1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
import functools
import itertools
from warnings import warn
import numpy as np
import scipy.spatial.distance
import pandas as pd
import skbio
from skbio.diversity.alpha._pd import _faith_pd, _phydiv, _setup_pd
from skbio.diversity.beta._unifrac import (
_setup_multiple_unweighted_unifrac,
_setup_multiple_weighted_unifrac,
_normalize_weighted_unifrac_by_default,
)
from skbio.stats.distance import DistanceMatrix
from skbio.diversity._util import (
_validate_counts_matrix,
_get_phylogenetic_kwargs,
_quantitative_to_qualitative_counts,
_table_to_numpy,
_validate_table,
)
from skbio.util._warning import _warn_deprecated
def _get_alpha_diversity_metric_map():
return {
"ace": skbio.diversity.alpha.ace,
"chao1": skbio.diversity.alpha.chao1,
"chao1_ci": skbio.diversity.alpha.chao1_ci,
"berger_parker_d": skbio.diversity.alpha.berger_parker_d,
"brillouin_d": skbio.diversity.alpha.brillouin_d,
"dominance": skbio.diversity.alpha.dominance,
"doubles": skbio.diversity.alpha.doubles,
"enspie": skbio.diversity.alpha.enspie,
"esty_ci": skbio.diversity.alpha.esty_ci,
"faith_pd": skbio.diversity.alpha.faith_pd,
"fisher_alpha": skbio.diversity.alpha.fisher_alpha,
"gini_index": skbio.diversity.alpha.gini_index,
"goods_coverage": skbio.diversity.alpha.goods_coverage,
"inv_simpson": skbio.diversity.alpha.inv_simpson,
"hill": skbio.diversity.alpha.hill,
"heip_e": skbio.diversity.alpha.heip_e,
"kempton_taylor_q": skbio.diversity.alpha.kempton_taylor_q,
"lladser_ci": skbio.diversity.alpha.lladser_ci,
"lladser_pe": skbio.diversity.alpha.lladser_pe,
"margalef": skbio.diversity.alpha.margalef,
"mcintosh_d": skbio.diversity.alpha.mcintosh_d,
"mcintosh_e": skbio.diversity.alpha.mcintosh_e,
"menhinick": skbio.diversity.alpha.menhinick,
"michaelis_menten_fit": skbio.diversity.alpha.michaelis_menten_fit,
"observed_features": skbio.diversity.alpha.observed_features,
"observed_otus": skbio.diversity.alpha.observed_otus,
"osd": skbio.diversity.alpha.osd,
"phydiv": skbio.diversity.alpha.phydiv,
"pielou_e": skbio.diversity.alpha.pielou_e,
"renyi": skbio.diversity.alpha.renyi,
"robbins": skbio.diversity.alpha.robbins,
"shannon": skbio.diversity.alpha.shannon,
"simpson": skbio.diversity.alpha.simpson,
"simpson_d": skbio.diversity.alpha.simpson_d,
"simpson_e": skbio.diversity.alpha.simpson_e,
"singles": skbio.diversity.alpha.singles,
"sobs": skbio.diversity.alpha.sobs,
"strong": skbio.diversity.alpha.strong,
"tsallis": skbio.diversity.alpha.tsallis,
}
def get_alpha_diversity_metrics():
"""List scikit-bio's alpha diversity metrics.
The alpha diversity metrics listed here can be passed as metrics to
``skbio.diversity.alpha_diversity``.
Returns
-------
list of str
Alphabetically sorted list of alpha diversity metrics implemented in
scikit-bio.
See Also
--------
alpha_diversity
get_beta_diversity_metrics
"""
metrics = _get_alpha_diversity_metric_map()
return sorted(metrics.keys())
def get_beta_diversity_metrics():
"""List scikit-bio's beta diversity metrics.
The beta diversity metrics listed here can be passed as metrics to
``skbio.diversity.beta_diversity``.
Returns
-------
list of str
Alphabetically sorted list of beta diversity metrics implemented in
scikit-bio.
See Also
--------
beta_diversity
get_alpha_diversity_metrics
scipy.spatial.distance.pdist
Notes
-----
SciPy implements many additional beta diversity metrics that are not
included in this list. See documentation for
``scipy.spatial.distance.pdist`` for more details.
"""
return sorted(["unweighted_unifrac", "weighted_unifrac"])
def alpha_diversity(metric, counts, ids=None, validate=True, **kwargs):
"""Compute alpha diversity for one or more samples.
Parameters
----------
metric : str, callable
The alpha diversity metric to apply to the sample(s). Passing metric as
a string is preferable as this often results in an optimized version of
the metric being used.
counts : 1D or 2D array_like of ints or floats, Table
Vector or matrix containing count/abundance data. If a matrix, each row
should contain counts of taxa in a given sample.
ids : iterable of strs, optional
Identifiers for each sample in ``counts``. By default, samples will be
assigned integer identifiers in the order that they were provided.
validate: bool, optional
If ``False``, validation of the input won't be performed. This step can
be slow, so if validation is run elsewhere it can be disabled here.
However, invalid input data can lead to invalid results or error
messages that are hard to interpret, so this step should not be
bypassed if you're not certain that your input data are valid. See
:mod:`skbio.diversity` for the description of what validation entails
so you can determine if you can safely disable validation.
kwargs : kwargs, optional
Metric-specific parameters.
Returns
-------
pd.Series
Values of ``metric`` for all vectors provided in ``counts``. The index
will be ``ids``, if provided.
Raises
------
ValueError, MissingNodeError, DuplicateNodeError
If validation fails. Exact error will depend on what was invalid.
TypeError
If invalid method-specific parameters are provided.
See Also
--------
skbio.diversity
skbio.diversity.alpha
skbio.diversity.get_alpha_diversity_metrics
skbio.diversity.beta_diversity
"""
if isinstance(counts, skbio.Table):
counts, ids = _validate_table(counts, ids, kwargs)
metric_map = _get_alpha_diversity_metric_map()
if validate:
counts = _validate_counts_matrix(counts, ids=ids)
if metric == "faith_pd":
taxa, tree, kwargs = _get_phylogenetic_kwargs(counts, **kwargs)
counts_by_node, branch_lengths = _setup_pd(
counts, taxa, tree, validate, rooted=True, single_sample=False
)
counts = counts_by_node
metric = functools.partial(_faith_pd, branch_lengths=branch_lengths, **kwargs)
elif metric == "phydiv":
taxa, tree, kwargs = _get_phylogenetic_kwargs(counts, **kwargs)
counts_by_node, branch_lengths = _setup_pd(
counts, taxa, tree, validate, rooted=False, single_sample=False
)
counts = counts_by_node
if "rooted" not in kwargs:
kwargs["rooted"] = len(tree.root().children) == 2
if "weight" not in kwargs:
kwargs["weight"] = False
metric = functools.partial(_phydiv, branch_lengths=branch_lengths, **kwargs)
elif callable(metric):
metric = functools.partial(metric, **kwargs)
elif metric in metric_map:
metric = functools.partial(metric_map[metric], **kwargs)
else:
raise ValueError("Unknown metric provided: %r." % metric)
# kwargs is provided here so an error is raised on extra kwargs
results = [metric(c, **kwargs) for c in counts]
return pd.Series(results, index=ids)
def partial_beta_diversity(metric, counts, ids, id_pairs, validate=True, **kwargs):
"""Compute distances only between specified ID pairs.
Parameters
----------
metric : str or callable
The pairwise distance function to apply. If ``metric`` is a string, it
must be resolvable by scikit-bio (e.g., UniFrac methods), or must be
callable.
counts : 2D array_like of ints or floats
Matrix containing count/abundance data where each row contains counts
of taxa in a given sample.
ids : iterable of strs
Identifiers for each sample in ``counts``.
id_pairs : iterable of tuple
An iterable of tuples of IDs to compare (e.g., ``[('a', 'b'), ('a',
'c'), ...])``. If specified, the set of IDs described must be a subset
of ``ids``.
validate : bool, optional
See ``skbio.diversity.beta_diversity`` for details.
kwargs : kwargs, optional
Metric-specific parameters.
Returns
-------
skbio.DistanceMatrix
Distances between pairs of samples indicated by id_pairs. Pairwise
distances not defined by id_pairs will be 0.0. Use this resulting
DistanceMatrix with caution as 0.0 is a valid distance.
Warnings
--------
``partial_beta_diversity`` is deprecated as of ``0.5.0``. The return type is
unstable. Developer caution is advised. The resulting DistanceMatrix object will
include zeros when distance has not been calculated, and therefore can be
misleading.
Raises
------
ValueError
If ``ids`` are not specified.
If ``id_pairs`` are not a subset of ``ids``.
If ``metric`` is not a callable or is unresolvable string by
scikit-bio.
If duplicates are observed in ``id_pairs``.
See Also
--------
skbio.diversity.beta_diversity
skbio.diversity.get_beta_diversity_metrics
"""
# @deprecated
_warn_deprecated(
partial_beta_diversity,
"0.5.0",
msg="The return type is unstable. Developer caution is advised. The resulting "
"DistanceMatrix object will include zeros when distance has not been "
"calculated, and therefore can be misleading.",
)
if validate:
counts = _validate_counts_matrix(counts, ids=ids)
id_pairs = list(id_pairs)
all_ids_in_pairs = set(itertools.chain.from_iterable(id_pairs))
if not all_ids_in_pairs.issubset(ids):
raise ValueError("`id_pairs` are not a subset of `ids`")
hashes = {i for i in id_pairs}.union({i[::-1] for i in id_pairs})
if len(hashes) != len(id_pairs) * 2:
raise ValueError("A duplicate or a self-self pair was observed.")
if metric == "unweighted_unifrac":
counts = _quantitative_to_qualitative_counts(counts)
taxa, tree, kwargs = _get_phylogenetic_kwargs(counts, **kwargs)
metric, counts_by_node = _setup_multiple_unweighted_unifrac(
counts, taxa=taxa, tree=tree, validate=validate
)
counts = counts_by_node
elif metric == "weighted_unifrac":
# get the value for normalized. if it was not provided, it will fall
# back to the default value inside of _weighted_unifrac_pdist_f
normalized = kwargs.pop("normalized", _normalize_weighted_unifrac_by_default)
taxa, tree, kwargs = _get_phylogenetic_kwargs(counts, **kwargs)
metric, counts_by_node = _setup_multiple_weighted_unifrac(
counts, taxa=taxa, tree=tree, normalized=normalized, validate=validate
)
counts = counts_by_node
elif callable(metric):
metric = functools.partial(metric, **kwargs)
# remove all values from kwargs, since they have already been provided
# through the partial
kwargs = {}
else:
raise ValueError(
"partial_beta_diversity is only compatible with "
"optimized unifrac methods and callable functions."
)
dm = np.zeros((len(ids), len(ids)), dtype=float)
id_index = {id_: idx for idx, id_ in enumerate(ids)}
id_pairs_indexed = ((id_index[u], id_index[v]) for u, v in id_pairs)
for u, v in id_pairs_indexed:
dm[u, v] = metric(counts[u], counts[v], **kwargs)
return DistanceMatrix(dm + dm.T, ids)
# The following two lists are adapted from sklearn.metrics.pairwise. Metrics
# that are not available in SciPy (only in sklearn) have been removed from
# the list of _valid_beta_metrics here (those are: manhatten, wminkowski,
# nan_euclidean, and haversine)
_valid_beta_metrics = [
"euclidean",
"cityblock",
"braycurtis",
"canberra",
"chebyshev",
"correlation",
"cosine",
"dice",
"hamming",
"jaccard",
"mahalanobis",
"manhattan", # aliases to "cityblock" in beta_diversity
"matching",
"minkowski",
"rogerstanimoto",
"russellrao",
"seuclidean",
"sokalmichener",
"sokalsneath",
"sqeuclidean",
"yule",
]
_qualitative_beta_metrics = [
"dice",
"jaccard",
"matching",
"rogerstanimoto",
"russellrao",
"sokalmichener",
"sokalsneath",
"yule",
]
def beta_diversity(
metric, counts, ids=None, validate=True, pairwise_func=None, **kwargs
):
"""Compute distances between all pairs of samples.
Parameters
----------
metric : str, callable
The pairwise distance function to apply. See the scipy ``pdist`` docs
and the scikit-bio functions linked under *See Also* for available
metrics. Passing metrics as a strings is preferable as this often
results in an optimized version of the metric being used.
counts : 2D array_like of ints or floats, 2D pandas DataFrame, Table
Matrix containing count/abundance data where each row contains counts
of taxa in a given sample.
ids : iterable of strs, optional
Identifiers for each sample in ``counts``. By default, samples will be
assigned integer identifiers in the order that they were provided
(where the type of the identifiers will be ``str``).
validate : bool, optional
If ``False``, validation of the input won't be performed. This step can
be slow, so if validation is run elsewhere it can be disabled here.
However, invalid input data can lead to invalid results or error
messages that are hard to interpret, so this step should not be
bypassed if you're not certain that your input data are valid. See
:mod:`skbio.diversity` for the description of what validation entails
so you can determine if you can safely disable validation.
pairwise_func : callable, optional
The function to use for computing pairwise distances. This function
must take ``counts`` and ``metric`` and return a square, hollow, 2-D
``numpy.ndarray`` of dissimilarities (floats). Examples of functions
that can be provided are ``scipy.spatial.distance.pdist`` and
``sklearn.metrics.pairwise_distances``. By default,
``scipy.spatial.distance.pdist`` will be used.
kwargs : kwargs, optional
Metric-specific parameters.
Returns
-------
skbio.DistanceMatrix
Distances between all pairs of samples (i.e., rows). The number of
rows and columns will be equal to the number of rows in ``counts``.
Raises
------
ValueError, MissingNodeError, DuplicateNodeError
If validation fails. Exact error will depend on what was invalid.
iTypeError
If invalid method-specific parameters are provided.
See Also
--------
skbio.diversity
skbio.diversity.beta
skbio.diversity.get_beta_diversity_metrics
skbio.diversity.alpha_diversity
scipy.spatial.distance.pdist
sklearn.metrics.pairwise_distances
"""
if isinstance(counts, skbio.Table):
counts, ids = _validate_table(counts, ids, kwargs)
if isinstance(counts, pd.DataFrame) and ids is None:
ids = list(counts.index)
if validate:
counts = _validate_counts_matrix(counts, ids=ids)
if 0 in counts.shape:
# if the input counts are empty, return an empty DistanceMatrix.
# this check is not necessary for scipy.spatial.distance.pdist but
# it is necessary for sklearn.metrics.pairwise_distances where the
# latter raises an exception over empty data.
return DistanceMatrix(np.zeros((len(ids), len(ids))), ids)
if metric == "unweighted_unifrac":
counts = _quantitative_to_qualitative_counts(counts)
taxa, tree, kwargs = _get_phylogenetic_kwargs(counts, **kwargs)
metric, counts_by_node = _setup_multiple_unweighted_unifrac(
counts, taxa=taxa, tree=tree, validate=validate
)
counts = counts_by_node
elif metric == "weighted_unifrac":
# get the value for normalized. if it was not provided, it will fall
# back to the default value inside of _weighted_unifrac_pdist_f
normalized = kwargs.pop("normalized", _normalize_weighted_unifrac_by_default)
taxa, tree, kwargs = _get_phylogenetic_kwargs(counts, **kwargs)
metric, counts_by_node = _setup_multiple_weighted_unifrac(
counts, taxa=taxa, tree=tree, normalized=normalized, validate=validate
)
counts = counts_by_node
elif metric == "manhattan":
metric = "cityblock"
elif callable(metric):
metric = functools.partial(metric, **kwargs)
# remove all values from kwargs, since they have already been provided
# through the partial
kwargs = {}
elif metric in _qualitative_beta_metrics:
counts = _quantitative_to_qualitative_counts(counts)
elif metric not in _valid_beta_metrics:
raise ValueError(
"Metric %s is not available. "
"Only the following metrics can be passed as strings to "
"beta_diversity as we know whether each of these should be "
"treated as a qualitative or quantitative metric. Other metrics "
"can be provided as functions.\n Available metrics are: %s"
% (metric, ", ".join(_valid_beta_metrics))
)
else:
# metric is a string that scikit-bio doesn't know about, for
# example one of the SciPy metrics
pass
if pairwise_func is None:
pairwise_func = scipy.spatial.distance.pdist
distances = pairwise_func(counts, metric=metric, **kwargs)
return DistanceMatrix(distances, ids)
|