1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
r"""
Ordination methods (:mod:`skbio.stats.ordination`)
==================================================
.. currentmodule:: skbio.stats.ordination
This module contains several ordination methods, including Principal
Coordinate Analysis, Correspondence Analysis, Redundancy Analysis and
Canonical Correspondence Analysis.
Ordination Functions
--------------------
.. autosummary::
:toctree:
ca
pcoa
pcoa_biplot
cca
rda
Classes
-------
.. autosummary::
:toctree:
OrdinationResults
Utility Functions
-----------------
.. autosummary::
:toctree:
mean_and_std
corr
scale
svd_rank
e_matrix
f_matrix
Examples
--------
This is an artificial dataset (table 11.3 in [1]_) that represents fish
abundance in different sites (`Y`, the response variables) and
environmental variables (`X`, the explanatory variables).
>>> import numpy as np
>>> import pandas as pd
First we need to construct our explanatory variable dataset `X`.
>>> X = np.array([[1.0, 0.0, 1.0, 0.0],
... [2.0, 0.0, 1.0, 0.0],
... [3.0, 0.0, 1.0, 0.0],
... [4.0, 0.0, 0.0, 1.0],
... [5.0, 1.0, 0.0, 0.0],
... [6.0, 0.0, 0.0, 1.0],
... [7.0, 1.0, 0.0, 0.0],
... [8.0, 0.0, 0.0, 1.0],
... [9.0, 1.0, 0.0, 0.0],
... [10.0, 0.0, 0.0, 1.0]])
>>> transects = ['depth', 'substrate_coral', 'substrate_sand',
... 'substrate_other']
>>> sites = ['site1', 'site2', 'site3', 'site4', 'site5', 'site6', 'site7',
... 'site8', 'site9', 'site10']
>>> X = pd.DataFrame(X, sites, transects)
Then we need to create a dataframe with the information about the species
observed at different sites.
>>> species = ['specie1', 'specie2', 'specie3', 'specie4', 'specie5',
... 'specie6', 'specie7', 'specie8', 'specie9']
>>> Y = np.array([[1, 0, 0, 0, 0, 0, 2, 4, 4],
... [0, 0, 0, 0, 0, 0, 5, 6, 1],
... [0, 1, 0, 0, 0, 0, 0, 2, 3],
... [11, 4, 0, 0, 8, 1, 6, 2, 0],
... [11, 5, 17, 7, 0, 0, 6, 6, 2],
... [9, 6, 0, 0, 6, 2, 10, 1, 4],
... [9, 7, 13, 10, 0, 0, 4, 5, 4],
... [7, 8, 0, 0, 4, 3, 6, 6, 4],
... [7, 9, 10, 13, 0, 0, 6, 2, 0],
... [5, 10, 0, 0, 2, 4, 0, 1, 3]])
>>> Y = pd.DataFrame(Y, sites, species)
We can now perform canonical correspondence analysis. Matrix `X` contains a
continuous variable (depth) and a categorical one (substrate type) encoded
using a one-hot encoding.
>>> from skbio.stats.ordination import cca
We explicitly need to avoid perfect collinearity, so we'll drop one of the
substrate types (the last column of `X`).
>>> del X['substrate_other']
>>> ordination_result = cca(Y, X, scaling=2)
Exploring the results we see that the first three axes explain about
80% of all the variance.
>>> ordination_result.proportion_explained
CCA1 0.466911
CCA2 0.238327
CCA3 0.100548
CCA4 0.104937
CCA5 0.044805
CCA6 0.029747
CCA7 0.012631
CCA8 0.001562
CCA9 0.000532
dtype: float64
References
----------
.. [1] Legendre P. and Legendre L. 1998. Numerical Ecology. Elsevier,
Amsterdam.
"""
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
from ._redundancy_analysis import rda
from ._correspondence_analysis import ca
from ._canonical_correspondence_analysis import cca
from ._principal_coordinate_analysis import pcoa, pcoa_biplot
from ._ordination_results import OrdinationResults
from ._utils import (mean_and_std, scale, svd_rank, corr, e_matrix, f_matrix,
center_distance_matrix)
__all__ = ['ca', 'rda', 'cca', 'pcoa', 'pcoa_biplot', 'OrdinationResults',
'mean_and_std', 'scale', 'svd_rank', 'corr',
'e_matrix', 'f_matrix', 'center_distance_matrix']
|