1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
from warnings import warn
from itertools import product
import numpy as np
from skbio.alignment import TabularMSA
from skbio.alignment._ssw_wrapper import StripedSmithWaterman
from skbio.sequence import DNA, RNA, Protein
from skbio.sequence import GrammaredSequence
from skbio.util import EfficiencyWarning
from skbio.util._decorator import experimental, deprecated
# This is temporary: blosum50 does not exist in skbio yet as per
# issue 161. When the issue is resolved, this should be removed in favor
# of an import.
blosum50 = \
{
'*': {'*': 1, 'A': -5, 'C': -5, 'B': -5, 'E': -5, 'D': -5, 'G': -5,
'F': -5, 'I': -5, 'H': -5, 'K': -5, 'M': -5, 'L': -5,
'N': -5, 'Q': -5, 'P': -5, 'S': -5, 'R': -5, 'T': -5,
'W': -5, 'V': -5, 'Y': -5, 'X': -5, 'Z': -5},
'A': {'*': -5, 'A': 5, 'C': -1, 'B': -2, 'E': -1, 'D': -2, 'G': 0,
'F': -3, 'I': -1, 'H': -2, 'K': -1, 'M': -1, 'L': -2,
'N': -1, 'Q': -1, 'P': -1, 'S': 1, 'R': -2, 'T': 0, 'W': -3,
'V': 0, 'Y': -2, 'X': -1, 'Z': -1},
'C': {'*': -5, 'A': -1, 'C': 13, 'B': -3, 'E': -3, 'D': -4,
'G': -3, 'F': -2, 'I': -2, 'H': -3, 'K': -3, 'M': -2,
'L': -2, 'N': -2, 'Q': -3, 'P': -4, 'S': -1, 'R': -4,
'T': -1, 'W': -5, 'V': -1, 'Y': -3, 'X': -1, 'Z': -3},
'B': {'*': -5, 'A': -2, 'C': -3, 'B': 6, 'E': 1, 'D': 6, 'G': -1,
'F': -4, 'I': -4, 'H': 0, 'K': 0, 'M': -3, 'L': -4, 'N': 5,
'Q': 0, 'P': -2, 'S': 0, 'R': -1, 'T': 0, 'W': -5, 'V': -3,
'Y': -3, 'X': -1, 'Z': 1},
'E': {'*': -5, 'A': -1, 'C': -3, 'B': 1, 'E': 6, 'D': 2, 'G': -3,
'F': -3, 'I': -4, 'H': 0, 'K': 1, 'M': -2, 'L': -3, 'N': 0,
'Q': 2, 'P': -1, 'S': -1, 'R': 0, 'T': -1, 'W': -3, 'V': -3,
'Y': -2, 'X': -1, 'Z': 5},
'D': {'*': -5, 'A': -2, 'C': -4, 'B': 6, 'E': 2, 'D': 8, 'G': -1,
'F': -5, 'I': -4, 'H': -1, 'K': -1, 'M': -4, 'L': -4, 'N': 2,
'Q': 0, 'P': -1, 'S': 0, 'R': -2, 'T': -1, 'W': -5, 'V': -4,
'Y': -3, 'X': -1, 'Z': 1},
'G': {'*': -5, 'A': 0, 'C': -3, 'B': -1, 'E': -3, 'D': -1, 'G': 8,
'F': -4, 'I': -4, 'H': -2, 'K': -2, 'M': -3, 'L': -4, 'N': 0,
'Q': -2, 'P': -2, 'S': 0, 'R': -3, 'T': -2, 'W': -3, 'V': -4,
'Y': -3, 'X': -1, 'Z': -2},
'F': {'*': -5, 'A': -3, 'C': -2, 'B': -4, 'E': -3, 'D': -5,
'G': -4, 'F': 8, 'I': 0, 'H': -1, 'K': -4, 'M': 0, 'L': 1,
'N': -4, 'Q': -4, 'P': -4, 'S': -3, 'R': -3, 'T': -2, 'W': 1,
'V': -1, 'Y': 4, 'X': -1, 'Z': -4},
'I': {'*': -5, 'A': -1, 'C': -2, 'B': -4, 'E': -4, 'D': -4,
'G': -4, 'F': 0, 'I': 5, 'H': -4, 'K': -3, 'M': 2, 'L': 2,
'N': -3, 'Q': -3, 'P': -3, 'S': -3, 'R': -4, 'T': -1,
'W': -3, 'V': 4, 'Y': -1, 'X': -1, 'Z': -3},
'H': {'*': -5, 'A': -2, 'C': -3, 'B': 0, 'E': 0, 'D': -1, 'G': -2,
'F': -1, 'I': -4, 'H': 10, 'K': 0, 'M': -1, 'L': -3, 'N': 1,
'Q': 1, 'P': -2, 'S': -1, 'R': 0, 'T': -2, 'W': -3, 'V': -4,
'Y': 2, 'X': -1, 'Z': 0},
'K': {'*': -5, 'A': -1, 'C': -3, 'B': 0, 'E': 1, 'D': -1, 'G': -2,
'F': -4, 'I': -3, 'H': 0, 'K': 6, 'M': -2, 'L': -3, 'N': 0,
'Q': 2, 'P': -1, 'S': 0, 'R': 3, 'T': -1, 'W': -3, 'V': -3,
'Y': -2, 'X': -1, 'Z': 1},
'M': {'*': -5, 'A': -1, 'C': -2, 'B': -3, 'E': -2, 'D': -4,
'G': -3, 'F': 0, 'I': 2, 'H': -1, 'K': -2, 'M': 7, 'L': 3,
'N': -2, 'Q': 0, 'P': -3, 'S': -2, 'R': -2, 'T': -1, 'W': -1,
'V': 1, 'Y': 0, 'X': -1, 'Z': -1},
'L': {'*': -5, 'A': -2, 'C': -2, 'B': -4, 'E': -3, 'D': -4,
'G': -4, 'F': 1, 'I': 2, 'H': -3, 'K': -3, 'M': 3, 'L': 5,
'N': -4, 'Q': -2, 'P': -4, 'S': -3, 'R': -3, 'T': -1,
'W': -2, 'V': 1, 'Y': -1, 'X': -1, 'Z': -3},
'N': {'*': -5, 'A': -1, 'C': -2, 'B': 5, 'E': 0, 'D': 2, 'G': 0,
'F': -4, 'I': -3, 'H': 1, 'K': 0, 'M': -2, 'L': -4, 'N': 7,
'Q': 0, 'P': -2, 'S': 1, 'R': -1, 'T': 0, 'W': -4, 'V': -3,
'Y': -2, 'X': -1, 'Z': 0},
'Q': {'*': -5, 'A': -1, 'C': -3, 'B': 0, 'E': 2, 'D': 0, 'G': -2,
'F': -4, 'I': -3, 'H': 1, 'K': 2, 'M': 0, 'L': -2, 'N': 0,
'Q': 7, 'P': -1, 'S': 0, 'R': 1, 'T': -1, 'W': -1, 'V': -3,
'Y': -1, 'X': -1, 'Z': 4},
'P': {'*': -5, 'A': -1, 'C': -4, 'B': -2, 'E': -1, 'D': -1,
'G': -2, 'F': -4, 'I': -3, 'H': -2, 'K': -1, 'M': -3,
'L': -4, 'N': -2, 'Q': -1, 'P': 10, 'S': -1, 'R': -3,
'T': -1, 'W': -4, 'V': -3, 'Y': -3, 'X': -1, 'Z': -1},
'S': {'*': -5, 'A': 1, 'C': -1, 'B': 0, 'E': -1, 'D': 0, 'G': 0,
'F': -3, 'I': -3, 'H': -1, 'K': 0, 'M': -2, 'L': -3, 'N': 1,
'Q': 0, 'P': -1, 'S': 5, 'R': -1, 'T': 2, 'W': -4, 'V': -2,
'Y': -2, 'X': -1, 'Z': 0},
'R': {'*': -5, 'A': -2, 'C': -4, 'B': -1, 'E': 0, 'D': -2, 'G': -3,
'F': -3, 'I': -4, 'H': 0, 'K': 3, 'M': -2, 'L': -3, 'N': -1,
'Q': 1, 'P': -3, 'S': -1, 'R': 7, 'T': -1, 'W': -3, 'V': -3,
'Y': -1, 'X': -1, 'Z': 0},
'T': {'*': -5, 'A': 0, 'C': -1, 'B': 0, 'E': -1, 'D': -1, 'G': -2,
'F': -2, 'I': -1, 'H': -2, 'K': -1, 'M': -1, 'L': -1, 'N': 0,
'Q': -1, 'P': -1, 'S': 2, 'R': -1, 'T': 5, 'W': -3, 'V': 0,
'Y': -2, 'X': -1, 'Z': -1},
'W': {'*': -5, 'A': -3, 'C': -5, 'B': -5, 'E': -3, 'D': -5,
'G': -3, 'F': 1, 'I': -3, 'H': -3, 'K': -3, 'M': -1, 'L': -2,
'N': -4, 'Q': -1, 'P': -4, 'S': -4, 'R': -3, 'T': -3,
'W': 15, 'V': -3, 'Y': 2, 'X': -1, 'Z': -2},
'V': {'*': -5, 'A': 0, 'C': -1, 'B': -3, 'E': -3, 'D': -4, 'G': -4,
'F': -1, 'I': 4, 'H': -4, 'K': -3, 'M': 1, 'L': 1, 'N': -3,
'Q': -3, 'P': -3, 'S': -2, 'R': -3, 'T': 0, 'W': -3, 'V': 5,
'Y': -1, 'X': -1, 'Z': -3},
'Y': {'*': -5, 'A': -2, 'C': -3, 'B': -3, 'E': -2, 'D': -3,
'G': -3, 'F': 4, 'I': -1, 'H': 2, 'K': -2, 'M': 0, 'L': -1,
'N': -2, 'Q': -1, 'P': -3, 'S': -2, 'R': -1, 'T': -2, 'W': 2,
'V': -1, 'Y': 8, 'X': -1, 'Z': -2},
'X': {'*': -5, 'A': -1, 'C': -1, 'B': -1, 'E': -1, 'D': -1,
'G': -1, 'F': -1, 'I': -1, 'H': -1, 'K': -1, 'M': -1,
'L': -1, 'N': -1, 'Q': -1, 'P': -1, 'S': -1, 'R': -1,
'T': -1, 'W': -1, 'V': -1, 'Y': -1, 'X': -1, 'Z': -1},
'Z': {'*': -5, 'A': -1, 'C': -3, 'B': 1, 'E': 5, 'D': 1, 'G': -2,
'F': -4, 'I': -3, 'H': 0, 'K': 1, 'M': -1, 'L': -3, 'N': 0,
'Q': 4, 'P': -1, 'S': 0, 'R': 0, 'T': -1, 'W': -2, 'V': -3,
'Y': -2, 'X': -1, 'Z': 5}}
@experimental(as_of="0.4.0")
def local_pairwise_align_nucleotide(seq1, seq2, gap_open_penalty=5,
gap_extend_penalty=2,
match_score=2, mismatch_score=-3,
substitution_matrix=None):
"""Locally align exactly two nucleotide seqs with Smith-Waterman
Parameters
----------
seq1 : DNA or RNA
The first unaligned sequence.
seq2 : DNA or RNA
The second unaligned sequence.
gap_open_penalty : int or float, optional
Penalty for opening a gap (this is substracted from previous best
alignment score, so is typically positive).
gap_extend_penalty : int or float, optional
Penalty for extending a gap (this is substracted from previous best
alignment score, so is typically positive).
match_score : int or float, optional
The score to add for a match between a pair of bases (this is added
to the previous best alignment score, so is typically positive).
mismatch_score : int or float, optional
The score to add for a mismatch between a pair of bases (this is
added to the previous best alignment score, so is typically
negative).
substitution_matrix: 2D dict (or similar)
Lookup for substitution scores (these values are added to the
previous best alignment score). If provided, this overrides
``match_score`` and ``mismatch_score``.
Returns
-------
tuple
``TabularMSA`` object containing the aligned sequences, alignment score
(float), and start/end positions of each input sequence (iterable
of two-item tuples). Note that start/end positions are indexes into the
unaligned sequences.
See Also
--------
local_pairwise_align
local_pairwise_align_protein
skbio.alignment.local_pairwise_align_ssw
global_pairwise_align
global_pairwise_align_protein
global_pairwise_align_nucelotide
Notes
-----
Default ``match_score``, ``mismatch_score``, ``gap_open_penalty`` and
``gap_extend_penalty`` parameters are derived from the NCBI BLAST
Server [1]_.
References
----------
.. [1] http://blast.ncbi.nlm.nih.gov/Blast.cgi
"""
for seq in seq1, seq2:
if not isinstance(seq, (DNA, RNA)):
raise TypeError(
"`seq1` and `seq2` must be DNA or RNA, not type %r"
% type(seq).__name__)
# use the substitution matrix provided by the user, or compute from
# match_score and mismatch_score if a substitution matrix was not provided
if substitution_matrix is None:
substitution_matrix = \
make_identity_substitution_matrix(match_score, mismatch_score)
return local_pairwise_align(seq1, seq2, gap_open_penalty,
gap_extend_penalty, substitution_matrix)
@experimental(as_of="0.4.0")
def local_pairwise_align_protein(seq1, seq2, gap_open_penalty=11,
gap_extend_penalty=1,
substitution_matrix=None):
"""Locally align exactly two protein seqs with Smith-Waterman
Parameters
----------
seq1 : Protein
The first unaligned sequence.
seq2 : Protein
The second unaligned sequence.
gap_open_penalty : int or float, optional
Penalty for opening a gap (this is substracted from previous best
alignment score, so is typically positive).
gap_extend_penalty : int or float, optional
Penalty for extending a gap (this is substracted from previous best
alignment score, so is typically positive).
substitution_matrix: 2D dict (or similar), optional
Lookup for substitution scores (these values are added to the
previous best alignment score); default is BLOSUM 50.
Returns
-------
tuple
``TabularMSA`` object containing the aligned sequences, alignment score
(float), and start/end positions of each input sequence (iterable
of two-item tuples). Note that start/end positions are indexes into the
unaligned sequences.
See Also
--------
local_pairwise_align
local_pairwise_align_nucleotide
skbio.alignment.local_pairwise_align_ssw
global_pairwise_align
global_pairwise_align_protein
global_pairwise_align_nucelotide
Notes
-----
Default ``gap_open_penalty`` and ``gap_extend_penalty`` parameters are
derived from the NCBI BLAST Server [1]_.
The BLOSUM (blocks substitution matrices) amino acid substitution matrices
were originally defined in [2]_.
References
----------
.. [1] http://blast.ncbi.nlm.nih.gov/Blast.cgi
.. [2] Amino acid substitution matrices from protein blocks.
S Henikoff and J G Henikoff.
Proc Natl Acad Sci U S A. Nov 15, 1992; 89(22): 10915-10919.
"""
for seq in seq1, seq2:
if not isinstance(seq, Protein):
raise TypeError(
"`seq1` and `seq2` must be Protein, not type %r"
% type(seq).__name__)
if substitution_matrix is None:
substitution_matrix = blosum50
return local_pairwise_align(seq1, seq2, gap_open_penalty,
gap_extend_penalty, substitution_matrix)
@experimental(as_of="0.4.0")
def local_pairwise_align(seq1, seq2, gap_open_penalty,
gap_extend_penalty, substitution_matrix):
"""Locally align exactly two seqs with Smith-Waterman
Parameters
----------
seq1 : GrammaredSequence
The first unaligned sequence.
seq2 : GrammaredSequence
The second unaligned sequence.
gap_open_penalty : int or float
Penalty for opening a gap (this is substracted from previous best
alignment score, so is typically positive).
gap_extend_penalty : int or float
Penalty for extending a gap (this is substracted from previous best
alignment score, so is typically positive).
substitution_matrix: 2D dict (or similar)
Lookup for substitution scores (these values are added to the
previous best alignment score).
Returns
-------
tuple
``TabularMSA`` object containing the aligned sequences, alignment score
(float), and start/end positions of each input sequence (iterable
of two-item tuples). Note that start/end positions are indexes into the
unaligned sequences.
See Also
--------
local_pairwise_align_protein
local_pairwise_align_nucleotide
skbio.alignment.local_pairwise_align_ssw
global_pairwise_align
global_pairwise_align_protein
global_pairwise_align_nucelotide
Notes
-----
This algorithm was originally described in [1]_. The scikit-bio
implementation was validated against the EMBOSS water web server [2]_.
References
----------
.. [1] Identification of common molecular subsequences.
Smith TF, Waterman MS.
J Mol Biol. 1981 Mar 25;147(1):195-7.
.. [2] http://www.ebi.ac.uk/Tools/psa/emboss_water/
"""
warn("You're using skbio's python implementation of Smith-Waterman "
"alignment. This will be very slow (e.g., thousands of times slower) "
"than skbio.alignment.local_pairwise_align_ssw.",
EfficiencyWarning)
for seq in seq1, seq2:
if not isinstance(seq, GrammaredSequence):
raise TypeError(
"`seq1` and `seq2` must be %r subclasses, not type %r" %
(GrammaredSequence.__name__, type(seq).__name__))
if type(seq1) is not type(seq2):
raise TypeError(
"`seq1` and `seq2` must be the same type: %r != %r"
% (type(seq1).__name__, type(seq2).__name__))
seq1 = _coerce_alignment_input_type(seq1)
seq2 = _coerce_alignment_input_type(seq2)
score_matrix, traceback_matrix = _compute_score_and_traceback_matrices(
seq1, seq2, gap_open_penalty, gap_extend_penalty,
substitution_matrix, new_alignment_score=0.0,
init_matrices_f=_init_matrices_sw)
end_row_position, end_col_position =\
np.unravel_index(np.argmax(score_matrix), score_matrix.shape)
aligned1, aligned2, score, seq1_start_position, seq2_start_position = \
_traceback(traceback_matrix, score_matrix, seq1, seq2,
end_row_position, end_col_position)
start_end_positions = [(seq1_start_position, end_col_position-1),
(seq2_start_position, end_row_position-1)]
msa = TabularMSA(aligned1 + aligned2)
return msa, score, start_end_positions
@experimental(as_of="0.4.0")
def global_pairwise_align_nucleotide(seq1, seq2, gap_open_penalty=5,
gap_extend_penalty=2,
match_score=1, mismatch_score=-2,
substitution_matrix=None,
penalize_terminal_gaps=False):
"""Globally align nucleotide seqs or alignments with Needleman-Wunsch
Parameters
----------
seq1 : DNA, RNA, or TabularMSA[DNA|RNA]
The first unaligned sequence(s).
seq2 : DNA, RNA, or TabularMSA[DNA|RNA]
The second unaligned sequence(s).
gap_open_penalty : int or float, optional
Penalty for opening a gap (this is substracted from previous best
alignment score, so is typically positive).
gap_extend_penalty : int or float, optional
Penalty for extending a gap (this is substracted from previous best
alignment score, so is typically positive).
match_score : int or float, optional
The score to add for a match between a pair of bases (this is added
to the previous best alignment score, so is typically positive).
mismatch_score : int or float, optional
The score to add for a mismatch between a pair of bases (this is
added to the previous best alignment score, so is typically
negative).
substitution_matrix: 2D dict (or similar)
Lookup for substitution scores (these values are added to the
previous best alignment score). If provided, this overrides
``match_score`` and ``mismatch_score``.
penalize_terminal_gaps: bool, optional
If True, will continue to penalize gaps even after one sequence has
been aligned through its end. This behavior is true Needleman-Wunsch
alignment, but results in (biologically irrelevant) artifacts when
the sequences being aligned are of different length. This is ``False``
by default, which is very likely to be the behavior you want in all or
nearly all cases.
Returns
-------
tuple
``TabularMSA`` object containing the aligned sequences, alignment score
(float), and start/end positions of each input sequence (iterable
of two-item tuples). Note that start/end positions are indexes into the
unaligned sequences.
See Also
--------
local_pairwise_align
local_pairwise_align_protein
local_pairwise_align_nucleotide
skbio.alignment.local_pairwise_align_ssw
global_pairwise_align
global_pairwise_align_protein
Notes
-----
Default ``match_score``, ``mismatch_score``, ``gap_open_penalty`` and
``gap_extend_penalty`` parameters are derived from the NCBI BLAST
Server [1]_.
This function can be use to align either a pair of sequences, a pair of
alignments, or a sequence and an alignment.
References
----------
.. [1] http://blast.ncbi.nlm.nih.gov/Blast.cgi
"""
for seq in seq1, seq2:
if not isinstance(seq, (DNA, RNA, TabularMSA)):
raise TypeError(
"`seq1` and `seq2` must be DNA, RNA, or TabularMSA, not type "
"%r" % type(seq).__name__)
if isinstance(seq, TabularMSA) and not issubclass(seq.dtype,
(DNA, RNA)):
raise TypeError(
"`seq1` and `seq2` must be TabularMSA with DNA or RNA dtype, "
"not dtype %r" % seq.dtype.__name__)
# use the substitution matrix provided by the user, or compute from
# match_score and mismatch_score if a substitution matrix was not provided
if substitution_matrix is None:
substitution_matrix = \
make_identity_substitution_matrix(match_score, mismatch_score)
return global_pairwise_align(seq1, seq2, gap_open_penalty,
gap_extend_penalty, substitution_matrix,
penalize_terminal_gaps=penalize_terminal_gaps)
@experimental(as_of="0.4.0")
def global_pairwise_align_protein(seq1, seq2, gap_open_penalty=11,
gap_extend_penalty=1,
substitution_matrix=None,
penalize_terminal_gaps=False):
"""Globally align pair of protein seqs or alignments with Needleman-Wunsch
Parameters
----------
seq1 : Protein or TabularMSA[Protein]
The first unaligned sequence(s).
seq2 : Protein or TabularMSA[Protein]
The second unaligned sequence(s).
gap_open_penalty : int or float, optional
Penalty for opening a gap (this is substracted from previous best
alignment score, so is typically positive).
gap_extend_penalty : int or float, optional
Penalty for extending a gap (this is substracted from previous best
alignment score, so is typically positive).
substitution_matrix: 2D dict (or similar), optional
Lookup for substitution scores (these values are added to the
previous best alignment score); default is BLOSUM 50.
penalize_terminal_gaps: bool, optional
If True, will continue to penalize gaps even after one sequence has
been aligned through its end. This behavior is true Needleman-Wunsch
alignment, but results in (biologically irrelevant) artifacts when
the sequences being aligned are of different length. This is ``False``
by default, which is very likely to be the behavior you want in all or
nearly all cases.
Returns
-------
tuple
``TabularMSA`` object containing the aligned sequences, alignment score
(float), and start/end positions of each input sequence (iterable
of two-item tuples). Note that start/end positions are indexes into the
unaligned sequences.
See Also
--------
local_pairwise_align
local_pairwise_align_protein
local_pairwise_align_nucleotide
skbio.alignment.local_pairwise_align_ssw
global_pairwise_align
global_pairwise_align_nucelotide
Notes
-----
Default ``gap_open_penalty`` and ``gap_extend_penalty`` parameters are
derived from the NCBI BLAST Server [1]_.
The BLOSUM (blocks substitution matrices) amino acid substitution matrices
were originally defined in [2]_.
This function can be use to align either a pair of sequences, a pair of
alignments, or a sequence and an alignment.
References
----------
.. [1] http://blast.ncbi.nlm.nih.gov/Blast.cgi
.. [2] Amino acid substitution matrices from protein blocks.
S Henikoff and J G Henikoff.
Proc Natl Acad Sci U S A. Nov 15, 1992; 89(22): 10915-10919.
"""
for seq in seq1, seq2:
if not isinstance(seq, (Protein, TabularMSA)):
raise TypeError(
"`seq1` and `seq2` must be Protein or TabularMSA, not type %r"
% type(seq).__name__)
if isinstance(seq, TabularMSA) and not issubclass(seq.dtype, Protein):
raise TypeError(
"`seq1` and `seq2` must be TabularMSA with Protein dtype, "
"not dtype %r" % seq.dtype.__name__)
if substitution_matrix is None:
substitution_matrix = blosum50
return global_pairwise_align(seq1, seq2, gap_open_penalty,
gap_extend_penalty, substitution_matrix,
penalize_terminal_gaps=penalize_terminal_gaps)
@experimental(as_of="0.4.0")
def global_pairwise_align(seq1, seq2, gap_open_penalty, gap_extend_penalty,
substitution_matrix, penalize_terminal_gaps=False):
"""Globally align a pair of seqs or alignments with Needleman-Wunsch
Parameters
----------
seq1 : GrammaredSequence or TabularMSA
The first unaligned sequence(s).
seq2 : GrammaredSequence or TabularMSA
The second unaligned sequence(s).
gap_open_penalty : int or float
Penalty for opening a gap (this is substracted from previous best
alignment score, so is typically positive).
gap_extend_penalty : int or float
Penalty for extending a gap (this is substracted from previous best
alignment score, so is typically positive).
substitution_matrix: 2D dict (or similar)
Lookup for substitution scores (these values are added to the
previous best alignment score).
penalize_terminal_gaps: bool, optional
If True, will continue to penalize gaps even after one sequence has
been aligned through its end. This behavior is true Needleman-Wunsch
alignment, but results in (biologically irrelevant) artifacts when
the sequences being aligned are of different length. This is ``False``
by default, which is very likely to be the behavior you want in all or
nearly all cases.
Returns
-------
tuple
``TabularMSA`` object containing the aligned sequences, alignment score
(float), and start/end positions of each input sequence (iterable
of two-item tuples). Note that start/end positions are indexes into the
unaligned sequences.
See Also
--------
local_pairwise_align
local_pairwise_align_protein
local_pairwise_align_nucleotide
skbio.alignment.local_pairwise_align_ssw
global_pairwise_align_protein
global_pairwise_align_nucelotide
Notes
-----
This algorithm (in a slightly more basic form) was originally described
in [1]_. The scikit-bio implementation was validated against the
EMBOSS needle web server [2]_.
This function can be use to align either a pair of sequences, a pair of
alignments, or a sequence and an alignment.
References
----------
.. [1] A general method applicable to the search for similarities in
the amino acid sequence of two proteins.
Needleman SB, Wunsch CD.
J Mol Biol. 1970 Mar;48(3):443-53.
.. [2] http://www.ebi.ac.uk/Tools/psa/emboss_needle/
"""
warn("You're using skbio's python implementation of Needleman-Wunsch "
"alignment. This is known to be very slow (e.g., thousands of times "
"slower than a native C implementation). We'll be adding a faster "
"version soon (see https://github.com/biocore/scikit-bio/issues/254 "
"to track progress on this).", EfficiencyWarning)
for seq in seq1, seq2:
# We don't need to check the case where `seq` is a `TabularMSA` with a
# dtype that isn't a subclass of `GrammaredSequence`, this is
# guaranteed by `TabularMSA`.
if not isinstance(seq, (GrammaredSequence, TabularMSA)):
raise TypeError(
"`seq1` and `seq2` must be GrammaredSequence subclasses or "
"TabularMSA, not type %r" % type(seq).__name__)
seq1 = _coerce_alignment_input_type(seq1)
seq2 = _coerce_alignment_input_type(seq2)
if seq1.dtype is not seq2.dtype:
raise TypeError(
"`seq1` and `seq2` must have the same dtype: %r != %r"
% (seq1.dtype.__name__, seq2.dtype.__name__))
if penalize_terminal_gaps:
init_matrices_f = _init_matrices_nw
else:
init_matrices_f = _init_matrices_nw_no_terminal_gap_penalty
score_matrix, traceback_matrix = \
_compute_score_and_traceback_matrices(
seq1, seq2, gap_open_penalty, gap_extend_penalty,
substitution_matrix, new_alignment_score=-np.inf,
init_matrices_f=init_matrices_f,
penalize_terminal_gaps=penalize_terminal_gaps)
end_row_position = traceback_matrix.shape[0] - 1
end_col_position = traceback_matrix.shape[1] - 1
aligned1, aligned2, score, seq1_start_position, seq2_start_position = \
_traceback(traceback_matrix, score_matrix, seq1, seq2,
end_row_position, end_col_position)
start_end_positions = [(seq1_start_position, end_col_position-1),
(seq2_start_position, end_row_position-1)]
msa = TabularMSA(aligned1 + aligned2)
return msa, score, start_end_positions
@deprecated(as_of="0.5.8", until="0.6.0",
reason="This will be removed or replaced, in favor of more general"
"-purpose performant aligners. Additional details at "
"https://github.com/biocore/scikit-bio/issues/1814")
def local_pairwise_align_ssw(sequence1, sequence2, **kwargs):
"""Align query and target sequences with Striped Smith-Waterman.
Parameters
----------
sequence1 : DNA, RNA, or Protein
The first unaligned sequence
sequence2 : DNA, RNA, or Protein
The second unaligned sequence
Returns
-------
tuple
``TabularMSA`` object containing the aligned sequences, alignment score
(float), and start/end positions of each input sequence (iterable
of two-item tuples). Note that start/end positions are indexes into the
unaligned sequences.
Notes
-----
This is a wrapper for the SSW package [1]_.
For a complete list of optional keyword-arguments that can be provided,
see ``skbio.alignment.StripedSmithWaterman``.
The following kwargs will not have any effect: `suppress_sequences`,
`zero_index`, and `protein`
If an alignment does not meet a provided filter, `None` will be returned.
References
----------
.. [1] Zhao, Mengyao, Wan-Ping Lee, Erik P. Garrison, & Gabor T.
Marth. "SSW Library: An SIMD Smith-Waterman C/C++ Library for
Applications". PLOS ONE (2013). Web. 11 July 2014.
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0082138
See Also
--------
skbio.alignment.StripedSmithWaterman
"""
for seq in sequence1, sequence2:
if not isinstance(seq, (DNA, RNA, Protein)):
raise TypeError(
"`sequence1` and `sequence2` must be DNA, RNA, or Protein, "
"not type %r" % type(seq).__name__)
if type(sequence1) is not type(sequence2):
raise TypeError(
"`sequence1` and `sequence2` must be the same type: %r != %r"
% (type(sequence1).__name__, type(sequence2).__name__))
# We need the sequences for `TabularMSA` to make sense, so don't let the
# user suppress them.
kwargs['suppress_sequences'] = False
kwargs['zero_index'] = True
kwargs['protein'] = False
if isinstance(sequence1, Protein):
kwargs['protein'] = True
query = StripedSmithWaterman(str(sequence1), **kwargs)
alignment = query(str(sequence2))
# If there is no cigar, then it has failed a filter. Return None.
if not alignment.cigar:
return None
start_end = None
if alignment.query_begin != -1:
start_end = [
(alignment.query_begin, alignment.query_end),
(alignment.target_begin, alignment.target_end_optimal)
]
metadata1 = metadata2 = None
if sequence1.has_metadata():
metadata1 = sequence1.metadata
if sequence2.has_metadata():
metadata2 = sequence2.metadata
constructor = type(sequence1)
msa = TabularMSA([
constructor(alignment.aligned_query_sequence, metadata=metadata1,
validate=False),
constructor(alignment.aligned_target_sequence, metadata=metadata2,
validate=False)
])
return msa, alignment.optimal_alignment_score, start_end
@deprecated(as_of="0.4.0", until="0.6.0",
reason="Will be replaced by a SubstitutionMatrix class. To track "
"progress, see [#161]"
"(https://github.com/biocore/scikit-bio/issues/161).")
def make_identity_substitution_matrix(match_score, mismatch_score,
alphabet='ACGTU'):
"""Generate substitution matrix where all matches are scored equally
Parameters
----------
match_score : int, float
The score that should be assigned for all matches. This value is
typically positive.
mismatch_score : int, float
The score that should be assigned for all mismatches. This value is
typically negative.
alphabet : iterable of str, optional
The characters that should be included in the substitution matrix.
Returns
-------
dict of dicts
All characters in alphabet are keys in both dictionaries, so that any
pair of characters can be looked up to get their match or mismatch
score.
"""
result = {}
for c1 in alphabet:
row = {}
for c2 in alphabet:
if c1 == c2:
row[c2] = match_score
else:
row[c2] = mismatch_score
result[c1] = row
return result
# Functions from here allow for generalized (global or local) alignment. I
# will likely want to put these in a single object to make the naming a little
# less clunky.
def _coerce_alignment_input_type(seq):
if isinstance(seq, GrammaredSequence):
return TabularMSA([seq])
else:
return seq
_traceback_encoding = {'match': 1, 'vertical-gap': 2, 'horizontal-gap': 3,
'uninitialized': -1, 'alignment-end': 0}
def _init_matrices_sw(aln1, aln2, gap_open_penalty, gap_extend_penalty):
shape = (aln2.shape.position+1, aln1.shape.position+1)
score_matrix = np.zeros(shape)
traceback_matrix = np.zeros(shape, dtype=int)
traceback_matrix += _traceback_encoding['uninitialized']
traceback_matrix[0, :] = _traceback_encoding['alignment-end']
traceback_matrix[:, 0] = _traceback_encoding['alignment-end']
return score_matrix, traceback_matrix
def _init_matrices_nw(aln1, aln2, gap_open_penalty, gap_extend_penalty):
shape = (aln2.shape.position+1, aln1.shape.position+1)
score_matrix = np.zeros(shape)
traceback_matrix = np.zeros(shape, dtype=int)
traceback_matrix += _traceback_encoding['uninitialized']
traceback_matrix[0, 0] = _traceback_encoding['alignment-end']
# cache some values for quicker access
vgap = _traceback_encoding['vertical-gap']
hgap = _traceback_encoding['horizontal-gap']
for i in range(1, shape[0]):
score_matrix[i, 0] = -gap_open_penalty - ((i-1) * gap_extend_penalty)
traceback_matrix[i, 0] = vgap
for i in range(1, shape[1]):
score_matrix[0, i] = -gap_open_penalty - ((i-1) * gap_extend_penalty)
traceback_matrix[0, i] = hgap
return score_matrix, traceback_matrix
def _init_matrices_nw_no_terminal_gap_penalty(
aln1, aln2, gap_open_penalty, gap_extend_penalty):
shape = (aln2.shape.position+1, aln1.shape.position+1)
score_matrix = np.zeros(shape)
traceback_matrix = np.zeros(shape, dtype=int)
traceback_matrix += _traceback_encoding['uninitialized']
traceback_matrix[0, 0] = _traceback_encoding['alignment-end']
# cache some values for quicker access
vgap = _traceback_encoding['vertical-gap']
hgap = _traceback_encoding['horizontal-gap']
for i in range(1, shape[0]):
traceback_matrix[i, 0] = vgap
for i in range(1, shape[1]):
traceback_matrix[0, i] = hgap
return score_matrix, traceback_matrix
def _compute_substitution_score(aln1_chars, aln2_chars, substitution_matrix,
gap_substitution_score, gap_chars):
substitution_score = 0
for aln1_char, aln2_char in product(aln1_chars, aln2_chars):
if aln1_char in gap_chars or aln2_char in gap_chars:
substitution_score += gap_substitution_score
else:
try:
substitution_score += \
substitution_matrix[aln1_char][aln2_char]
except KeyError:
offending_chars = \
[c for c in (aln1_char, aln2_char)
if c not in substitution_matrix]
raise ValueError(
"One of the sequences contains a character that is "
"not contained in the substitution matrix. Are you "
"using an appropriate substitution matrix for your "
"sequence type (e.g., a nucleotide substitution "
"matrix does not make sense for aligning protein "
"sequences)? Does your sequence contain invalid "
"characters? The offending character(s) is: "
" %s." % ', '.join(offending_chars))
substitution_score /= (len(aln1_chars) * len(aln2_chars))
return substitution_score
def _compute_score_and_traceback_matrices(
aln1, aln2, gap_open_penalty, gap_extend_penalty, substitution_matrix,
new_alignment_score=-np.inf, init_matrices_f=_init_matrices_nw,
penalize_terminal_gaps=True, gap_substitution_score=0):
"""Return dynamic programming (score) and traceback matrices.
A note on the ``penalize_terminal_gaps`` parameter. When this value is
``False``, this function is no longer true Smith-Waterman/Needleman-Wunsch
scoring, but when ``True`` it can result in biologically irrelevant
artifacts in Needleman-Wunsch (global) alignments. Specifically, if one
sequence is longer than the other (e.g., if aligning a primer sequence to
an amplification product, or searching for a gene in a genome) the shorter
sequence will have a long gap inserted. The parameter is ``True`` by
default (so that this function computes the score and traceback matrices as
described by the original authors) but the global alignment wrappers pass
``False`` by default, so that the global alignment API returns the result
that users are most likely to be looking for.
"""
aln1_length = aln1.shape.position
aln2_length = aln2.shape.position
# cache some values for quicker/simpler access
aend = _traceback_encoding['alignment-end']
match = _traceback_encoding['match']
vgap = _traceback_encoding['vertical-gap']
hgap = _traceback_encoding['horizontal-gap']
new_alignment_score = (new_alignment_score, aend)
# Initialize a matrix to use for scoring the alignment and for tracing
# back the best alignment
score_matrix, traceback_matrix = init_matrices_f(
aln1, aln2, gap_open_penalty, gap_extend_penalty)
# Iterate over the characters in aln2 (which corresponds to the vertical
# sequence in the matrix)
for aln2_pos, aln2_chars in enumerate(aln2.iter_positions(
ignore_metadata=True), 1):
aln2_chars = str(aln2_chars)
# Iterate over the characters in aln1 (which corresponds to the
# horizontal sequence in the matrix)
for aln1_pos, aln1_chars in enumerate(aln1.iter_positions(
ignore_metadata=True), 1):
aln1_chars = str(aln1_chars)
# compute the score for a match/mismatch
substitution_score = _compute_substitution_score(
aln1_chars, aln2_chars, substitution_matrix,
gap_substitution_score, aln1.dtype.gap_chars)
diag_score = \
(score_matrix[aln2_pos-1, aln1_pos-1] + substitution_score,
match)
# compute the score for adding a gap in aln2 (vertical)
if not penalize_terminal_gaps and (aln1_pos == aln1_length):
# we've reached the end of aln1, so adding vertical gaps
# (which become gaps in aln1) should no longer
# be penalized (if penalize_terminal_gaps == False)
up_score = (score_matrix[aln2_pos-1, aln1_pos], vgap)
elif traceback_matrix[aln2_pos-1, aln1_pos] == vgap:
# gap extend, because the cell above was also a gap
up_score = \
(score_matrix[aln2_pos-1, aln1_pos] - gap_extend_penalty,
vgap)
else:
# gap open, because the cell above was not a gap
up_score = \
(score_matrix[aln2_pos-1, aln1_pos] - gap_open_penalty,
vgap)
# compute the score for adding a gap in aln1 (horizontal)
if not penalize_terminal_gaps and (aln2_pos == aln2_length):
# we've reached the end of aln2, so adding horizontal gaps
# (which become gaps in aln2) should no longer
# be penalized (if penalize_terminal_gaps == False)
left_score = (score_matrix[aln2_pos, aln1_pos-1], hgap)
elif traceback_matrix[aln2_pos, aln1_pos-1] == hgap:
# gap extend, because the cell to the left was also a gap
left_score = \
(score_matrix[aln2_pos, aln1_pos-1] - gap_extend_penalty,
hgap)
else:
# gap open, because the cell to the left was not a gap
left_score = \
(score_matrix[aln2_pos, aln1_pos-1] - gap_open_penalty,
hgap)
# identify the largest score, and use that information to populate
# the score and traceback matrices
best_score = _first_largest([new_alignment_score, left_score,
diag_score, up_score])
score_matrix[aln2_pos, aln1_pos] = best_score[0]
traceback_matrix[aln2_pos, aln1_pos] = best_score[1]
return score_matrix, traceback_matrix
def _traceback(traceback_matrix, score_matrix, aln1, aln2, start_row,
start_col):
# cache some values for simpler reference
aend = _traceback_encoding['alignment-end']
match = _traceback_encoding['match']
vgap = _traceback_encoding['vertical-gap']
hgap = _traceback_encoding['horizontal-gap']
gap_character = aln1.dtype.default_gap_char
# initialize the result alignments
aln1_sequence_count = aln1.shape.sequence
aligned_seqs1 = [[] for e in range(aln1_sequence_count)]
aln2_sequence_count = aln2.shape.sequence
aligned_seqs2 = [[] for e in range(aln2_sequence_count)]
current_row = start_row
current_col = start_col
best_score = score_matrix[current_row, current_col]
current_value = None
while current_value != aend:
current_value = traceback_matrix[current_row, current_col]
if current_value == match:
for aligned_seq, input_seq in zip(aligned_seqs1, aln1):
aligned_seq.append(str(input_seq[current_col-1]))
for aligned_seq, input_seq in zip(aligned_seqs2, aln2):
aligned_seq.append(str(input_seq[current_row-1]))
current_row -= 1
current_col -= 1
elif current_value == vgap:
for aligned_seq in aligned_seqs1:
aligned_seq.append(gap_character)
for aligned_seq, input_seq in zip(aligned_seqs2, aln2):
aligned_seq.append(str(input_seq[current_row-1]))
current_row -= 1
elif current_value == hgap:
for aligned_seq, input_seq in zip(aligned_seqs1, aln1):
aligned_seq.append(str(input_seq[current_col-1]))
for aligned_seq in aligned_seqs2:
aligned_seq.append(gap_character)
current_col -= 1
elif current_value == aend:
continue
else:
raise ValueError(
"Invalid value in traceback matrix: %s" % current_value)
for i, (aligned_seq, original) in enumerate(zip(aligned_seqs1, aln1)):
aligned_seq = ''.join(aligned_seq)[::-1]
constructor = aln1.dtype
metadata = None
if original.has_metadata():
metadata = original.metadata
aligned_seqs1[i] = constructor(aligned_seq, metadata=metadata,
validate=False)
for i, (aligned_seq, original) in enumerate(zip(aligned_seqs2, aln2)):
aligned_seq = ''.join(aligned_seq)[::-1]
constructor = aln2.dtype
metadata = None
if original.has_metadata():
metadata = original.metadata
aligned_seqs2[i] = constructor(aligned_seq, metadata=metadata,
validate=False)
return aligned_seqs1, aligned_seqs2, best_score, current_col, current_row
def _first_largest(scores):
""" Similar to max, but returns the first element achieving the high score
If max receives a tuple, it will break a tie for the highest value
of entry[i] with entry[i+1]. We don't want that here - to better match
with the results of other tools, we want to be able to define which
entry is returned in the case of a tie.
"""
result = scores[0]
for score, direction in scores[1:]:
if score > result[0]:
result = (score, direction)
return result
|