File: binary_dm.py

package info (click to toggle)
python-skbio 0.5.8-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,224 kB
  • sloc: python: 47,839; ansic: 672; makefile: 210; javascript: 50; sh: 19
file content (179 lines) | stat: -rw-r--r-- 5,795 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Simple binary dissimilarity matrix format (:mod:`skbio.io.format.binary_dm`)
============================================================================

.. currentmodule:: skbio.io.format.binary_dm

The Binary DisSimilarity Matrix format (``binary_dm``) encodes a binary
representation for dissimilarity and distance matrices. The format is
designed to facilitate rapid random access to individual rows or columns of
a hollow matrix.

Format Support
--------------
**Has Sniffer: Yes**

+------+------+---------------------------------------------------------------+
|Reader|Writer|                          Object Class                         |
+======+======+===============================================================+
|Yes   |Yes   |:mod:`skbio.stats.distance.DissimilarityMatrix`                |
+------+------+---------------------------------------------------------------+
|Yes   |Yes   |:mod:`skbio.stats.distance.DistanceMatrix`                     |
+------+------+---------------------------------------------------------------+

Format Specification
--------------------
The binary dissimilarity matrix and object identifiers are stored within an
HDF5 [1]_ file. Both datatypes are represented by their own datasets. The
`ids` dataset is of a variable length unicode type, while the
`matrix` dataset are floating point. The shape of the `ids` is
`(N,)`, and the shape of the `dissimilarities` is `(N, N)`. The diagonal of
`matrix` are all zeros.

The dissimilarity between `ids[i]` and `ids[j]` is interpreted
to be the value at `matrix[i, j]`. `i` and `j` are integer indices.

Required attributes:

+-----------+---------------------+------------------------------+
|Attribute  |Value                |Description                   |
|           |type                 |                              |
+===========+=====================+==============================+
|format     |string               |A string identifying the file |
|           |                     |as Binary DM format           |
+-----------+---------------------+------------------------------+
|version    |string               |The version of the current    |
|           |                     |Binary DM format              |
+-----------+---------------------+------------------------------+
|matrix     |float32 or float64   |A (N, N) dataset containing   |
|           |                     |the values of the             |
|           |                     |dissimilarity matrix          |
+-----------+---------------------+------------------------------+
|order      |string               |A (N,) dataset of the sample  |
|           |                     |IDs, where N is the total     |
|           |                     |number of IDs                 |
+-----------+---------------------+------------------------------+

.. note:: This file format is most useful for storing large matrices that do
   not need to be represented in a human-readable format. This format is
   especially appropriate for facilitating random access to entries in the
   distance matrix, such as when calculating within and between distances for a
   subset of samples in a large matrix.

References
----------
.. [1] http://www.hdfgroup.org/

"""

# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import h5py

from skbio.io import create_format
from skbio.stats.distance import DissimilarityMatrix, DistanceMatrix


binary_dm = create_format('binary_dm', encoding='binary')
_vlen_dtype = h5py.special_dtype(vlen=str)


@binary_dm.sniffer()
def _binary_dm_sniffer(fh):
    try:
        f = h5py.File(fh, 'r')
    except OSError:
        return False, {}

    header = _get_header(f)
    if header is None:
        return False, {}

    ids = f.get('order')
    if ids is None:
        return False, {}

    mat = f.get('matrix')
    if mat is None:
        return False, {}

    n = len(ids)
    if mat.shape != (n, n):
        return False, {}

    return True, {}


@binary_dm.reader(DissimilarityMatrix)
def _binary_dm_to_dissimilarity(fh):
    return _h5py_mat_to_skbio_mat(fh)


@binary_dm.reader(DistanceMatrix)
def _binary_dm_to_distance(fh):
    return _h5py_mat_to_skbio_mat(fh)


@binary_dm.writer(DissimilarityMatrix)
def _dissimilarity_to_binary_dm(obj, fh):
    return _skbio_mat_to_h5py_mat(fh)


@binary_dm.writer(DistanceMatrix)
def _distance_to_binary_dm(obj, fh):
    return _skbio_mat_to_h5py_mat(fh)


def _h5py_mat_to_skbio_mat(cls, fh):
    return cls(fh['matrix'], _parse_ids(fh['order']))


def _skbio_mat_to_h5py_mat(obj, fh):
    _set_header(fh)

    ids = fh.create_dataset('order', shape=(len(obj.ids), ), dtype=_vlen_dtype)
    ids[:] = obj.ids
    fh.create_dataset('matrix', data=obj.data)


def _get_header(fh):
    format_ = fh.get('format')
    version = fh.get('version')
    if format is None or version is None:
        return None
    else:
        return {'format': format_[0], 'version': version[0]}


def _parse_ids(ids):
    if isinstance(ids[0], bytes):
        return _bytes_decoder(ids)
    else:
        return _passthrough_decoder(ids)


def _verify_dimensions(fh):
    if 'order' not in fh or 'matrix' not in fh:
        return False
    n = len(fh['order'])
    return fh['matrix'].shape == (n, n)


def _bytes_decoder(x):
    return [i.decode('utf8') for i in x]


def _passthrough_decoder(x):
    return x


def _set_header(h5grp):
    """Set format spec header information"""
    h5grp['format'] = [b'BDSM', ]
    h5grp['version'] = [b'2020.06', ]