1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
import io
import numpy as np
from skbio.stats.distance import DistanceMatrix
from skbio.tree import TreeNode
from skbio.util._decorator import experimental
@experimental(as_of="0.4.0")
def nj(dm, disallow_negative_branch_length=True, result_constructor=None):
r""" Apply neighbor joining for phylogenetic reconstruction.
Parameters
----------
dm : skbio.DistanceMatrix
Input distance matrix containing distances between OTUs.
disallow_negative_branch_length : bool, optional
Neighbor joining can result in negative branch lengths, which don't
make sense in an evolutionary context. If `True`, negative branch
lengths will be returned as zero, a common strategy for handling this
issue that was proposed by the original developers of the algorithm.
result_constructor : function, optional
Function to apply to construct the result object. This must take a
newick-formatted string as input. The result of applying this function
to a newick-formatted string will be returned from this function. This
defaults to ``lambda x: TreeNode.read(StringIO(x), format='newick')``.
Returns
-------
TreeNode
By default, the result object is a `TreeNode`, though this can be
overridden by passing `result_constructor`.
See Also
--------
TreeNode.root_at_midpoint
Notes
-----
Neighbor joining was initially described in Saitou and Nei (1987) [1]_. The
example presented here is derived from the Wikipedia page on neighbor
joining [2]_. The Phylip manual also describes the method [3]_ and Phylip
itself provides an implementation which is useful for comparison.
Neighbor joining, by definition, creates unrooted trees. One strategy for
rooting the resulting trees is midpoint rooting, which is accessible as
``TreeNode.root_at_midpoint``.
References
----------
.. [1] Saitou N, and Nei M. (1987) "The neighbor-joining method: a new
method for reconstructing phylogenetic trees." Molecular Biology and
Evolution. PMID: 3447015.
.. [2] http://en.wikipedia.org/wiki/Neighbour_joining
.. [3] http://evolution.genetics.washington.edu/phylip/doc/neighbor.html
Examples
--------
Define a new distance matrix object describing the distances between five
OTUs: a, b, c, d, and e.
>>> from skbio import DistanceMatrix
>>> from skbio.tree import nj
>>> data = [[0, 5, 9, 9, 8],
... [5, 0, 10, 10, 9],
... [9, 10, 0, 8, 7],
... [9, 10, 8, 0, 3],
... [8, 9, 7, 3, 0]]
>>> ids = list('abcde')
>>> dm = DistanceMatrix(data, ids)
Contstruct the neighbor joining tree representing the relationship between
those OTUs. This is returned as a TreeNode object.
>>> tree = nj(dm)
>>> print(tree.ascii_art())
/-d
|
| /-c
|---------|
---------| | /-b
| \--------|
| \-a
|
\-e
Again, construct the neighbor joining tree, but instead return the newick
string representing the tree, rather than the TreeNode object. (Note that
in this example the string output is truncated when printed to facilitate
rendering.)
>>> newick_str = nj(dm, result_constructor=str)
>>> print(newick_str[:55], "...")
(d:2.000000, (c:4.000000, (b:3.000000, a:2.000000):3.00 ...
"""
if dm.shape[0] < 3:
raise ValueError(
"Distance matrix must be at least 3x3 to "
"generate a neighbor joining tree.")
if result_constructor is None:
def result_constructor(x):
return TreeNode.read(io.StringIO(x), format='newick')
# initialize variables
node_definition = None
# while there are still more than three distances in the distance matrix,
# join neighboring nodes.
while (dm.shape[0] > 3):
# compute the Q matrix
q = _compute_q(dm)
# identify the pair of nodes that have the lowest Q value. if multiple
# pairs have equally low Q values, the first pair identified (closest
# to the top-left of the matrix) will be chosen. these will be joined
# in the current node.
idx1, idx2 = _lowest_index(q)
pair_member_1 = dm.ids[idx1]
pair_member_2 = dm.ids[idx2]
# determine the distance of each node to the new node connecting them.
pair_member_1_len, pair_member_2_len = _pair_members_to_new_node(
dm, idx1, idx2, disallow_negative_branch_length)
# define the new node in newick style
node_definition = "(%s:%f, %s:%f)" % (pair_member_1,
pair_member_1_len,
pair_member_2,
pair_member_2_len)
# compute the new distance matrix, which will contain distances of all
# other nodes to this new node
dm = _compute_collapsed_dm(
dm, pair_member_1, pair_member_2,
disallow_negative_branch_length=disallow_negative_branch_length,
new_node_id=node_definition)
# When there are three distances left in the distance matrix, we have a
# fully defined tree. The last node is internal, and its distances are
# defined by these last three values.
# First determine the distance between the last two nodes to be joined in
# a pair...
pair_member_1 = dm.ids[1]
pair_member_2 = dm.ids[2]
pair_member_1_len, pair_member_2_len = \
_pair_members_to_new_node(dm, pair_member_1, pair_member_2,
disallow_negative_branch_length)
# ...then determine their distance to the other remaining node, but first
# handle the trival case where the input dm was only 3 x 3
node_definition = node_definition or dm.ids[0]
internal_len = 0.5 * (dm[pair_member_1, node_definition] +
dm[pair_member_2, node_definition] -
dm[pair_member_1, pair_member_2])
if disallow_negative_branch_length and internal_len < 0:
internal_len = 0
# ...and finally create the newick string describing the whole tree.
newick = "(%s:%f, %s:%f, %s:%f);" % (pair_member_1, pair_member_1_len,
node_definition, internal_len,
pair_member_2, pair_member_2_len)
# package the result as requested by the user and return it.
return result_constructor(newick)
def _compute_q(dm):
"""Compute Q matrix, used to identify the next pair of nodes to join.
"""
q = np.zeros(dm.shape)
n = dm.shape[0]
big_sum = np.array([dm.data.sum(1)] * dm.shape[0])
big_sum_diffs = big_sum + big_sum.T
q = (n - 2) * dm.data - big_sum_diffs
np.fill_diagonal(q, 0)
return DistanceMatrix(q, dm.ids)
def _compute_collapsed_dm(dm, i, j, disallow_negative_branch_length,
new_node_id):
"""Return the distance matrix resulting from joining ids i and j in a node.
If the input distance matrix has shape ``(n, n)``, the result will have
shape ``(n-1, n-1)`` as the ids `i` and `j` are collapsed to a single new
ids.
"""
in_n = dm.shape[0]
out_n = in_n - 1
out_ids = [new_node_id]
out_ids.extend([e for e in dm.ids if e not in (i, j)])
result = np.zeros((out_n, out_n))
# pre-populate the result array with known distances
ij_indexes = [dm.index(i), dm.index(j)]
result[1:, 1:] = np.delete(np.delete(dm.data, ij_indexes, axis=0),
ij_indexes, axis=1)
# calculate the new distances from the current DistanceMatrix
k_to_u = 0.5 * (dm[i] + dm[j] - dm[i, j])
# set negative branches to 0 if specified
if disallow_negative_branch_length:
k_to_u[k_to_u < 0] = 0
# drop nodes being joined
k_to_u = np.delete(k_to_u, ij_indexes)
# assign the distances to the result array
result[0] = result[:, 0] = np.concatenate([[0], k_to_u])
return DistanceMatrix(result, out_ids)
def _lowest_index(dm):
"""Return the index of the lowest value in the input distance matrix.
If there are ties for the lowest value, the index of top-left most
occurrence of that value will be returned.
This should be ultimately be replaced with a new DistanceMatrix object
method (#228).
"""
# get the positions of the lowest value
results = np.vstack(np.where(dm.data == np.amin(dm.condensed_form()))).T
# select results in the bottom-left of the array
results = results[results[:, 0] > results[:, 1]]
# calculate the distances of the results to [0, 0]
res_distances = np.sqrt(results[:, 0]**2 + results[:, 1]**2)
# detect distance ties & return the point which would have
# been produced by the original function
if np.count_nonzero(res_distances == np.amin(res_distances)) > 1:
eqdistres = results[res_distances == np.amin(res_distances)]
res_coords = eqdistres[np.argmin([r[0] for r in eqdistres])]
else:
res_coords = results[np.argmin(res_distances)]
return tuple([res_coords[0], res_coords[1]])
def _pair_members_to_new_node(dm, i, j, disallow_negative_branch_length):
"""Return the distance between a new node and decendants of that new node.
Parameters
----------
dm : skbio.DistanceMatrix
The input distance matrix.
i, j : str
Identifiers of entries in the distance matrix to be collapsed (i.e.,
the descendents of the new node, which is internally represented as
`u`).
disallow_negative_branch_length : bool
Neighbor joining can result in negative branch lengths, which don't
make sense in an evolutionary context. If `True`, negative branch
lengths will be returned as zero, a common strategy for handling this
issue that was proposed by the original developers of the algorithm.
"""
n = dm.shape[0]
i_to_j = dm[i, j]
i_to_u = (0.5 * i_to_j) + ((dm[i].sum() - dm[j].sum()) / (2 * (n - 2)))
if disallow_negative_branch_length and i_to_u < 0:
i_to_u = 0
j_to_u = i_to_j - i_to_u
if disallow_negative_branch_length and j_to_u < 0:
j_to_u = 0
return i_to_u, j_to_u
|