File: test_taxdump.py

package info (click to toggle)
python-skbio 0.5.8-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,224 kB
  • sloc: python: 47,839; ansic: 672; makefile: 210; javascript: 50; sh: 19
file content (169 lines) | stat: -rw-r--r-- 7,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import unittest
from io import StringIO

import pandas as pd
import numpy as np

from skbio.util import get_data_path, assert_data_frame_almost_equal
from skbio.io.format.taxdump import _taxdump_to_data_frame


class TestTaxdumpReader(unittest.TestCase):
    def test_nodes_default(self):
        # subset of a real NCBI taxonomy nodes.dmp file
        fp = get_data_path('taxdump_nodes.dmp')
        obs = _taxdump_to_data_frame(fp, scheme='nodes')
        exp = pd.DataFrame([
            [1, 1, 'no rank', np.nan, 8, False, 1, False,
             0, False, False, False, np.nan],
            [2, 131567, 'superkingdom', np.nan, 0, False, 11, False,
             0, False, False, False, np.nan],
            [543, 91347, 'family', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [548, 570, 'species', 'KA', 0, True, 11, True,
             0, True, True, False, np.nan],
            [561, 543, 'genus', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [562, 561, 'species', 'EC', 0, True, 11, True,
             0, True, True, False, np.nan],
            [570, 543, 'genus', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [620, 543, 'genus', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [622, 620, 'species', 'SD', 0, True, 11, True,
             0, True, True, False, np.nan],
            [766, 28211, 'order', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [1224, 2, 'phylum', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [1236, 1224, 'class', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [28211, 1224, 'class', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [91347, 1236, 'order', np.nan, 0, True, 11, True,
             0, True, False, False, np.nan],
            [118884, 1236, 'no rank', np.nan, 0, True, 11, True,
             0, True, True, False, np.nan],
            [126792, 36549, 'species', 'PP', 0, True, 11, True,
             0, True, True, False, np.nan],
            [131567, 1, 'no rank', np.nan, 8, True, 1, True,
             0, True, True, False, np.nan],
            [585056, 562, 'no rank', np.nan, 0, True, 11, True,
             0, True, True, False, np.nan],
            [1038927, 562, 'no rank', np.nan, 0, True, 11, True,
             0, True, True, False, np.nan],
            [2580236, 488338, 'species', 'SE', 7, True, 11, True,
             0, True, False, False, np.nan]], columns=[
                 'tax_id', 'parent_tax_id', 'rank', 'embl_code',
                 'division_id', 'inherited_div_flag', 'genetic_code_id',
                 'inherited_GC_flag', 'mitochondrial_genetic_code_id',
                 'inherited_MGC_flag', 'GenBank_hidden_flag',
                 'hidden_subtree_root_flag', 'comments']).set_index('tax_id')
        exp['comments'] = exp['comments'].astype('O')
        assert_data_frame_almost_equal(obs, exp)

    def test_names_default(self):
        # subset of a real NCBI taxonomy names.dmp file
        fp = get_data_path('taxdump_names.dmp')
        obs = _taxdump_to_data_frame(fp, scheme='names')
        exp = pd.DataFrame([
            [1, 'root', np.nan, 'scientific name'],
            [2, 'Bacteria', 'Bacteria <bacteria>', 'scientific name'],
            [2, 'eubacteria', np.nan, 'genbank common name'],
            [543, 'Enterobacteriaceae', np.nan, 'scientific name'],
            [548, 'Klebsiella aerogenes', np.nan, 'scientific name'],
            [561, 'Escherichia', np.nan, 'scientific name'],
            [562, '"Bacillus coli" Migula 1895', np.nan, 'authority'],
            [562, 'Escherichia coli', np.nan, 'scientific name'],
            [562, 'Escherichia/Shigella coli', np.nan, 'equivalent name'],
            [570, 'Donovania', np.nan, 'synonym'],
            [570, 'Klebsiella', np.nan, 'scientific name'],
            [620, 'Shigella', np.nan, 'scientific name'],
            [622, 'Shigella dysenteriae', np.nan, 'scientific name'],
            [766, 'Rickettsiales', np.nan, 'scientific name'],
            [1224, 'Proteobacteria', np.nan, 'scientific name'],
            [1236, 'Gammaproteobacteria', np.nan, 'scientific name'],
            [28211, 'Alphaproteobacteria', np.nan, 'scientific name'],
            [91347, 'Enterobacterales', np.nan, 'scientific name'],
            [118884, 'unclassified Gammaproteobacteria', np.nan,
             'scientific name'],
            [126792, 'Plasmid pPY113', np.nan, 'scientific name'],
            [131567, 'cellular organisms', np.nan, 'scientific name'],
            [585056, 'Escherichia coli UMN026', np.nan, 'scientific name'],
            [1038927, 'Escherichia coli O104:H4', np.nan, 'scientific name'],
            [2580236, 'synthetic Escherichia coli Syn61', np.nan,
             'scientific name']],
             columns=['tax_id', 'name_txt', 'unique_name',
                      'name_class']).set_index('tax_id')
        assert_data_frame_almost_equal(obs, exp)

    def test_nodes_slim(self):
        fp = get_data_path('taxdump_nodes.dmp')
        obs = _taxdump_to_data_frame(fp, scheme='nodes_slim')
        exp = pd.DataFrame([
            [1,       1,      'no rank'],
            [2,       131567, 'superkingdom'],
            [543,     91347,  'family'],
            [548,     570,    'species'],
            [561,     543,    'genus'],
            [562,     561,    'species'],
            [570,     543,    'genus'],
            [620,     543,    'genus'],
            [622,     620,    'species'],
            [766,     28211,  'order'],
            [1224,    2,      'phylum'],
            [1236,    1224,   'class'],
            [28211,   1224,   'class'],
            [91347,   1236,   'order'],
            [118884,  1236,   'no rank'],
            [126792,  36549,  'species'],
            [131567,  1,      'no rank'],
            [585056,  562,    'no rank'],
            [1038927, 562,    'no rank'],
            [2580236, 488338, 'species']],
            columns=['tax_id', 'parent_tax_id', 'rank']).set_index('tax_id')
        assert_data_frame_almost_equal(obs, exp)

    def test_custom_scheme(self):
        fs = StringIO('\n'.join(map('\t|\t'.join, [
            ('a', 'a'),
            ('b', 'a'),
            ('c', 'a')
        ])))
        obs = _taxdump_to_data_frame(fs, scheme={'self': str, 'parent': str})
        exp = pd.DataFrame([
            ['a', 'a'],
            ['b', 'a'],
            ['c', 'a']],
            columns=['self', 'parent']).set_index('self')
        assert_data_frame_almost_equal(obs, exp)

    def test_invalid_scheme(self):
        fp = get_data_path('taxdump_names.dmp')
        with self.assertRaises(ValueError) as ctx:
            _taxdump_to_data_frame(fp, scheme='hello')
        self.assertEqual(str(ctx.exception),
                         'Invalid taxdump column scheme: "hello".')

    def test_invalid_id(self):
        fs = StringIO('\n'.join(map('\t|\t'.join, [
            ('1', '2', 'family'),
            ('3', '4', 'genus'),
            ('x', '6', 'species'),  # 'x' is not a number
        ])))
        with self.assertRaises(ValueError) as ctx:
            _taxdump_to_data_frame(fs, scheme='nodes_slim')
        self.assertEqual(str(ctx.exception),
                         'Invalid taxdump file format.')


if __name__ == '__main__':
    unittest.main()