File: test_mantel.py

package info (click to toggle)
python-skbio 0.5.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 17,492 kB
  • sloc: python: 46,829; ansic: 672; makefile: 184; javascript: 50; sh: 19
file content (574 lines) | stat: -rw-r--r-- 22,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

from unittest import TestCase, main

import numpy as np
import numpy.testing as npt
import pandas as pd

from skbio import DistanceMatrix
from skbio.stats.distance import (DissimilarityMatrixError,
                                  DistanceMatrixError, mantel, pwmantel)
from skbio.stats.distance._mantel import _order_dms
from skbio.util import get_data_path, assert_data_frame_almost_equal


class MantelTestData(TestCase):
    def setUp(self):
        # Small dataset of minimal size (3x3). Mix of floats and ints in a
        # native Python nested list structure.
        self.minx = [[0, 1, 2], [1, 0, 3], [2, 3, 0]]
        self.miny = [[0, 2, 7], [2, 0, 6], [7, 6, 0]]
        self.minz = [[0, 0.5, 0.25], [0.5, 0, 0.1], [0.25, 0.1, 0]]

        # Version of the above dataset stored as DistanceMatrix instances.
        self.minx_dm = DistanceMatrix(self.minx)
        self.miny_dm = DistanceMatrix(self.miny)
        self.minz_dm = DistanceMatrix(self.minz)

        # Versions of self.minx_dm and self.minz_dm that each have an extra ID
        # on the end.
        self.minx_dm_extra = DistanceMatrix([[0, 1, 2, 7],
                                             [1, 0, 3, 2],
                                             [2, 3, 0, 4],
                                             [7, 2, 4, 0]],
                                            ['0', '1', '2', 'foo'])
        self.minz_dm_extra = DistanceMatrix([[0, 0.5, 0.25, 3],
                                             [0.5, 0, 0.1, 24],
                                             [0.25, 0.1, 0, 5],
                                             [3, 24, 5, 0]],
                                            ['0', '1', '2', 'bar'])


class MantelTests(MantelTestData):
    """Results were verified with R 3.1.0 and vegan 2.0-10 (vegan::mantel).

    vegan::mantel performs a one-sided (greater) test and does not have the
    option to specify different alternative hypotheses. In order to test the
    other alternative hypotheses, I modified vegan::mantel to perform the
    appropriate test, source()'d the file and verified the output.

    """

    def setUp(self):
        super(MantelTests, self).setUp()

        self.methods = ('pearson', 'spearman', 'kendalltau')
        self.alternatives = ('two-sided', 'greater', 'less')

        # No variation in distances. Taken from Figure 10.20(b), pg. 603 in L&L
        # 3rd edition. Their example is 4x4 but using 3x3 here for easy
        # comparison to the minimal dataset above.
        self.no_variation = [[0, 0.667, 0.667],
                             [0.667, 0, 0.667],
                             [0.667, 0.667, 0]]

        # This second dataset is derived from vegan::mantel's example dataset.
        # The "veg" distance matrix contains Bray-Curtis distances derived from
        # the varespec data (named "veg.dist" in the example). The "env"
        # distance matrix contains Euclidean distances derived from scaled
        # varechem data (named "env.dist" in the example).
        self.veg_dm_vegan = np.loadtxt(
            get_data_path('mantel_veg_dm_vegan.txt'))
        self.env_dm_vegan = np.loadtxt(
            get_data_path('mantel_env_dm_vegan.txt'))

        # Expected test statistic when comparing x and y with method='pearson'.
        self.exp_x_vs_y = 0.7559289

        # Expected test statistic when comparing x and z with method='pearson'.
        self.exp_x_vs_z = -0.9897433

    def test_statistic_same_across_alternatives_and_permutations(self):
        # Varying permutations and alternative hypotheses shouldn't affect the
        # computed test statistics.
        for n in (0, 99, 999):
            for alt in self.alternatives:
                for method, exp in (('pearson', self.exp_x_vs_y),
                                    ('spearman', 0.5),
                                    ('kendalltau', 0.33333333333333337)):
                    obs = mantel(self.minx, self.miny, method=method,
                                 permutations=n, alternative=alt)[0]
                    self.assertAlmostEqual(obs, exp)

    def test_comparing_same_matrices(self):
        for method in self.methods:
            obs = mantel(self.minx, self.minx, method=method)[0]
            self.assertAlmostEqual(obs, 1)

            obs = mantel(self.miny, self.miny, method=method)[0]
            self.assertAlmostEqual(obs, 1)

    def test_negative_correlation(self):
        for method, exp in (('pearson', self.exp_x_vs_z), ('spearman', -1)):
            obs = mantel(self.minx, self.minz, method=method)[0]
            self.assertAlmostEqual(obs, exp)

    def test_zero_permutations(self):
        for alt in self.alternatives:
            for method, exp in (('pearson', self.exp_x_vs_y),
                                ('spearman', 0.5),
                                ('kendalltau', 0.33333333333333337)):
                obs = mantel(self.minx, self.miny, permutations=0,
                             method=method, alternative=alt)
                self.assertAlmostEqual(obs[0], exp)
                npt.assert_equal(obs[1], np.nan)
                self.assertEqual(obs[2], 3)

                # swapping order of matrices should give same result
                obs = mantel(self.miny, self.minx, permutations=0,
                             method=method, alternative=alt)
                self.assertAlmostEqual(obs[0], exp)
                npt.assert_equal(obs[1], np.nan)
                self.assertEqual(obs[2], 3)

    def test_distance_matrix_instances_as_input(self):
        # Matrices with all matching IDs in the same order.
        np.random.seed(0)

        obs = mantel(self.minx_dm, self.miny_dm, alternative='less')

        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)

    def test_distance_matrix_instances_with_reordering_and_nonmatching(self):
        x = self.minx_dm_extra.filter(['1', '0', 'foo', '2'])
        y = self.miny_dm.filter(['0', '2', '1'])

        # strict=True should disallow IDs that aren't found in both matrices
        with self.assertRaises(ValueError):
            mantel(x, y, alternative='less', strict=True)

        np.random.seed(0)

        # strict=False should ignore IDs that aren't found in both matrices
        obs = mantel(x, y, alternative='less', strict=False)

        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)

    def test_distance_matrix_instances_with_lookup(self):
        self.minx_dm.ids = ('a', 'b', 'c')
        self.miny_dm.ids = ('d', 'e', 'f')
        lookup = {'a': 'A', 'b': 'B', 'c': 'C',
                  'd': 'A', 'e': 'B', 'f': 'C'}

        np.random.seed(0)

        obs = mantel(self.minx_dm, self.miny_dm, alternative='less',
                     lookup=lookup)
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)

    def test_one_sided_greater(self):
        np.random.seed(0)

        obs = mantel(self.minx, self.miny, alternative='greater')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.324)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.minx, alternative='greater')
        self.assertAlmostEqual(obs[0], 1)
        self.assertAlmostEqual(obs[1], 0.172)
        self.assertEqual(obs[2], 3)

    def test_one_sided_less(self):
        # no need to seed here as permuted test statistics will all be less
        # than or equal to the observed test statistic (1.0)
        for method in self.methods:
            obs = mantel(self.minx, self.minx, method=method,
                         alternative='less')
            npt.assert_almost_equal(obs, (1, 1, 3))

        np.random.seed(0)

        obs = mantel(self.minx, self.miny, alternative='less')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.minz, alternative='less')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_z)
        self.assertAlmostEqual(obs[1], 0.172)
        self.assertEqual(obs[2], 3)

    def test_two_sided(self):
        np.random.seed(0)

        obs = mantel(self.minx, self.minx, method='spearman',
                     alternative='two-sided')
        self.assertEqual(obs[0], 1)
        self.assertAlmostEqual(obs[1], 0.328)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.miny, method='spearman',
                     alternative='two-sided')
        self.assertAlmostEqual(obs[0], 0.5)
        self.assertAlmostEqual(obs[1], 1.0)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.minz, method='spearman',
                     alternative='two-sided')
        self.assertAlmostEqual(obs[0], -1)
        self.assertAlmostEqual(obs[1], 0.322)
        self.assertEqual(obs[2], 3)

    def test_vegan_example(self):
        np.random.seed(0)

        # pearson
        obs = mantel(self.veg_dm_vegan, self.env_dm_vegan,
                     alternative='greater')
        self.assertAlmostEqual(obs[0], 0.3047454)
        self.assertAlmostEqual(obs[1], 0.002)
        self.assertEqual(obs[2], 24)

        # spearman
        obs = mantel(self.veg_dm_vegan, self.env_dm_vegan,
                     alternative='greater', method='spearman')
        self.assertAlmostEqual(obs[0], 0.283791)
        self.assertAlmostEqual(obs[1], 0.003)
        self.assertEqual(obs[2], 24)

    def test_no_variation_pearson(self):
        for alt in self.alternatives:
            # test one or both inputs having no variation in their
            # distances
            obs = mantel(self.miny, self.no_variation, method='pearson',
                         alternative=alt)
            npt.assert_equal(obs, (np.nan, np.nan, 3))

            obs = mantel(self.no_variation, self.miny, method='pearson',
                         alternative=alt)
            npt.assert_equal(obs, (np.nan, np.nan, 3))

            obs = mantel(self.no_variation, self.no_variation,
                         method='pearson', alternative=alt)
            npt.assert_equal(obs, (np.nan, np.nan, 3))

    def test_no_variation_spearman(self):
        exp = (np.nan, np.nan, 3)
        for alt in self.alternatives:
            obs = mantel(self.miny, self.no_variation, method='spearman',
                         alternative=alt)
            npt.assert_equal(obs, exp)

            obs = mantel(self.no_variation, self.miny, method='spearman',
                         alternative=alt)
            npt.assert_equal(obs, exp)

            obs = mantel(self.no_variation, self.no_variation,
                         method='spearman', alternative=alt)
            npt.assert_equal(obs, exp)

    def test_no_side_effects(self):
        minx = np.asarray(self.minx, dtype='float')
        miny = np.asarray(self.miny, dtype='float')

        minx_copy = np.copy(minx)
        miny_copy = np.copy(miny)

        mantel(minx, miny)

        # Make sure we haven't modified the input.
        npt.assert_equal(minx, minx_copy)
        npt.assert_equal(miny, miny_copy)

    def test_invalid_distance_matrix(self):
        # Single asymmetric, non-hollow distance matrix.
        with self.assertRaises(DissimilarityMatrixError):
            mantel([[1, 2], [3, 4]], [[0, 0], [0, 0]])

        # Two asymmetric distance matrices.
        with self.assertRaises(DistanceMatrixError):
            mantel([[0, 2], [3, 0]], [[0, 1], [0, 0]])

    def test_invalid_input(self):
        # invalid correlation method
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], method='brofist')

        # invalid permutations
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], permutations=-1)

        # invalid alternative
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], alternative='no cog yay')

        # too small dms
        with self.assertRaises(ValueError):
            mantel([[0, 3], [3, 0]], [[0, 2], [2, 0]])


class PairwiseMantelTests(MantelTestData):
    def setUp(self):
        super(PairwiseMantelTests, self).setUp()

        self.min_dms = (self.minx_dm, self.miny_dm, self.minz_dm)

        self.exp_results_minimal = pd.read_csv(
            get_data_path('pwmantel_exp_results_minimal.txt'), sep='\t',
            index_col=(0, 1))

        self.exp_results_minimal_with_labels = pd.read_csv(
            get_data_path('pwmantel_exp_results_minimal_with_labels.txt'),
            sep='\t', index_col=(0, 1))

        self.exp_results_duplicate_dms = pd.read_csv(
            get_data_path('pwmantel_exp_results_duplicate_dms.txt'),
            sep='\t', index_col=(0, 1))

        self.exp_results_na_p_value = pd.read_csv(
            get_data_path('pwmantel_exp_results_na_p_value.txt'),
            sep='\t', index_col=(0, 1))

        self.exp_results_reordered_distance_matrices = pd.read_csv(
            get_data_path('pwmantel_exp_results_reordered_distance_matrices'
                          '.txt'),
            sep='\t', index_col=(0, 1))

        self.exp_results_dm_dm2 = pd.read_csv(
            get_data_path('pwmantel_exp_results_dm_dm2.txt'),
            sep='\t', index_col=(0, 1))

        self.exp_results_all_dms = pd.read_csv(
            get_data_path('pwmantel_exp_results_all_dms.txt'),
            sep='\t', index_col=(0, 1))

    def test_minimal_compatible_input(self):
        # Matrices are already in the correct order and have matching IDs.
        np.random.seed(0)

        # input as DistanceMatrix instances
        obs = pwmantel(self.min_dms, alternative='greater')
        assert_data_frame_almost_equal(obs, self.exp_results_minimal)

        np.random.seed(0)

        # input as array_like
        obs = pwmantel((self.minx, self.miny, self.minz),
                       alternative='greater')
        assert_data_frame_almost_equal(obs, self.exp_results_minimal)

    def test_minimal_compatible_input_with_labels(self):
        np.random.seed(0)

        obs = pwmantel(self.min_dms, alternative='greater',
                       labels=('minx', 'miny', 'minz'))
        assert_data_frame_almost_equal(
            obs,
            self.exp_results_minimal_with_labels)

    def test_duplicate_dms(self):
        obs = pwmantel((self.minx_dm, self.minx_dm, self.minx_dm),
                       alternative='less')
        assert_data_frame_almost_equal(obs, self.exp_results_duplicate_dms)

    def test_na_p_value(self):
        obs = pwmantel((self.miny_dm, self.minx_dm), method='spearman',
                       permutations=0)
        assert_data_frame_almost_equal(obs, self.exp_results_na_p_value)

    def test_reordered_distance_matrices(self):
        # Matrices have matching IDs but they all have different ordering.
        x = self.minx_dm.filter(['1', '0', '2'])
        y = self.miny_dm.filter(['0', '2', '1'])
        z = self.minz_dm.filter(['1', '2', '0'])

        np.random.seed(0)

        obs = pwmantel((x, y, z), alternative='greater')
        assert_data_frame_almost_equal(
            obs,
            self.exp_results_reordered_distance_matrices)

    def test_strict(self):
        # Matrices have some matching and nonmatching IDs, with different
        # ordering.
        x = self.minx_dm_extra.filter(['1', '0', 'foo', '2'])
        y = self.miny_dm.filter(['0', '2', '1'])
        z = self.minz_dm_extra.filter(['bar', '1', '2', '0'])

        np.random.seed(0)

        # strict=False should discard IDs that aren't found in both matrices
        obs = pwmantel((x, y, z), alternative='greater', strict=False)
        assert_data_frame_almost_equal(
            obs,
            self.exp_results_reordered_distance_matrices)

    def test_id_lookup(self):
        # Matrices have mismatched IDs but a lookup is provided.
        self.minx_dm_extra.ids = ['a', 'b', 'c', 'foo']
        self.minz_dm_extra.ids = ['d', 'e', 'f', 'bar']
        lookup = {'a': '0', 'b': '1', 'c': '2', 'foo': 'foo',
                  'd': '0', 'e': '1', 'f': '2', 'bar': 'bar',
                  '0': '0', '1': '1', '2': '2'}

        x = self.minx_dm_extra.filter(['b', 'a', 'foo', 'c'])
        y = self.miny_dm.filter(['0', '2', '1'])
        z = self.minz_dm_extra.filter(['bar', 'e', 'f', 'd'])

        x_copy = x.copy()
        y_copy = y.copy()
        z_copy = z.copy()

        np.random.seed(0)

        obs = pwmantel((x, y, z), alternative='greater', strict=False,
                       lookup=lookup)
        assert_data_frame_almost_equal(
            obs,
            self.exp_results_reordered_distance_matrices)

        # Make sure the inputs aren't modified.
        self.assertEqual(x, x_copy)
        self.assertEqual(y, y_copy)
        self.assertEqual(z, z_copy)

    def test_too_few_dms(self):
        with self.assertRaises(ValueError):
            pwmantel([self.miny_dm])

    def test_wrong_number_of_labels(self):
        with self.assertRaises(ValueError):
            pwmantel(self.min_dms, labels=['foo', 'bar'])

    def test_duplicate_labels(self):
        with self.assertRaises(ValueError):
            pwmantel(self.min_dms, labels=['foo', 'bar', 'foo'])

    def test_mixed_input_types(self):
        # DistanceMatrix, DistanceMatrix, array_like
        with self.assertRaises(TypeError):
            pwmantel((self.miny_dm, self.minx_dm, self.minz))

    def test_filepaths_as_input(self):
        dms = [
            get_data_path('dm.txt'),
            get_data_path('dm2.txt'),
        ]
        np.random.seed(0)

        obs = pwmantel(dms)
        assert_data_frame_almost_equal(obs, self.exp_results_dm_dm2)

    def test_many_filepaths_as_input(self):
        dms = [
            get_data_path('dm2.txt'),
            get_data_path('dm.txt'),
            get_data_path('dm4.txt'),
            get_data_path('dm3.txt')
        ]
        np.random.seed(0)

        obs = pwmantel(dms)
        assert_data_frame_almost_equal(obs, self.exp_results_all_dms)


class OrderDistanceMatricesTests(MantelTestData):
    def setUp(self):
        super(OrderDistanceMatricesTests, self).setUp()

    def test_array_like_input(self):
        obs = _order_dms(self.minx, self.miny)
        self.assertEqual(obs, (self.minx_dm, self.miny_dm))

    def test_reordered_distance_matrices(self):
        # All matching IDs but with different orderings.
        x = self.minx_dm.filter(['1', '0', '2'])
        y = self.miny_dm.filter(['0', '2', '1'])

        exp = (x, y.filter(['1', '0', '2']))
        obs = _order_dms(x, y)
        self.assertEqual(obs, exp)

    def test_reordered_and_nonmatching_distance_matrices(self):
        # Some matching and nonmatching IDs, with different ordering.
        x = self.minx_dm_extra.filter(['1', '0', 'foo', '2'])
        z = self.minz_dm_extra.filter(['bar', '0', '2', '1'])

        exp = (x.filter(['1', '0', '2']), z.filter(['1', '0', '2']))
        obs = _order_dms(x, z, strict=False)
        self.assertEqual(obs, exp)

    def test_id_lookup(self):
        # Matrices have mismatched IDs but a lookup is provided.
        self.minx_dm_extra.ids = ['a', 'b', 'c', 'foo']
        self.minz_dm_extra.ids = ['d', 'e', 'f', 'bar']
        lookup = {'a': '0', 'b': '1', 'c': '2', 'foo': 'foo',
                  'd': '0', 'e': '1', 'f': '2', 'bar': 'bar'}

        x = self.minx_dm_extra.filter(['b', 'a', 'foo', 'c'])
        z = self.minz_dm_extra.filter(['bar', 'e', 'f', 'd'])

        x_copy = x.copy()
        z_copy = z.copy()

        exp = (self.minx_dm.filter(['1', '0', '2']),
               self.minz_dm.filter(['1', '0', '2']))
        obs = _order_dms(x, z, strict=False, lookup=lookup)
        self.assertEqual(obs, exp)

        # Make sure the inputs aren't modified.
        self.assertEqual(x, x_copy)
        self.assertEqual(z, z_copy)

    def test_lookup_with_array_like(self):
        lookup = {'0': 'a', '1': 'b', '2': 'c'}
        with self.assertRaises(ValueError):
            _order_dms(self.minx, self.miny, lookup=lookup)

    def test_shape_mismatch(self):
        with self.assertRaises(ValueError):
            _order_dms(self.minx, [[0, 2], [2, 0]])

    def test_missing_ids_in_lookup(self):
        # Mapping for '1' is missing. Should get an error while remapping IDs
        # for the first distance matrix.
        lookup = {'0': 'a', '2': 'c'}

        with self.assertRaisesRegex(KeyError, r"first.*(x).*'1'\"$"):
            _order_dms(self.minx_dm, self.miny_dm, lookup=lookup)

        # Mapping for 'bar' is missing. Should get an error while remapping IDs
        # for the second distance matrix.
        lookup = {'0': 'a', '1': 'b', '2': 'c',
                  'foo': 'a', 'baz': 'c'}
        self.miny_dm.ids = ('foo', 'bar', 'baz')

        with self.assertRaisesRegex(KeyError, r"second.*(y).*'bar'\"$"):
            _order_dms(self.minx_dm, self.miny_dm, lookup=lookup)

    def test_nonmatching_ids_strict_true(self):
        with self.assertRaises(ValueError):
            _order_dms(self.minx_dm, self.minz_dm_extra, strict=True)

    def test_no_matching_ids(self):
        self.minx_dm.ids = ['foo', 'bar', 'baz']
        self.miny_dm.ids = ['a', 'b', 'c']

        with self.assertRaises(ValueError):
            _order_dms(self.minx_dm, self.miny_dm, strict=False)

    def test_mixed_input_types(self):
        with self.assertRaises(TypeError):
            _order_dms(self.minx, self.minz_dm)

        with self.assertRaises(TypeError):
            _order_dms(self.minz_dm, self.minx)


if __name__ == '__main__':
    main()