mutable.
    Parameters
    ----------
    sequence : str, Sequence, or 1D np.ndarray (np.uint8 or '\\|S1')
        Characters representing the sequence itself.
    metadata : dict, optional
        Arbitrary metadata which applies to the entire sequence. A shallow copy
        of the ``dict`` will be made (see Examples section below for details).
    positional_metadata : pd.DataFrame consumable, optional
        Arbitrary per-character metadata (e.g., sequence read quality
        scores). Must be able to be passed directly to ``pd.DataFrame``
        constructor. Each column of metadata must be the same length as
        `sequence`. A shallow copy of the positional metadata will be made if
        necessary (see Examples section below for details).
    interval_metadata : IntervalMetadata
        Arbitrary metadata which applies to intervals within a sequence to
        store interval features (such as genes, ncRNA on the sequence).
    lowercase : bool or str, optional
        If ``True``, lowercase sequence characters will be converted to
        uppercase characters. If ``False``, no characters will be converted.
        If a str, it will be treated as a key into the positional metadata of
        the object. All lowercase characters will be converted to uppercase,
        and a ``True`` value will be stored in a boolean array in the
        positional metadata under the key.
    See Also
    --------
    DNA
    RNA
    Protein
    References
    ----------
    .. [1] Nomenclature for incompletely specified bases in nucleic acid
       sequences: recommendations 1984.
       Nucleic Acids Res. May 10, 1985; 13(9): 3021-3030.
       A Cornish-Bowden
    Examples
    --------
    >>> from pprint import pprint
    >>> from skbio import Sequence
    >>> from skbio.metadata import IntervalMetadata
    **Creating sequences:**
    Create a sequence without any metadata:
    >>> seq = Sequence('GGUCGUGAAGGA')
    >>> seq
    Sequence
    ---------------
    Stats:
        length: 12
    ---------------
    0 GGUCGUGAAG GA
    Create a sequence with metadata and positional metadata:
    >>> metadata = {'authors': ['Alice'], 'desc':'seq desc', 'id':'seq-id'}
    >>> positional_metadata = {'exons': [True, True, False, True],
    ...                        'quality': [3, 3, 4, 10]}
    >>> interval_metadata = IntervalMetadata(4)
    >>> interval = interval_metadata.add([(1, 3)], metadata={'gene': 'sagA'})
    >>> seq = Sequence('ACGT', metadata=metadata,
    ...                positional_metadata=positional_metadata,
    ...                interval_metadata=interval_metadata)
    >>> seq
    Sequence
    -----------------------------
    Metadata:
        'authors': <class 'list'>
        'desc': 'seq desc'
        'id': 'seq-id'
    Positional metadata:
        'exons': <dtype: bool>
        'quality': <dtype: int64>
    Interval metadata:
        1 interval feature
    Stats:
        length: 4
    -----------------------------
    0 ACGT
    **Retrieving underlying sequence data:**
    Retrieve underlying sequence:
    >>> seq.values # doctest: +NORMALIZE_WHITESPACE
    array([b'A', b'C', b'G', b'T'],
          dtype='|S1')
    Underlying sequence immutable:
    >>> seq.values = np.array([b'T', b'C', b'G', b'A'], dtype='|S1')
    Traceback (most recent call last):
        ...
    AttributeError: can't set attribute
    >>> seq.values[0] = b'T'
    Traceback (most recent call last):
        ...
    ValueError: assignment destination is read-only
    **Retrieving sequence metadata:**
    Retrieve metadata:
    >>> pprint(seq.metadata) # using pprint to display dict in sorted order
    {'authors': ['Alice'], 'desc': 'seq desc', 'id': 'seq-id'}
    Retrieve positional metadata:
    >>> seq.positional_metadata
       exons  quality
    0   True        3
    1   True        3
    2  False        4
    3   True       10
    Retrieve interval metadata:
    >>> seq.interval_metadata   # doctest: +ELLIPSIS
    1 interval feature
    ------------------
    Interval(interval_metadata=<...>, bounds=[(1, 3)], \
fuzzy=[(False, False)], metadata={'gene': 'sagA'})
    **Updating sequence metadata:**
    .. warning:: Be aware that a shallow copy of ``metadata`` and
       ``positional_metadata`` is made for performance. Since a deep copy is
       not made, changes made to mutable Python objects stored as metadata may
       affect the metadata of other ``Sequence`` objects or anything else that
       shares a reference to the object. The following examples illustrate this
       behavior.
    First, let's create a sequence and update its metadata:
    >>> metadata = {'id':'seq-id', 'desc':'seq desc', 'authors': ['Alice']}
    >>> seq = Sequence('ACGT', metadata=metadata)
    >>> seq.metadata['id'] = 'new-id'
    >>> seq.metadata['pubmed'] = 12345
    >>> pprint(seq.metadata)
    {'authors': ['Alice'], 'desc': 'seq desc', 'id': 'new-id', 'pubmed': 12345}
    Note that the original metadata dictionary (stored in variable
    ``metadata``) hasn't changed because a shallow copy was made:
    >>> pprint(metadata)
    {'authors': ['Alice'], 'desc': 'seq desc', 'id': 'seq-id'}
    >>> seq.metadata == metadata
    False
    Note however that since only a *shallow* copy was made, updates to mutable
    objects will also change the original metadata dictionary:
    >>> seq.metadata['authors'].append('Bob')
    >>> seq.metadata['authors']
    ['Alice', 'Bob']
    >>> metadata['authors']
    ['Alice', 'Bob']
    This behavior can also occur when manipulating a sequence that has been
    derived from another sequence:
    >>> subseq = seq[1:3]
    >>> subseq
    Sequence
    -----------------------------
    Metadata:
        'authors': <class 'list'>
        'desc': 'seq desc'
        'id': 'new-id'
        'pubmed': 12345
    Stats:
        length: 2
    -----------------------------
    0 CG
    >>> pprint(subseq.metadata)
    {'authors': ['Alice', 'Bob'],
     'desc': 'seq desc',
     'id': 'new-id',
     'pubmed': 12345}
    The subsequence has inherited the metadata of its parent sequence. If we
    update the subsequence's author list, we see the changes propagated in the
    parent sequence and original metadata dictionary:
    >>> subseq.metadata['authors'].append('Carol')
    >>> subseq.metadata['authors']
    ['Alice', 'Bob', 'Carol']
    >>> seq.metadata['authors']
    ['Alice', 'Bob', 'Carol']
    >>> metadata['authors']
    ['Alice', 'Bob', 'Carol']
    The behavior for updating positional metadata is similar. Let's create a
    new sequence with positional metadata that is already stored in a
    ``pd.DataFrame``:
    >>> positional_metadata = pd.DataFrame(
    ...     {'list': [[], [], [], []], 'quality': [3, 3, 4, 10]})
    >>> seq = Sequence('ACGT', positional_metadata=positional_metadata)
    >>> seq
    Sequence
    -----------------------------
    Positional metadata:
        'list': <dtype: object>
        'quality': <dtype: int64>
    Stats:
        length: 4
    -----------------------------
    0 ACGT
    >>> seq.positional_metadata
      list  quality
    0   []        3
    1   []        3
    2   []        4
    3   []       10
    Now let's update the sequence's positional metadata by adding a new column
    and changing a value in another column:
    >>> seq.positional_metadata['gaps'] = [False, False, False, False]
    >>> seq.positional_metadata.loc[0, 'quality'] = 999
    >>> seq.positional_metadata
      list  quality   gaps
    0   []      999  False
    1   []        3  False
    2   []        4  False
    3   []       10  False
    Note that the original positional metadata (stored in variable
    ``positional_metadata``) hasn't changed because a shallow copy was made:
    >>> positional_metadata
      list  quality
    0   []        3
    1   []        3
    2   []        4
    3   []       10
    >>> seq.positional_metadata.equals(positional_metadata)
    False
    Next let's create a sequence that has been derived from another sequence:
    >>> subseq = seq[1:3]
    >>> subseq
    Sequence
    -----------------------------
    Positional metadata:
        'list': <dtype: object>
        'quality': <dtype: int64>
        'gaps': <dtype: bool>
    Stats:
        length: 2
    -----------------------------
    0 CG
    >>> subseq.positional_metadata
      list  quality   gaps
    0   []        3  False
    1   []        4  False
    As described above for metadata, since only a *shallow* copy was made of
    the positional metadata, updates to mutable objects will also change the
    parent sequence's positional metadata and the original positional metadata
    ``pd.DataFrame``:
    >>> subseq.positional_metadata.loc[0, 'list'].append('item')
    >>> subseq.positional_metadata
         list  quality   gaps
    0  [item]        3  False
    1      []        4  False
    >>> seq.positional_metadata
         list  quality   gaps
    0      []      999  False
    1  [item]        3  False
    2      []        4  False
    3      []       10  False
    >>> positional_metadata
         list  quality
    0      []        3
    1  [item]        3
    2      []        4
    3      []       10
    You can also update the interval metadata. Let's re-create a
    ``Sequence`` object with interval metadata at first:
    >>> seq = Sequence('ACGT')
    >>> interval = seq.interval_metadata.add(
    ...     [(1, 3)], metadata={'gene': 'foo'})
    You can update directly on the ``Interval`` object:
    >>> interval  # doctest: +ELLIPSIS
    Interval(interval_metadata=<...>, bounds=[(1, 3)], \
fuzzy=[(False, False)], metadata={'gene': 'foo'})
    >>> interval.bounds = [(0, 2)]
    >>> interval  # doctest: +ELLIPSIS
    Interval(interval_metadata=<...>, bounds=[(0, 2)], \
fuzzy=[(False, False)], metadata={'gene': 'foo'})
    You can also query and obtain the interval features you are
    interested and then modify them:
    >>> intervals = list(seq.interval_metadata.query(metadata={'gene': 'foo'}))
    >>> intervals[0].fuzzy = [(True, False)]
    >>> print(intervals[0])  # doctest: +ELLIPSIS
    Interval(interval_metadata=<...>, bounds=[(0, 2)], \
fuzzy=[(True, False)], metadata={'gene': 'foo'})
    """
    _number_of_extended_ascii_codes = 256
    # ASCII is built such that the difference between uppercase and lowercase
    # is the 6th bit.
    _ascii_invert_case_bit_offset = 32
    _ascii_lowercase_boundary = 90
    default_write_format = 'fasta'
    __hash__ = None
    @property
    @stable(as_of="0.4.0")
    def values(self):
        r"""Array containing underlying sequence characters.
        Notes
        -----
        This property is not writeable.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('AACGA')
        >>> s.values # doctest: +NORMALIZE_WHITESPACE
        array([b'A', b'A', b'C', b'G', b'A'],
              dtype='|S1')
        """
        return self._bytes.view('|S1')
    @property
    def __array_interface__(self):
        r"""Array interface for compatibility with numpy.
        This property allows a ``Sequence`` object to share its underlying data
        buffer (``Sequence.values``) with numpy. See [1]_ for more details.
        References
        ----------
        .. [1] http://docs.scipy.org/doc/numpy/reference/arrays.interface.html
        Examples
        --------
        >>> import numpy as np
        >>> from skbio import Sequence
        >>> seq = Sequence('ABC123')
        >>> np.asarray(seq) # doctest: +NORMALIZE_WHITESPACE
        array([b'A', b'B', b'C', b'1', b'2', b'3'],
              dtype='|S1')
        """
        return self.values.__array_interface__
    @property
    @experimental(as_of="0.4.1")
    def observed_chars(self):
        r"""Set of observed characters in the sequence.
        Notes
        -----
        This property is not writeable.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('AACGAC')
        >>> s.observed_chars == {'G', 'A', 'C'}
        True
        """
        return set(str(self))
    @property
    def _string(self):
        return self._bytes.tostring()
    @classonlymethod
    @experimental(as_of="0.4.1")
    def concat(cls, sequences, how='strict'):
        r"""Concatenate an iterable of ``Sequence`` objects.
        Parameters
        ----------
        sequences : iterable (Sequence)
            An iterable of ``Sequence`` objects or appropriate subclasses.
        how : {'strict', 'inner', 'outer'}, optional
            How to intersect the `positional_metadata` of the sequences.
            If 'strict': the `positional_metadata` must have the exact same
            columns; 'inner': an inner-join of the columns (only the shared set
            of columns are used); 'outer': an outer-join of the columns
            (all columns are used: missing values will be padded with NaN).
        Returns
        -------
        Sequence
            The returned sequence will be an instance of the class which
            called this class-method.
        Raises
        ------
        ValueError
            If `how` is not one of: 'strict', 'inner', or 'outer'.
        ValueError
            If `how` is 'strict' and the `positional_metadata` of each sequence
            does not have the same columns.
        TypeError
            If the sequences cannot be cast as the calling class.
        Notes
        -----
        The sequence-wide metadata (``Sequence.metadata``) is not retained
        during concatenation.
        Sequence objects can be cast to a different type only when the new
        type is an ancestor or child of the original type. Casting between
        sibling types is not allowed, e.g. ``DNA`` -> ``RNA`` is not
        allowed, but ``DNA`` -> ``Sequence`` or ``Sequence`` -> ``DNA``
        would be.
        Examples
        --------
        Concatenate two DNA sequences into a new DNA object:
        >>> from skbio import DNA, Sequence
        >>> s1 = DNA("ACGT")
        >>> s2 = DNA("GGAA")
        >>> DNA.concat([s1, s2])
        DNA
        --------------------------
        Stats:
            length: 8
            has gaps: False
            has degenerates: False
            has definites: True
            GC-content: 50.00%
        --------------------------
        0 ACGTGGAA
        Concatenate DNA sequences into a Sequence object (type coercion):
        >>> Sequence.concat([s1, s2])
        Sequence
        -------------
        Stats:
            length: 8
        -------------
        0 ACGTGGAA
        Positional metadata is conserved:
        >>> s1 = DNA('AcgT', lowercase='one')
        >>> s2 = DNA('GGaA', lowercase='one',
        ...          positional_metadata={'two': [1, 2, 3, 4]})
        >>> result = DNA.concat([s1, s2], how='outer')
        >>> result
        DNA
        ---------------------------
        Positional metadata:
            'one': <dtype: bool>
            'two': <dtype: float64>
        Stats:
            length: 8
            has gaps: False
            has degenerates: False
            has definites: True
            GC-content: 50.00%
        ---------------------------
        0 ACGTGGAA
        >>> result.positional_metadata
             one  two
        0  False  NaN
        1   True  NaN
        2   True  NaN
        3  False  NaN
        4  False  1.0
        5  False  2.0
        6   True  3.0
        7  False  4.0
        """
        if how not in {'strict', 'inner', 'outer'}:
            raise ValueError("`how` must be 'strict', 'inner', or 'outer'.")
        seqs = list(sequences)
        if len(seqs) == 0:
            return cls("")
        for seq in seqs:
            seq._assert_can_cast_to(cls)
        if how == 'strict':
            how = 'inner'
            cols = set()
            for s in seqs:
                if s.has_positional_metadata():
                    cols.add(frozenset(s.positional_metadata))
                else:
                    cols.add(frozenset())
            if len(cols) > 1:
                raise ValueError("The positional metadata of the sequences do"
                                 " not have matching columns. Consider setting"
                                 " how='inner' or how='outer'")
        seq_data = []
        pm_data = []
        for seq in seqs:
            seq_data.append(seq._bytes)
            pm_data.append(seq.positional_metadata)
            if not seq.has_positional_metadata():
                del seq.positional_metadata
        pm = pd.concat(pm_data, join=how, ignore_index=True, sort=True)
        bytes_ = np.concatenate(seq_data)
        im = IntervalMetadata.concat(i.interval_metadata for i in seqs)
        return cls(bytes_, positional_metadata=pm, interval_metadata=im)
    @classmethod
    def _assert_can_cast_to(cls, target):
        if not (issubclass(cls, target) or issubclass(target, cls)):
            raise TypeError("Cannot cast %r as %r." %
                            (cls.__name__, target.__name__))
    @overrides(PositionalMetadataMixin)
    def _positional_metadata_axis_len_(self):
        return len(self)
    @overrides(IntervalMetadataMixin)
    def _interval_metadata_axis_len_(self):
        return len(self)
    @stable(as_of="0.4.0")
    def __init__(self, sequence, metadata=None, positional_metadata=None,
                 interval_metadata=None, lowercase=False):
        if isinstance(sequence, np.ndarray):
            if sequence.dtype == np.uint8:
                self._set_bytes_contiguous(sequence)
            elif sequence.dtype == '|S1':
                sequence = sequence.view(np.uint8)
                # Guarantee the sequence is an array (might be scalar before
                # this).
                if sequence.shape == ():
                    sequence = np.array([sequence], dtype=np.uint8)
                self._set_bytes_contiguous(sequence)
            else:
                raise TypeError(
                    "Can only create sequence from numpy.ndarray of dtype "
                    "np.uint8 or '|S1'. Invalid dtype: %s" %
                    sequence.dtype)
        elif isinstance(sequence, Sequence):
            # Sequence casting is acceptable between direct
            # decendants/ancestors
            sequence._assert_can_cast_to(type(self))
            if metadata is None and sequence.has_metadata():
                metadata = sequence.metadata
            if (positional_metadata is None and
                    sequence.has_positional_metadata()):
                positional_metadata = sequence.positional_metadata
            if (interval_metadata is None and
                    sequence.has_interval_metadata()):
                interval_metadata = sequence.interval_metadata
            sequence = sequence._bytes
            self._owns_bytes = False
            self._set_bytes(sequence)
        else:
            # Encode as ascii to raise UnicodeEncodeError if necessary.
            if isinstance(sequence, str):
                sequence = sequence.encode("ascii")
            s = np.frombuffer(sequence, dtype=np.uint8)
            # There are two possibilities (to our knowledge) at this point:
            # Either the sequence we were given was something string-like,
            # (else it would not have made it past frombuffer), or it was a
            # numpy scalar, and so our length must be 1.
            if isinstance(sequence, np.generic) and len(s) != 1:
                raise TypeError("Can cannot create a sequence with %r" %
                                type(sequence).__name__)
            sequence = s
            self._owns_bytes = False
            self._set_bytes(sequence)
        MetadataMixin._init_(self, metadata=metadata)
        PositionalMetadataMixin._init_(
            self, positional_metadata=positional_metadata)
        IntervalMetadataMixin._init_(
            self, interval_metadata=interval_metadata)
        if lowercase is False:
            pass
        elif lowercase is True or isinstance(lowercase, str):
            lowercase_mask = self._bytes > self._ascii_lowercase_boundary
            self._convert_to_uppercase(lowercase_mask)
            # If it isn't True, it must be a string_type
            if not (lowercase is True):
                self.positional_metadata[lowercase] = lowercase_mask
        else:
            raise TypeError("lowercase keyword argument expected a bool or "
                            "string, but got %s" % type(lowercase))
    def _set_bytes_contiguous(self, sequence):
        r"""Munge the sequence data into a numpy array of dtype uint8."""
        if not sequence.flags['C_CONTIGUOUS']:
            # numpy doesn't support views of non-contiguous arrays. Since we're
            # making heavy use of views internally, and users may also supply
            # us with a view, make sure we *always* store a contiguous array to
            # avoid hard-to-track bugs. See
            # https://github.com/numpy/numpy/issues/5716
            sequence = np.ascontiguousarray(sequence)
            self._owns_bytes = True
        else:
            self._owns_bytes = False
        self._set_bytes(sequence)
    def _set_bytes(self, sequence):
        sequence.flags.writeable = False
        self._bytes = sequence
    def _convert_to_uppercase(self, lowercase):
        if np.any(lowercase):
            with self._byte_ownership():
                self._bytes[lowercase] ^= self._ascii_invert_case_bit_offset
    @stable(as_of="0.4.0")
    def __contains__(self, subsequence):
        r"""Determine if a subsequence is contained in this sequence.
        Parameters
        ----------
        subsequence : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            The putative subsequence.
        Returns
        -------
        bool
            Indicates whether `subsequence` is contained in this sequence.
        Raises
        ------
        TypeError
            If `subsequence` is a ``Sequence`` object with a different type
            than this sequence.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUCGUGAAGGA')
        >>> 'GGU' in s
        True
        >>> 'CCC' in s
        False
        """
        return self._munge_to_bytestring(subsequence, "in") in self._string
    @stable(as_of="0.4.0")
    def __eq__(self, other):
        r"""Determine if this sequence is equal to another.
        Sequences are equal if they are *exactly* the same type and their
        sequence characters, metadata, and positional metadata are the same.
        Parameters
        ----------
        other : Sequence
            Sequence to test for equality against.
        Returns
        -------
        bool
            Indicates whether this sequence is equal to `other`.
        Examples
        --------
        Define two ``Sequence`` objects that have the same underlying sequence
        of characters:
        >>> from skbio import Sequence
        >>> s = Sequence('ACGT')
        >>> t = Sequence('ACGT')
        The two sequences are considered equal because they are the same type,
        their underlying sequence of characters are the same, and their
        optional metadata attributes (``metadata`` and ``positional_metadata``)
        were not provided:
        >>> s == t
        True
        >>> t == s
        True
        Define another sequence object with a different sequence of characters
        than the previous two sequence objects:
        >>> u = Sequence('ACGA')
        >>> u == t
        False
        Define a sequence with the same sequence of characters as ``u`` but
        with different metadata, positional metadata, and interval metadata:
        >>> v = Sequence('ACGA', metadata={'id': 'abc'},
        ...              positional_metadata={'quality':[1, 5, 3, 3]})
        >>> _ = v.interval_metadata.add([(0, 1)])
        The two sequences are not considered equal because their metadata,
        positional metadata, and interval metadata do not match:
        >>> u == v
        False
        """
        # checks ordered from least to most expensive
        if self.__class__ != other.__class__:
            return False
        if not MetadataMixin._eq_(self, other):
            return False
        if self._string != other._string:
            return False
        if not PositionalMetadataMixin._eq_(self, other):
            return False
        if not IntervalMetadataMixin._eq_(self, other):
            return False
        return True
    @stable(as_of="0.4.0")
    def __ne__(self, other):
        r"""Determine if this sequence is not equal to another.
        Sequences are not equal if they are not *exactly* the same type, or
        their sequence characters, metadata, or positional metadata differ.
        Parameters
        ----------
        other : Sequence
            Sequence to test for inequality against.
        Returns
        -------
        bool
            Indicates whether this sequence is not equal to `other`.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('ACGT')
        >>> t = Sequence('ACGT')
        >>> s != t
        False
        >>> u = Sequence('ACGA')
        >>> u != t
        True
        >>> v = Sequence('ACGA', metadata={'id': 'v'})
        >>> u != v
        True
        """
        return not (self == other)
    @stable(as_of="0.4.0")
    def __getitem__(self, indexable):
        r"""Slice this sequence.
        Notes
        -----
        This drops the ``self.interval_metadata`` from the returned
        new ``Sequence`` object.
        Parameters
        ----------
        indexable : int, slice, iterable (int and slice), 1D array_like (bool)
            The position(s) to return from this sequence. If `indexable` is an
            iterable of integers, these are assumed to be indices in the
            sequence to keep. If `indexable` is a 1D ``array_like`` of
            booleans, these are assumed to be the positions in the sequence to
            keep.
        Returns
        -------
        Sequence
            New sequence containing the position(s) specified by `indexable` in
            this sequence. Positional metadata will be sliced in the same
            manner and included in the returned sequence. `metadata` is
            included in the returned sequence.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUCGUGAAGGA')
        Obtain a single character from the sequence:
        >>> s[1]
        Sequence
        -------------
        Stats:
            length: 1
        -------------
        0 G
        Obtain a slice:
        >>> s[7:]
        Sequence
        -------------
        Stats:
            length: 5
        -------------
        0 AAGGA
        Obtain characters at the following indices:
        >>> s[[3, 4, 7, 0, 3]]
        Sequence
        -------------
        Stats:
            length: 5
        -------------
        0 CGAGC
        Obtain characters at positions evaluating to `True`:
        >>> s = Sequence('GGUCG')
        >>> index = [True, False, True, 'a' is 'a', False]
        >>> s[index]
        Sequence
        -------------
        Stats:
            length: 3
        -------------
        0 GUC
        """
        if (not isinstance(indexable, np.ndarray) and
            ((not isinstance(indexable, str)) and
             hasattr(indexable, '__iter__'))):
            indexable_ = indexable
            indexable = np.asarray(indexable)
            if indexable.dtype == object:
                indexable = list(indexable_)  # TODO: Don't blow out memory
                if len(indexable) == 0:
                    # indexing with an empty list, so convert to ndarray and
                    # fall through to ndarray slicing below
                    indexable = np.asarray(indexable)
                else:
                    seq = np.concatenate(
                        list(_slices_from_iter(self._bytes, indexable)))
                    index = _as_slice_if_single_index(indexable)
                    positional_metadata = None
                    if self.has_positional_metadata():
                        pos_md_slices = list(_slices_from_iter(
                                             self.positional_metadata, index))
                        positional_metadata = pd.concat(pos_md_slices,
                                                        sort=True)
                    metadata = None
                    if self.has_metadata():
                        metadata = self.metadata
                    return self._constructor(
                        sequence=seq,
                        metadata=metadata,
                        positional_metadata=positional_metadata)
        elif (isinstance(indexable, str) or
                isinstance(indexable, bool)):
            raise IndexError("Cannot index with %s type: %r" %
                             (type(indexable).__name__, indexable))
        if (isinstance(indexable, np.ndarray) and
            indexable.dtype == bool and
                len(indexable) != len(self)):
            raise IndexError("An boolean vector index must be the same length"
                             " as the sequence (%d, not %d)." %
                             (len(self), len(indexable)))
        if isinstance(indexable, np.ndarray) and indexable.size == 0:
            # convert an empty ndarray to a supported dtype for slicing a numpy
            # array
            indexable = indexable.astype(int)
        seq = self._bytes[indexable]
        positional_metadata = self._slice_positional_metadata(indexable)
        metadata = None
        if self.has_metadata():
            metadata = self.metadata
        return self._constructor(
            sequence=seq,
            metadata=metadata,
            positional_metadata=positional_metadata)
    def _slice_positional_metadata(self, indexable):
        if self.has_positional_metadata():
            if _is_single_index(indexable):
                index = _single_index_to_slice(indexable)
            else:
                index = indexable
            return self.positional_metadata.iloc[index]
        else:
            return None
    @stable(as_of="0.4.0")
    def __len__(self):
        r"""Return the number of characters in this sequence.
        Returns
        -------
        int
            The length of this sequence.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> len(s)
        4
        """
        return self._bytes.size
    @stable(as_of="0.4.0")
    def __bool__(self):
        r"""Returns truth value (truthiness) of sequence.
        Returns
        -------
        bool
            True if length of sequence is greater than 0, else False.
        Examples
        --------
        >>> from skbio import Sequence
        >>> bool(Sequence(''))
        False
        >>> bool(Sequence('ACGT'))
        True
        """
        return len(self) > 0
    @stable(as_of="0.4.0")
    def __iter__(self):
        r"""Iterate over positions in this sequence.
        Yields
        ------
        Sequence
            Single character subsequence, one for each position in the
            sequence.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> for c in s:
        ...     str(c)
        'G'
        'G'
        'U'
        'C'
        """
        for i in range(len(self)):
            yield self[i]
    @stable(as_of="0.4.0")
    def __reversed__(self):
        r"""Iterate over positions in this sequence in reverse order.
        Yields
        ------
        Sequence
            Single character subsequence, one for each position in the
            sequence.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> for c in reversed(s):
        ...     str(c)
        'C'
        'U'
        'G'
        'G'
        """
        return iter(self[::-1])
    @stable(as_of="0.4.0")
    def __str__(self):
        r"""Return sequence characters as a string.
        Returns
        -------
        str
            Sequence characters as a string. No metadata or positional
            metadata will be included.
        See Also
        --------
        sequence
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUCGUAAAGGA', metadata={'id':'hello'})
        >>> str(s)
        'GGUCGUAAAGGA'
        """
        return str(self._string.decode("ascii"))
    @stable(as_of="0.4.0")
    def __repr__(self):
        r"""Return a string representation of this sequence object.
        Representation includes:
        * sequence type
        * metadata keys and values: will display key/value if it is an
          understood type, otherwise just the type will be displayed. If it is
          an understood type whose representation is too long, just the type
          will be displayed
        * positional metadata: column names and column dtypes will be displayed
          in the order they appear in the positional metadata ``pd.DataFrame``.
          Column names (i.e., keys) follow the same display rules as metadata
          keys
        * interval metadata: the number of interval features will be displayed.
        * sequence stats (e.g., length)
        * up to five lines of chunked sequence data. Each line of chunked
          sequence data displays the current position in the sequence
        Returns
        -------
        str
            String representation of this sequence object.
        Notes
        -----
        Subclasses can override Sequence._repr_stats to provide custom
        statistics.
        Examples
        --------
        Short sequence without metadata:
        >>> from skbio import Sequence
        >>> from skbio.metadata._interval import IntervalMetadata
        >>> Sequence('ACGTAATGGATACGTAATGCA')
        Sequence
        -------------------------
        Stats:
            length: 21
        -------------------------
        0 ACGTAATGGA TACGTAATGC A
        Longer sequence displays first two lines and last two lines:
        >>> Sequence('ACGT' * 100)
        Sequence
        ---------------------------------------------------------------------
        Stats:
            length: 400
        ---------------------------------------------------------------------
        0   ACGTACGTAC GTACGTACGT ACGTACGTAC GTACGTACGT ACGTACGTAC GTACGTACGT
        60  ACGTACGTAC GTACGTACGT ACGTACGTAC GTACGTACGT ACGTACGTAC GTACGTACGT
        ...
        300 ACGTACGTAC GTACGTACGT ACGTACGTAC GTACGTACGT ACGTACGTAC GTACGTACGT
        360 ACGTACGTAC GTACGTACGT ACGTACGTAC GTACGTACGT
        Sequence with metadata, positional metadata, and interval metadata:
        >>> metadata = {
        ...     'id': 'seq-id',
        ...     'description': 'description of the sequence, wrapping across '
        ...     'lines if it\'s too long',
        ...     'authors': ['Alice', 'Bob', 'Carol'],
        ...     'year': 2015,
        ...     'published': True
        ... }
        >>> positional_metadata = {
        ...     'exons': [True, True, False, True],
        ...     'quality': [3, 10, 11, 10]
        ... }
        >>> seq = Sequence('ACGT', metadata=metadata,
        ...          positional_metadata=positional_metadata)
        >>> _ = seq.interval_metadata.add([(0, 2)], metadata={'gene': 'sagA'})
        >>> seq
        Sequence
        ----------------------------------------------------------------------
        Metadata:
            'authors': <class 'list'>
            'description': "description of the sequence, wrapping across lines
                            if it's too long"
            'id': 'seq-id'
            'published': True
            'year': 2015
        Positional metadata:
            'exons': <dtype: bool>
            'quality': <dtype: int64>
        Interval metadata:
            1 interval feature
        Stats:
            length: 4
        ----------------------------------------------------------------------
        0 ACGT
        """
        return _SequenceReprBuilder(
            seq=self,
            width=71,  # 79 for pep8, 8 space indent for docstrings
            indent=4,
            chunk_size=10).build()
    def _repr_stats(self):
        r"""Define statistics to display in the sequence's repr.
        Subclasses can override this method to provide type-specific
        statistics.
        This method computes a single statistic: length.
        Returns
        -------
        list
            List of tuples where each tuple represents a statistic. Each tuple
            contains exactly two ``str`` elements: the statistic's name/label,
            and the str-formatted value of the statistic. Ordering of
            statistics (i.e., list order) determines display order in the
            sequence repr.
        """
        return [('length', '%d' % len(self))]
    @stable(as_of="0.4.0")
    def __copy__(self):
        r"""Return a shallow copy of this sequence.
        See Also
        --------
        copy
        Notes
        -----
        This method is equivalent to ``seq.copy(deep=False)``.
        """
        return self._copy(False, {})
    @stable(as_of="0.4.0")
    def __deepcopy__(self, memo):
        r"""Return a deep copy of this sequence.
        See Also
        --------
        copy
        Notes
        -----
        This method is equivalent to ``seq.copy(deep=True)``.
        """
        return self._copy(True, memo)
    def _copy(self, deep, memo):
        # strategy: copy the sequence without metadata first, then set metadata
        # attributes with copies. we take this approach instead of simply
        # passing the metadata through the Sequence constructor because we
        # don't want to copy twice (this could happen when deep=True, where we
        # deep copy here and then shallow copy in the Sequence constructor). we
        # also directly set the private metadata attributes instead of using
        # their public setters to avoid an unnecessary copy
        # we don't make a distinction between deep vs. shallow copy of bytes
        # because dtype=np.uint8. we only need to make the distinction when
        # dealing with object dtype
        bytes_ = np.copy(self._bytes)
        seq_copy = self._constructor(sequence=bytes_, metadata=None,
                                     positional_metadata=None,
                                     interval_metadata=None)
        if deep:
            seq_copy._metadata = MetadataMixin._deepcopy_(self, memo)
            seq_copy._positional_metadata = \
                PositionalMetadataMixin._deepcopy_(self, memo)
            seq_copy._interval_metadata = IntervalMetadataMixin._deepcopy_(
                self, memo)
        else:
            seq_copy._metadata = MetadataMixin._copy_(self)
            seq_copy._positional_metadata = \
                PositionalMetadataMixin._copy_(self)
            seq_copy._interval_metadata = IntervalMetadataMixin._copy_(
                self)
        return seq_copy
    @stable(as_of='0.4.0')
    def lowercase(self, lowercase):
        r"""Return a case-sensitive string representation of the sequence.
        Parameters
        ----------
        lowercase: str or boolean vector
            If lowercase is a boolean vector, it is used to set sequence
            characters to lowercase in the output string. True values in the
            boolean vector correspond to lowercase characters. If lowercase
            is a str, it is treated like a key into the positional metadata,
            pointing to a column which must be a boolean vector.
            That boolean vector is then used as described previously.
        Returns
        -------
        str
            String representation of sequence with specified characters set to
            lowercase.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('ACGT')
        >>> s.lowercase([True, True, False, False])
        'acGT'
        >>> s = Sequence('ACGT',
        ...              positional_metadata={
        ...                 'exons': [True, False, False, True]})
        >>> s.lowercase('exons')
        'aCGt'
        Constructor automatically populates a column in positional metadata
        when the ``lowercase`` keyword argument is provided with a column name:
        >>> s = Sequence('ACgt', lowercase='introns')
        >>> s.lowercase('introns')
        'ACgt'
        >>> s = Sequence('ACGT', lowercase='introns')
        >>> s.lowercase('introns')
        'ACGT'
        """
        index = self._munge_to_index_array(lowercase)
        outbytes = self._bytes.copy()
        outbytes[index] ^= self._ascii_invert_case_bit_offset
        return str(outbytes.tostring().decode('ascii'))
    @stable(as_of="0.4.0")
    def count(self, subsequence, start=None, end=None):
        r"""Count occurrences of a subsequence in this sequence.
        Parameters
        ----------
        subsequence : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            Subsequence to count occurrences of.
        start : int, optional
            The position at which to start counting (inclusive).
        end : int, optional
            The position at which to stop counting (exclusive).
        Returns
        -------
        int
            Number of occurrences of `subsequence` in this sequence.
        Raises
        ------
        ValueError
            If `subsequence` is of length 0.
        TypeError
            If `subsequence` is a ``Sequence`` object with a different type
            than this sequence.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUCG')
        >>> s.count('G')
        3
        >>> s.count('GG')
        1
        >>> s.count('T')
        0
        >>> s.count('G', 2, 5)
        1
        """
        if len(subsequence) == 0:
            raise ValueError("`count` is not defined for empty subsequences.")
        return self._string.count(
            self._munge_to_bytestring(subsequence, "count"), start, end)
    @experimental(as_of="0.5.0")
    def replace(self, where, character):
        r"""Replace values in this sequence with a different character.
        Parameters
        ----------
        where : 1D array_like (bool) or iterable (slices or ints) or str
            Indicates positions in the sequence to replace with `character`.
            Can be a boolean vector, an iterable of indices/slices, or a
            string that is a key in `positional_metadata` pointing to a
            boolean vector.
        character : str or bytes
            Character that will replace chosen items in this sequence.
        Returns
        -------
        Sequence
            Copy of this sequence, with chosen items replaced with chosen
            character. All metadata is retained.
        Examples
        --------
        Let's create and display a Sequence:
        >>> from skbio import Sequence
        >>> sequence = Sequence('GGTACCAACG')
        >>> str(sequence)
        'GGTACCAACG'
        Let's call ``replace`` on the Sequence using a boolean vector for
        ``where`` and assign it to a new variable:
        >>> seq = sequence.replace([False, False, False, True, False, False,
        ...                         True, True, False, False], '-')
        Let's take a look at the new Sequence:
        >>> str(seq)
        'GGT-CC--CG'
        Other types of input are accepted by the ``where`` parameter. Let's
        pass in a list of indices and slices that is equivalent to the boolean
        vector we used previously:
        >>> str(seq) == str(sequence.replace([3, slice(6, 8)], '-'))
        True
        ``where`` also accepts a boolean vector contained in
        ``Sequence.positional_metadata``:
        >>> sequence.positional_metadata = {'where':
        ...                                 [False, False, False, True, False,
        ...                                  False, True, True, False, False]}
        Let's pass in the key ``'where'`` and compare to ``seq``:
        >>> str(seq) == str(sequence.replace('where', '-'))
        True
        """
        if type(character) is not bytes:
            character = character.encode('ascii')
        character = ord(character)
        index = self._munge_to_index_array(where)
        seq_bytes = self._bytes.copy()
        seq_bytes[index] = character
        metadata = None
        if self.has_metadata():
            metadata = self.metadata
        positional_metadata = None
        if self.has_positional_metadata():
            positional_metadata = self.positional_metadata
        interval_metadata = None
        if self.has_interval_metadata():
            interval_metadata = self.interval_metadata
        # Use __class__ instead of _constructor so that validations are
        # performed for subclasses (the user could have introduced invalid
        # characters).
        return self.__class__(seq_bytes, metadata=metadata,
                              positional_metadata=positional_metadata,
                              interval_metadata=interval_metadata)
    @stable(as_of="0.4.0")
    def index(self, subsequence, start=None, end=None):
        r"""Find position where subsequence first occurs in the sequence.
        Parameters
        ----------
        subsequence : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            Subsequence to search for in this sequence.
        start : int, optional
            The position at which to start searching (inclusive).
        end : int, optional
            The position at which to stop searching (exclusive).
        Returns
        -------
        int
            Position where `subsequence` first occurs in this sequence.
        Raises
        ------
        ValueError
            If `subsequence` is not present in this sequence.
        TypeError
            If `subsequence` is a ``Sequence`` object with a different type
            than this sequence.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('ACACGACGTT-')
        >>> s.index('ACG')
        2
        """
        try:
            return self._string.index(
                self._munge_to_bytestring(subsequence, "index"), start, end)
        except ValueError:
            raise ValueError(
                "%r is not present in %r." % (subsequence, self))
    @experimental(as_of="0.4.0")
    def distance(self, other, metric=None):
        r"""Compute the distance to another sequence.
        Parameters
        ----------
        other : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            Sequence to compute the distance to. If `other` is a ``Sequence``
            object, it must be the same type as this sequence. Other input
            types will be converted into a ``Sequence`` object of the same type
            as this sequence.
        metric : function, optional
            Function used to compute the distance between this sequence and
            `other`. If ``None`` (the default), Hamming distance will be used
            (:func:`skbio.sequence.distance.hamming`). `metric` should take two
            ``skbio.Sequence`` objects and return a ``float``. The sequence
            objects passed to `metric` will be the same type as this sequence.
            See :mod:`skbio.sequence.distance` for other predefined metrics
            that can be supplied via `metric`.
        Returns
        -------
        float
            Distance between this sequence and `other` as defined by `metric`.
        Raises
        ------
        TypeError
            If `other` is a ``Sequence`` object with a different type than this
            sequence.
        See Also
        --------
        skbio.sequence.distance
        fraction_diff
        fraction_same
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> t = Sequence('AGUC')
        Compute Hamming distance (the default metric):
        >>> s.distance(t)
        0.25
        Use a custom metric:
        >>> def custom_metric(s1, s2): return 0.42
        >>> s.distance(t, custom_metric)
        0.42
        """
        # TODO refactor this method to accept a name (string) of the distance
        # metric to apply and accept **kwargs
        other = self._munge_to_self_type(other, 'distance')
        if metric is None:
            metric = skbio.sequence.distance.hamming
        return float(metric(self, other))
    @stable(as_of="0.4.0")
    def matches(self, other):
        r"""Find positions that match with another sequence.
        Parameters
        ----------
        other : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            Sequence to compare to.
        Returns
        -------
        1D np.ndarray (bool)
            Boolean vector where ``True`` at position ``i`` indicates a match
            between the sequences at their positions ``i``.
        Raises
        ------
        ValueError
            If the sequences are not the same length.
        TypeError
            If `other` is a ``Sequence`` object with a different type than this
            sequence.
        See Also
        --------
        mismatches
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> t = Sequence('GAUU')
        >>> s.matches(t)
        array([ True, False,  True, False], dtype=bool)
        """
        other = self._munge_to_sequence(other, 'matches/mismatches')
        if len(self) != len(other):
            raise ValueError("Match and mismatch vectors can only be "
                             "generated from equal length sequences.")
        return self._bytes == other._bytes
    @stable(as_of="0.4.0")
    def mismatches(self, other):
        r"""Find positions that do not match with another sequence.
        Parameters
        ----------
        other : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            Sequence to compare to.
        Returns
        -------
        1D np.ndarray (bool)
            Boolean vector where ``True`` at position ``i`` indicates a
            mismatch between the sequences at their positions ``i``.
        Raises
        ------
        ValueError
            If the sequences are not the same length.
        TypeError
            If `other` is a ``Sequence`` object with a different type than this
            sequence.
        See Also
        --------
        matches
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> t = Sequence('GAUU')
        >>> s.mismatches(t)
        array([False,  True, False,  True], dtype=bool)
        """
        return np.invert(self.matches(other))
    @stable(as_of="0.4.0")
    def match_frequency(self, other, relative=False):
        r"""Return count of positions that are the same between two sequences.
        Parameters
        ----------
        other : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            Sequence to compare to.
        relative : bool, optional
            If ``True``, return the relative frequency of matches instead of
            the count.
        Returns
        -------
        int or float
            Number of positions that are the same between the sequences. This
            will be an ``int`` if `relative` is ``False`` and a ``float``
            if `relative` is ``True``.
        Raises
        ------
        ValueError
            If the sequences are not the same length.
        TypeError
            If `other` is a ``Sequence`` object with a different type than this
            sequence.
        See Also
        --------
        mismatch_frequency
        matches
        mismatches
        distance
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> t = Sequence('AGUC')
        >>> s.match_frequency(t)
        3
        >>> s.match_frequency(t, relative=True)
        0.75
        """
        if relative:
            return float(self.matches(other).mean())
        else:
            return int(self.matches(other).sum())
    @stable(as_of="0.4.0")
    def mismatch_frequency(self, other, relative=False):
        r"""Return count of positions that differ between two sequences.
        Parameters
        ----------
        other : str, Sequence, or 1D np.ndarray (np.uint8 or '\|S1')
            Sequence to compare to.
        relative : bool, optional
            If ``True``, return the relative frequency of mismatches instead of
            the count.
        Returns
        -------
        int or float
            Number of positions that differ between the sequences. This will be
            an ``int`` if `relative` is ``False`` and a ``float``
            if `relative` is ``True``.
        Raises
        ------
        ValueError
            If the sequences are not the same length.
        TypeError
            If `other` is a ``Sequence`` object with a different type than this
            sequence.
        See Also
        --------
        match_frequency
        matches
        mismatches
        distance
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('GGUC')
        >>> t = Sequence('AGUC')
        >>> s.mismatch_frequency(t)
        1
        >>> s.mismatch_frequency(t, relative=True)
        0.25
        """
        if relative:
            return float(self.mismatches(other).mean())
        else:
            return int(self.mismatches(other).sum())
    @experimental(as_of="0.4.1")
    def frequencies(self, chars=None, relative=False):
        r"""Compute frequencies of characters in the sequence.
        Parameters
        ----------
        chars : str or set of str, optional
            Characters to compute the frequencies of. May be a ``str``
            containing a single character or a ``set`` of single-character
            strings. If ``None``, frequencies will be computed for all
            characters present in the sequence.
        relative : bool, optional
            If ``True``, return the relative frequency of each character
            instead of its count. If `chars` is provided, relative frequencies
            will be computed with respect to the number of characters in the
            sequence, **not** the total count of characters observed in
            `chars`. Thus, the relative frequencies will not necessarily sum to
            1.0 if `chars` is provided.
        Returns
        -------
        dict
            Frequencies of characters in the sequence.
        Raises
        ------
        TypeError
            If `chars` is not a ``str`` or ``set`` of ``str``.
        ValueError
            If `chars` is not a single-character ``str`` or a ``set`` of
            single-character strings.
        ValueError
            If `chars` contains characters outside the allowable range of
            characters in a ``Sequence`` object.
        See Also
        --------
        kmer_frequencies
        iter_kmers
        Notes
        -----
        If the sequence is empty (i.e., length zero), ``relative=True``,
        **and** `chars` is provided, the relative frequency of each specified
        character will be ``np.nan``.
        If `chars` is not provided, this method is equivalent to, but faster
        than, ``seq.kmer_frequencies(k=1)``.
        If `chars` is not provided, it is equivalent to, but faster than,
        passing ``chars=seq.observed_chars``.
        Examples
        --------
        Compute character frequencies of a sequence:
        >>> from pprint import pprint
        >>> from skbio import Sequence
        >>> seq = Sequence('AGAAGACC')
        >>> freqs = seq.frequencies()
        >>> pprint(freqs) # using pprint to display dict in sorted order
        {'A': 4, 'C': 2, 'G': 2}
        Compute relative character frequencies:
        >>> freqs = seq.frequencies(relative=True)
        >>> pprint(freqs)
        {'A': 0.5, 'C': 0.25, 'G': 0.25}
        Compute relative frequencies of characters A, C, and T:
        >>> freqs = seq.frequencies(chars={'A', 'C', 'T'}, relative=True)
        >>> pprint(freqs)
        {'A': 0.5, 'C': 0.25, 'T': 0.0}
        Note that since character T is not in the sequence we receive a
        relative frequency of 0.0. The relative frequencies of A and C are
        relative to the number of characters in the sequence (8), **not** the
        number of A and C characters (4 + 2 = 6).
        """
        freqs = np.bincount(self._bytes,
                            minlength=self._number_of_extended_ascii_codes)
        if chars is not None:
            chars, indices = self._chars_to_indices(chars)
        else:
            indices, = np.nonzero(freqs)
            # Downcast from int64 to uint8 then convert to str. This is safe
            # because we are guaranteed to have indices in the range 0 to 255
            # inclusive.
            chars = indices.astype(np.uint8).tostring().decode('ascii')
        obs_counts = freqs[indices]
        if relative:
            obs_counts = obs_counts / len(self)
        # Use tolist() for minor performance gain.
        return dict(zip(chars, obs_counts.tolist()))
    def _chars_to_indices(self, chars):
        r"""Helper for Sequence.frequencies."""
        if isinstance(chars, (str, bytes)):
            chars = set([chars])
        elif not isinstance(chars, set):
            raise TypeError(
                "`chars` must be of type `set`, not %r" % type(chars).__name__)
        # Impose an (arbitrary) ordering to `chars` so that we can return
        # `indices` in that same order.
        chars = list(chars)
        indices = []
        for char in chars:
            if not isinstance(char, (str, bytes)):
                raise TypeError(
                    "Each element of `chars` must be string-like, not %r" %
                    type(char).__name__)
            if len(char) != 1:
                raise ValueError(
                    "Each element of `chars` must contain a single "
                    "character (found %d characters)" % len(char))
            index = ord(char)
            if index >= self._number_of_extended_ascii_codes:
                raise ValueError(
                    "Character %r in `chars` is outside the range of "
                    "allowable characters in a `Sequence` object." % char)
            indices.append(index)
        return chars, indices
    @stable(as_of="0.4.0")
    def iter_kmers(self, k, overlap=True):
        r"""Generate kmers of length `k` from this sequence.
        Parameters
        ----------
        k : int
            The kmer length.
        overlap : bool, optional
            Defines whether the kmers should be overlapping or not.
        Yields
        ------
        Sequence
            kmer of length `k` contained in this sequence.
        Raises
        ------
        ValueError
            If `k` is less than 1.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('ACACGACGTT')
        >>> for kmer in s.iter_kmers(4, overlap=False):
        ...     str(kmer)
        'ACAC'
        'GACG'
        >>> for kmer in s.iter_kmers(3, overlap=True):
        ...     str(kmer)
        'ACA'
        'CAC'
        'ACG'
        'CGA'
        'GAC'
        'ACG'
        'CGT'
        'GTT'
        """
        if k < 1:
            raise ValueError("k must be greater than 0.")
        if overlap:
            step = 1
            count = len(self) - k + 1
        else:
            step = k
            count = len(self) // k
        if len(self) == 0 or self.has_positional_metadata():
            # Slower path when sequence is empty or positional metadata needs
            # to be sliced.
            for i in range(0, len(self) - k + 1, step):
                yield self[i:i+k]
        else:
            # Optimized path when positional metadata doesn't need slicing.
            kmers = np.lib.stride_tricks.as_strided(
                self._bytes, shape=(k, count), strides=(1, step)).T
            metadata = None
            if self.has_metadata():
                metadata = self.metadata
            for s in kmers:
                yield self._constructor(
                    sequence=s,
                    metadata=metadata,
                    positional_metadata=None)
    @stable(as_of="0.4.0")
    def kmer_frequencies(self, k, overlap=True, relative=False):
        r"""Return counts of words of length `k` from this sequence.
        Parameters
        ----------
        k : int
            The word length.
        overlap : bool, optional
            Defines whether the kmers should be overlapping or not.
        relative : bool, optional
            If ``True``, return the relative frequency of each kmer instead of
            its count.
        Returns
        -------
        dict
            Frequencies of words of length `k` contained in this sequence.
        Raises
        ------
        ValueError
            If `k` is less than 1.
        Examples
        --------
        >>> from pprint import pprint
        >>> from skbio import Sequence
        >>> s = Sequence('ACACATTTATTA')
        >>> freqs = s.kmer_frequencies(3, overlap=False)
        >>> pprint(freqs) # using pprint to display dict in sorted order
        {'ACA': 1, 'CAT': 1, 'TTA': 2}
        >>> freqs = s.kmer_frequencies(3, relative=True, overlap=False)
        >>> pprint(freqs)
        {'ACA': 0.25, 'CAT': 0.25, 'TTA': 0.5}
        """
        kmers = self.iter_kmers(k, overlap=overlap)
        freqs = dict(collections.Counter((str(seq) for seq in kmers)))
        if relative:
            if overlap:
                num_kmers = len(self) - k + 1
            else:
                num_kmers = len(self) // k
            relative_freqs = {}
            for kmer, count in freqs.items():
                relative_freqs[kmer] = count / num_kmers
            freqs = relative_freqs
        return freqs
    @stable(as_of="0.4.0")
    def find_with_regex(self, regex, ignore=None):
        r"""Generate slices for patterns matched by a regular expression.
        Parameters
        ----------
        regex : str or regular expression object
            String to be compiled into a regular expression, or a pre-
            compiled regular expression object (e.g., from calling
            ``re.compile``).
        ignore : 1D array_like (bool) or iterable (slices or ints), optional
            Indicate the positions to ignore when matching.
        Yields
        ------
        slice
            Location where the regular expression matched.
        Examples
        --------
        >>> from skbio import Sequence
        >>> s = Sequence('AATATACCGGTTATAA')
        >>> for match in s.find_with_regex('(TATA+)'):
        ...     match
        ...     str(s[match])
        slice(2, 6, None)
        'TATA'
        slice(11, 16, None)
        'TATAA'
        """
        if isinstance(regex, str):
            regex = re.compile(regex)
        lookup = np.arange(len(self))
        if ignore is None:
            string = str(self)
        else:
            ignore = self._munge_to_index_array(ignore)
            lookup = np.delete(lookup, ignore)
            string = str(self[lookup])
        for match in regex.finditer(string):
            # We start at 1 because we don't want the group that contains all
            # other groups.
            for g in range(1, len(match.groups())+1):
                yield slice(lookup[match.start(g)],
                            lookup[match.end(g) - 1] + 1)
    @stable(as_of="0.4.0")
    def iter_contiguous(self, included, min_length=1, invert=False):
        r"""Yield contiguous subsequences based on `included`.
        Parameters
        ----------
        included : 1D array_like (bool) or iterable (slices or ints)
            `included` is transformed into a flat boolean vector where each
            position will either be included or skipped. All contiguous
            included positions will be yielded as a single region.
        min_length : int, optional
            The minimum length of a subsequence for it to be yielded.
            Default is 1.
        invert : bool, optional
            Whether to invert `included` such that it describes what should be
            skipped instead of included. Default is False.
        Yields
        ------
        Sequence
            Contiguous subsequence as indicated by `included`.
        Notes
        -----
        If slices provide adjacent ranges, then they will be considered the
        same contiguous subsequence.
        Examples
        --------
        Here we use `iter_contiguous` to find all of the contiguous ungapped
        sequences using a boolean vector derived from our DNA sequence.
        >>> from skbio import DNA
        >>> s = DNA('AAA--TT-CCCC-G-')
        >>> no_gaps = ~s.gaps()
        >>> for ungapped_subsequence in s.iter_contiguous(no_gaps,
        ...                                               min_length=2):
        ...     print(ungapped_subsequence)
        AAA
        TT
        CCCC
        Note how the last potential subsequence was skipped because it would
        have been smaller than our `min_length` which was set to 2.
        We can also use `iter_contiguous` on a generator of slices as is
        produced by `find_motifs` (and `find_with_regex`).
        >>> from skbio import Protein
        >>> s = Protein('ACDFNASANFTACGNPNRTESL')
        >>> for subseq in s.iter_contiguous(s.find_motifs('N-glycosylation')):
        ...     print(subseq)
        NASANFTA
        NRTE
        Note how the first subsequence contains two N-glycosylation sites. This
        happened because they were contiguous.
        """
        idx = self._munge_to_index_array(included)
        if invert:
            idx = np.delete(np.arange(len(self)), idx)
        # Adapted from http://stackoverflow.com/a/7353335/579416
        for contig in np.split(idx, np.where(np.diff(idx) != 1)[0] + 1):
            r = self[contig]
            if len(r) >= min_length:
                yield r
    def _constructor(self, **kwargs):
        return self.__class__(**kwargs)
    def _munge_to_index_array(self, sliceable):
        r"""Return an index array from something isomorphic to a boolean vector.
        """
        if isinstance(sliceable, str):
            if sliceable in self.positional_metadata:
                if self.positional_metadata[sliceable].dtype == np.bool:
                    sliceable = self.positional_metadata[sliceable]
                else:
                    raise TypeError("Column '%s' in positional metadata does "
                                    "not correspond to a boolean vector" %
                                    sliceable)
            else:
                raise ValueError("No positional metadata associated with key "
                                 "'%s'" % sliceable)
        if not hasattr(sliceable, 'dtype') or (hasattr(sliceable, 'dtype') and
                                               sliceable.dtype == 'object'):
            sliceable = tuple(sliceable)
            bool_mode = False
            int_mode = False
            for s in sliceable:
                if isinstance(s, (bool, np.bool_)):
                    bool_mode = True
                elif isinstance(s, (slice, int, np.signedinteger)) or (
                        hasattr(s, 'dtype') and s.dtype != np.bool):
                    int_mode = True
                else:
                    raise TypeError("Invalid type in iterable: %s, must be one"
                                    " of {bool, int, slice, np.signedinteger}"
                                    % s.__class__.__name__)
            if bool_mode and int_mode:
                raise TypeError("Cannot provide iterable of both bool and"
                                " int.")
            sliceable = np.r_[sliceable]
        if sliceable.dtype == np.bool:
            if sliceable.size != len(self):
                raise ValueError("Boolean array (%d) does not match length of"
                                 " sequence (%d)."
                                 % (sliceable.size, len(self)))
            normalized, = np.where(sliceable)
        else:
            normalized = np.bincount(sliceable)
            if np.any(normalized > 1):
                raise ValueError("Overlapping index regions are not allowed.")
            normalized, = np.where(normalized)
            if np.any(normalized != sliceable):
                raise ValueError("Index regions are out of order.")
        return normalized
    def _munge_to_self_type(self, other, method):
        if isinstance(other, Sequence):
            if type(other) != type(self):
                raise TypeError("Cannot use %s and %s together with `%s`" %
                                (self.__class__.__name__,
                                 other.__class__.__name__, method))
            else:
                return other
        return self.__class__(other)
    def _munge_to_sequence(self, other, method):
        if isinstance(other, Sequence):
            if type(other) != type(self):
                raise TypeError("Cannot use %s and %s together with `%s`" %
                                (self.__class__.__name__,
                                 other.__class__.__name__, method))
            else:
                return other
        # We don't use self.__class__ or self._constructor here because we want
        # to construct the most general type of Sequence object in order to
        # avoid validation errors.
        return Sequence(other)
    def _munge_to_bytestring(self, other, method):
        if type(other) is bytes:
            return other
        elif isinstance(other, str):
            return other.encode('ascii')
        else:
            return self._munge_to_sequence(other, method)._string
    @contextmanager
    def _byte_ownership(self):
        if not self._owns_bytes:
            self._bytes = self._bytes.copy()
            self._owns_bytes = True
        self._bytes.flags.writeable = True
        yield
        self._bytes.flags.writeable = False
def _single_index_to_slice(start_index):
    end_index = None if start_index == -1 else start_index+1
    return slice(start_index, end_index)
def _is_single_index(index):
    return (isinstance(index, numbers.Integral) and
            not isinstance(index, bool))
def _as_slice_if_single_index(indexable):
    if _is_single_index(indexable):
        return _single_index_to_slice(indexable)
    else:
        return indexable
def _slices_from_iter(array, indexables):
    for i in indexables:
        if isinstance(i, slice):
            pass
        elif _is_single_index(i):
            i = _single_index_to_slice(i)
        else:
            raise IndexError("Cannot slice sequence from iterable "
                             "containing %r." % i)
        yield array[i]
 |