1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
from unittest import TestCase, main
import numpy as np
import numpy.testing as npt
import pandas as pd
from scipy.spatial.distance import euclidean
from skbio.sequence import DNA, Protein
from skbio import DistanceMatrix, OrdinationResults
from skbio.embedding._protein import ProteinVector
from skbio.embedding._embedding import (
Embedding,
SequenceEmbedding,
SequenceVector,
embed_vec_to_numpy,
embed_vec_to_dataframe,
embed_vec_to_distances,
embed_vec_to_ordination
)
class EmbeddingTests(TestCase):
def setUp(self):
self.emb = np.random.randn(62, 10)
self.seq = "IGKEEIQQRLAQFVDHWKELKQLAAARGQRLEESLEYQQFVANVEEEEAWINEKMTLVASED"
def test_id(self):
emb, s = self.emb, self.seq
p_emb = Embedding(emb, list(s))
npt.assert_array_equal(p_emb.ids, np.array(list(s)))
def test_embedding(self):
emb, s = self.emb, self.seq
p_emb = Embedding(emb, s)
self.assertTupleEqual(p_emb.embedding.shape, (62, 10))
def test_str(self):
with self.assertRaises(NotImplementedError):
Embedding(self.emb, self.seq).__str__()
def test_assert_length(self):
msg = "The embedding (62) must have the same length as the ids (63)."
with self.assertRaises(ValueError) as cm:
Embedding(self.emb, self.seq + "A")
self.assertEqual(str(cm.exception), msg)
class SequenceEmbeddingTests(TestCase):
def setUp(self):
self.emb = np.random.randn(62, 10)
self.seq = "IGKEEIQQRLAQFVDHWKELKQLAAARGQRLEESLEYQQFVANVEEEEAWINEKMTLVASED"
def test_repr(self):
emb, s = self.emb, self.seq
p_emb = SequenceEmbedding(emb, s)
rstr = repr(p_emb)
self.assertIn("SequenceEmbedding", rstr)
self.assertIn("62", rstr)
self.assertIn("10", rstr)
self.assertIn("IGKEEIQQRL", rstr)
def test_str(self):
emb, s = self.emb, self.seq
p_emb = SequenceEmbedding(emb, s)
self.assertEqual(p_emb.__str__(), s)
self.assertEqual(p_emb.sequence, s)
self.assertEqual(str(p_emb.ids.tobytes().decode("ascii")), s)
def test_bytes(self):
emb, s = self.emb, self.seq
p_emb = SequenceEmbedding(emb, s)
res = p_emb.bytes()
res_str = str(res.tobytes().decode("ascii"))
self.assertEqual(res_str, s)
def test_init(self):
emb, s = self.emb, self.seq
# sequence as string
p_emb = SequenceEmbedding(emb, s)
self.assertTupleEqual(p_emb.embedding.shape, (62, 10))
# sequence as bytes
p_emb = SequenceEmbedding(emb, s.encode("ascii"))
self.assertTupleEqual(p_emb.embedding.shape, (62, 10))
# sequence as skbio.Sequence
p_emb = SequenceEmbedding(emb, Protein(s))
self.assertTupleEqual(p_emb.embedding.shape, (62, 10))
def test_assert_length(self):
msg = "The embedding (62) must have the same length as the ids (63)."
with self.assertRaises(ValueError) as cm:
SequenceEmbedding(self.emb, self.seq + "A")
self.assertEqual(str(cm.exception), msg)
class SequenceVectorTests(TestCase):
def setUp(self):
# Create some sample SequenceVector objects for testing
self.vector1 = np.array([1, 2, 3])
self.vector2 = np.array([4, 5, 6])
self.vector3 = np.array([7, 8, 9])
self.bad_vector = np.array([7, 8])
self.seq_vectors = [
SequenceVector(self.vector1, "ACGT"),
SequenceVector(self.vector2, "GCTA"),
SequenceVector(self.vector3, "TTAG")
]
def test_init(self):
vec = np.array([1, 2, 3])
seq = "ACGT"
# sequence as string
obs = SequenceVector(vec, seq)
npt.assert_array_equal(obs.vector, vec)
npt.assert_array_equal(obs.embedding, vec.reshape(1, -1))
npt.assert_array_equal(obs.ids, np.array([b"ACGT"]))
# sequence as bytes
obs = SequenceVector(vec, seq.encode("ascii"))
npt.assert_array_equal(obs.vector, vec)
# sequence as skbio.Sequence
obs = SequenceVector(vec, DNA(seq))
npt.assert_array_equal(obs.vector, vec)
# input is a matrix, not a vector
vec2d = np.vstack([vec, vec])
msg = "Only one vector per sequence is allowed."
with self.assertRaisesRegex(ValueError, msg):
SequenceVector(vec2d, seq)
def test_vector(self):
# Test if the vector attribute is set correctly
for i, vector in enumerate([self.vector1, self.vector2, self.vector3]):
npt.assert_array_equal(self.seq_vectors[i].vector, vector)
def test_sequence(self):
# Test if the sequence attribute is set correctly
for i, sequence in enumerate(["ACGT", "GCTA", "TTAG"]):
self.assertEqual(self.seq_vectors[i].sequence, sequence)
def test_repr(self):
# Test if the __repr__ method returns the correct string
for seq_vector in self.seq_vectors:
self.assertTrue(seq_vector.__repr__().startswith("SequenceVector"))
self.assertIn("vector", seq_vector.__repr__())
# check latent dimension
self.assertIn("4", seq_vector.__repr__())
def test_str(self):
# Test if the __str__ method returns the correct string
for seq_vector in self.seq_vectors:
self.assertEqual(str(seq_vector), seq_vector.sequence)
class EmbedVecUtilityTests(TestCase):
def setUp(self):
self.vector1 = np.array([1, 2, 3])
self.vector2 = np.array([4, 5, 6])
self.vector3 = np.array([7, 8, 9])
self.bad_vector = np.array([7, 8])
self.seq_vectors = [
SequenceVector(self.vector1, "ACGT"),
SequenceVector(self.vector2, "GCTA"),
SequenceVector(self.vector3, "TTAG")
]
def test_embed_vec_to_numpy(self):
# Test if to_numpy returns the correct numpy array
exp = np.array([self.vector1, self.vector2, self.vector3])
obs = embed_vec_to_numpy(self.seq_vectors)
npt.assert_array_equal(obs, exp)
# skip validation
obs = embed_vec_to_numpy(self.seq_vectors, validate=False)
npt.assert_array_equal(obs, exp)
def test_embed_vec_to_numpy_raises(self):
# input contains non-vector
lst = [SequenceVector(self.vector1, "ACGT"),
SequenceEmbedding(np.vstack([self.vector2, self.vector3]), "AT")]
msg = "Input iterable contains objects that do not subclass EmbeddingVector."
with self.assertRaisesRegex(ValueError, msg):
embed_vec_to_numpy(lst)
# mixed sequence types
lst = [SequenceVector(self.vector1, "ACGT"),
ProteinVector(self.vector2, "MKRPL")]
msg = "All objects must be of the same type."
with self.assertRaisesRegex(ValueError, msg):
embed_vec_to_numpy(lst)
# lengths are not equal
lst = [SequenceVector(self.vector1, "ACGT"),
SequenceVector(self.vector2, "GCTA"),
SequenceVector(self.bad_vector, "TTAG")]
msg = "All vectors must have the same length."
with self.assertRaisesRegex(ValueError, msg):
embed_vec_to_numpy(lst)
def test_embed_vec_to_distances(self):
# Test if to_distances returns a DistanceMatrix object
obs = embed_vec_to_distances(self.seq_vectors)
self.assertIsInstance(obs, DistanceMatrix)
self.assertTupleEqual(obs.shape, (3, 3))
self.assertTrue(all(isinstance(d, float) for d in obs.condensed_form()))
d12 = euclidean(self.vector1, self.vector2)
d13 = euclidean(self.vector1, self.vector3)
d23 = euclidean(self.vector2, self.vector3)
exp = DistanceMatrix([[0, d12, d13],
[d12, 0, d23],
[d13, d23, 0]],
ids=["ACGT", "GCTA", "TTAG"])
npt.assert_allclose(obs.data, exp.data)
self.assertEqual(obs.ids, exp.ids)
obs = embed_vec_to_distances(self.seq_vectors, validate=False)
self.assertIsInstance(obs, DistanceMatrix)
def test_embed_vec_to_ordination(self):
# Test if to_ordination returns an OrdinationResults object
obs = embed_vec_to_ordination(self.seq_vectors)
self.assertIsInstance(obs, OrdinationResults)
self.assertEqual(obs.samples.shape, (3, 3))
self.assertEqual(obs.features.shape, (3, 3))
reconstructed = (obs.samples.values @ obs.features.values.T)
npt.assert_allclose(
reconstructed, embed_vec_to_numpy(self.seq_vectors)
)
obs = embed_vec_to_ordination(self.seq_vectors, validate=False)
self.assertIsInstance(obs, OrdinationResults)
def test_embed_vec_to_dataframe(self):
# Test if to_dataframe returns a pandas DataFrame object
obs = embed_vec_to_dataframe(self.seq_vectors)
self.assertIsInstance(obs, pd.DataFrame)
self.assertTupleEqual(obs.shape, (3, 3))
exp = pd.DataFrame([self.vector1, self.vector2, self.vector3],
index=["ACGT", "GCTA", "TTAG"])
pd.testing.assert_frame_equal(obs, exp)
obs = embed_vec_to_dataframe(self.seq_vectors, validate=False)
self.assertIsInstance(obs, pd.DataFrame)
if __name__ == "__main__":
main()
|