1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
import numpy as np
import pandas as pd
from skbio.sequence import Protein
from skbio.stats.ordination import OrdinationResults
from skbio.embedding._embedding import SequenceEmbedding, SequenceVector, _repr_helper
def _validate_protein(sequence):
if isinstance(sequence, Protein):
sequence = str(sequence)
elif isinstance(sequence, str):
if " " in sequence:
sequence = sequence.replace(" ", "")
# perform a check to make sure the sequence is a valid protein sequence
_ = Protein(sequence)
return sequence
class ProteinEmbedding(SequenceEmbedding):
r"""Embedding of a protein sequence.
Parameters
----------
embedding : array_like
The embedding of the protein sequence. Row vectors correspond to
the latent residues coordinates.
sequence : str, Protein, or 1D ndarray
Characters representing the protein sequence itself.
clip_head : bool, optional
If ``True``, then the first row of the embedding will be removed.
Some language models specify start tokens, and this parameter can
be used to account for this.
clip_tail : bool, optional
If ``True``, then the last row of the embedding will be removed.
Some language models specify end tokens, and this parameter can
be used to account for this.
See Also
--------
skbio.sequence.Protein
Examples
--------
>>> from skbio.embedding import ProteinEmbedding
>>> import numpy as np
>>> embedding = np.random.rand(10, 3)
>>> sequence = "ACDEFGHIKL"
>>> ProteinEmbedding(embedding, sequence)
ProteinEmbedding
--------------------------
Stats:
length: 10
embedding dimension: 3
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 ACDEFGHIKL
"""
default_write_format = "embed"
def __init__(self, embedding, sequence, clip_head=False, clip_tail=False, **kwargs):
embedding = np.asarray(embedding)
if clip_head:
embedding = embedding[1:]
if clip_tail:
embedding = embedding[:-1]
sequence = _validate_protein(sequence)
super(ProteinEmbedding, self).__init__(
embedding=embedding, sequence=sequence, **kwargs
)
@property
def residues(self):
r"""Array containing underlying residue characters."""
return self._ids.view("|S1")
def __repr__(self):
r"""Return a string representation of the ProteinEmbedding object.
Returns
-------
str
String representation of the ProteinEmbedding object.
See Also
--------
skbio.sequence.Protein
"""
seq = Protein(str(self))
rstr = _repr_helper(
repr(seq),
"Protein",
"ProteinEmbedding",
"embedding",
regex_match="has gaps",
shape=self.embedding.shape[1],
)
return rstr
example_protein_embedding = ProteinEmbedding(
np.random.default_rng(0).normal(size=(62, 1024)),
"IGKEEIQQRLAQFVDHWKELKQLAAARGQRLEESLEYQQFVANVEEEEAWINEKMTLVASED",
)
class ProteinVector(SequenceVector):
r"""Vector representation for a protein sequence.
Parameters
----------
vector : 1D or 2D array_like
The vector representation of the protein sequence. Typically a 1D array. Can
also be a 2D array with only one row.
sequence : str, Sequence, or 1D ndarray
Characters representing the protein sequence itself.
See Also
--------
SequenceVector
skbio.sequence.Protein
Examples
--------
>>> from skbio.embedding import ProteinVector
>>> import numpy as np
>>> vector = np.random.rand(10)
>>> sequence = "ACDEFGHIKL"
>>> ProteinVector(vector, sequence)
ProteinVector
--------------------------
Stats:
length: 10
vector dimension: 10
has gaps: False
has degenerates: False
has definites: True
has stops: False
--------------------------
0 ACDEFGHIKL
"""
default_write_format = "embed"
def __init__(self, vector, sequence: str, **kwargs):
sequence = _validate_protein(sequence)
super(ProteinVector, self).__init__(vector, sequence=sequence, **kwargs)
def __repr__(self):
r"""Return a string representation of the ProteinVector object.
Returns
-------
str
String representation of the ProteinEmbedding object.
See Also
--------
skbio.sequence.Protein
"""
seq = Protein(str(self))
rstr = _repr_helper(
repr(seq),
"Protein",
"ProteinVector",
"vector",
regex_match="has gaps",
shape=self.embedding.shape[1],
)
return rstr
|