File: older-scipy.patch

package info (click to toggle)
python-skbio 0.5.8-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,224 kB
  • sloc: python: 47,839; ansic: 672; makefile: 210; javascript: 50; sh: 19
file content (46 lines) | stat: -rw-r--r-- 1,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Description: Revert scipy changes that use functionalities with 1.9.0 version as we
 currently have 1.8.1 in debian
Author: Nilesh Patra <nilesh@debian.org>
Forwarded: not-needed
Last-Update: 2023-01-05
--- a/skbio/stats/distance/_mantel.py
+++ b/skbio/stats/distance/_mantel.py
@@ -13,8 +13,9 @@
 import pandas as pd
 import scipy.special
 from scipy.stats import kendalltau
-from scipy.stats import ConstantInputWarning
-from scipy.stats import NearConstantInputWarning
+from scipy.stats import PearsonRConstantInputWarning
+from scipy.stats import PearsonRNearConstantInputWarning
+from scipy.stats import SpearmanRConstantInputWarning
 
 from skbio.stats.distance import DistanceMatrix
 from skbio.util._decorator import experimental
@@ -351,7 +352,7 @@
 
     # If an input is constant, the correlation coefficient is not defined.
     if (x_flat == x_flat[0]).all() or (y_flat == y_flat[0]).all():
-        warnings.warn(ConstantInputWarning())
+        warnings.warn(PearsonRConstantInputWarning())
         return np.nan, np.nan, []
 
     # inline pearsonr, condensed from scipy.stats.pearsonr
@@ -374,7 +375,7 @@
         # If all the values in x (likewise y) are very close to the mean,
         # the loss of precision that occurs in the subtraction xm = x - xmean
         # might result in large errors in r.
-        warnings.warn(NearConstantInputWarning())
+        warnings.warn(PearsonRNearConstantInputWarning())
 
     orig_stat = np.dot(xm_normalized, ym_normalized)
 
@@ -470,7 +471,7 @@
 
     # If an input is constant, the correlation coefficient is not defined.
     if (x_flat == x_flat[0]).all() or (y_flat == y_flat[0]).all():
-        warnings.warn(ConstantInputWarning())
+        warnings.warn(SpearmanRConstantInputWarning())
         return np.nan, np.nan, []
 
     y_rank = scipy.stats.rankdata(y_flat)