File: _metadata.py

package info (click to toggle)
python-skbio 0.6.2-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 9,312 kB
  • sloc: python: 60,482; ansic: 672; makefile: 224
file content (1325 lines) | stat: -rw-r--r-- 44,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import abc
import collections
import itertools
import sqlite3
import types
import warnings

import pandas as pd
import numpy as np

import skbio.metadata.missing as _missing
from skbio.util import find_duplicates
from .base import SUPPORTED_COLUMN_TYPES, FORMATTED_ID_HEADERS, is_id_header


DEFAULT_MISSING = _missing.DEFAULT_MISSING


class _MetadataBase:
    """Base class for functionality shared between Metadata and MetadataColumn.

    Parameters
    ----------
    index : pandas.Index
        IDs associated with the metadata.

    """

    @property
    def id_header(self):
        """Name identifying the IDs associated with the metadata.

        This property is read-only.

        Returns
        -------
        str
            Name of IDs associated with the metadata.

        """
        return self._id_header

    @property
    def ids(self):
        """IDs associated with the metadata.

        This property is read-only.

        Returns
        -------
        tuple of str
            Metadata IDs.

        """
        return self._ids

    @property
    def id_count(self):
        """Number of metadata IDs.

        This property is read-only.

        Returns
        -------
        int
            Number of metadata IDs.

        """
        return len(self._ids)

    def __init__(self, index):
        if index.empty:
            raise ValueError(
                "%s must contain at least one ID." % self.__class__.__name__
            )

        id_header = index.name
        self._assert_valid_id_header(id_header)
        self._id_header = id_header

        self._validate_index(index, axis="id")
        self._ids = tuple(index)

    def __eq__(self, other):
        return isinstance(other, self.__class__) and self._id_header == other._id_header

    def __ne__(self, other):
        return not (self == other)

    # Static helpers below for code reuse in Metadata and MetadataColumn

    @classmethod
    def _assert_valid_id_header(cls, name):
        if not is_id_header(name):
            raise ValueError(
                "pandas index name (`Index.name`) must be one of the "
                "following values, not %r:\n\n%s" % (name, FORMATTED_ID_HEADERS)
            )

    @classmethod
    def _validate_index(cls, index, *, axis):
        if axis == "id":
            label = "ID"
        elif axis == "column":
            label = "column name"
        else:
            raise NotImplementedError

        for value in index:
            if not isinstance(value, str):
                raise TypeError(
                    "Detected non-string metadata %s of type %r: %r"
                    % (label, type(value), value)
                )

            if not value:
                raise ValueError(
                    "Detected empty metadata %s. %ss must consist of at least "
                    "one character." % (label, label)
                )

            if axis == "id" and value.startswith("#"):
                raise ValueError(
                    "Detected metadata %s that begins with a pound sign "
                    "(#): %r" % (label, value)
                )

            if is_id_header(value):
                raise ValueError(
                    "Detected metadata %s %r that conflicts with a name "
                    "reserved for the ID header. Reserved ID headers:\n\n%s"
                    % (label, value, FORMATTED_ID_HEADERS)
                )

        if len(index) != len(set(index)):
            duplicates = find_duplicates(index)
            raise ValueError(
                "Metadata %ss must be unique. The following %ss are "
                "duplicated: %s"
                % (label, label, ", ".join(repr(e) for e in sorted(duplicates)))
            )

    @classmethod
    def _filter_ids_helper(cls, df_or_series, ids, ids_to_keep):
        # `ids_to_keep` can be any iterable, so turn it into a list so that it
        # can be iterated over multiple times below (and length-checked).
        ids_to_keep = list(ids_to_keep)

        if len(ids_to_keep) == 0:
            raise ValueError("`ids_to_keep` must contain at least one ID.")

        duplicates = find_duplicates(ids_to_keep)
        if duplicates:
            raise ValueError(
                "`ids_to_keep` must contain unique IDs. The following IDs are "
                "duplicated: %s" % (", ".join(repr(e) for e in sorted(duplicates)))
            )

        ids_to_keep = set(ids_to_keep)
        missing_ids = ids_to_keep - ids
        if missing_ids:
            raise ValueError(
                "The following IDs are not present in the metadata: %s"
                % (", ".join(repr(e) for e in sorted(missing_ids)))
            )

        # While preserving order, get rid of any IDs not contained in
        # `ids_to_keep`.
        ids_to_discard = ids - ids_to_keep
        return df_or_series.drop(
            labels=ids_to_discard, axis="index", inplace=False, errors="raise"
        )

    def save(self, filepath, ext=None):
        """Save a TSV metadata file.

        The TSV metadata file format is described at https://docs.qiime2.org in
        the Metadata Tutorial.

        The file will always include the ``#sk:types`` directive in order to
        make the file roundtrippable without relying on column type inference.

        Parameters
        ----------
        filepath : str
            Path to save TSV metadata file at.

        ext : str
            Preferred file extension (.tsv, .txt, etc).
            Will be left blank if no extension is included.
            Including a period in the extension is
            optional, and any additional periods delimiting
            the filepath and the extension will be reduced
            to a single period.

        Returns
        -------
        str
            Filepath and extension (if provided) that the
            file was saved to.

        See Also
        --------
        Metadata.load

        """
        from .io import MetadataWriter

        if ext is None:
            ext = ""
        else:
            ext = "." + ext.lstrip(".")

        filepath = filepath.rstrip(".")

        if not filepath.endswith(ext):
            filepath += ext

        MetadataWriter(self).write(filepath)
        return filepath


# Other properties such as units can be included here in the future!
ColumnProperties = collections.namedtuple(
    "ColumnProperties", ["type", "missing_scheme"]
)


class SampleMetadata(_MetadataBase):
    """Store metadata associated with identifiers in a study.

    Metadata is tabular in nature, mapping study identifiers (e.g. sample or
    feature IDs) to columns of metadata associated with each ID.

    For more details about metadata in QIIME 2, including the TSV metadata file
    format, see the Metadata Tutorial at https://docs.qiime2.org.

    The following text focuses on design and considerations when working with
    ``Metadata`` objects at the API level.

    A ``Metadata`` object is composed of zero or more ``MetadataColumn``
    objects. A ``Metadata`` object always contains at least one ID, regardless
    of the number of columns. Each column in the ``Metadata`` object has an
    associated column type representing either *categorical* or *numeric*
    data. Each metadata column is represented by an object corresponding to the
    column's type: ``CategoricalMetadataColumn`` or ``NumericMetadataColumn``,
    respectively.

    A ``Metadata`` object is closely linked to its corresponding TSV metadata
    file format described at https://docs.qiime2.org. Therefore, certain
    requirements present in the file format are also enforced on the in-memory
    object in order to make serialized ``Metadata`` objects roundtrippable when
    loaded from disk again. For example, IDs cannot begin with a pound
    character (``#``) because those IDs would be interpreted as comment rows
    when written to disk as TSV. See the metadata file format spec for more
    details about data formatting requirements.

    In addition to being loaded from or saved to disk, a ``Metadata`` object
    can be constructed from a ``pandas.DataFrame`` object. See the *Parameters*
    section below for details on how to construct ``Metadata`` objects from
    dataframes.

    ``Metadata`` objects have various methods to access, filter, and merge
    data. A dataframe can be retrieved from the ``Metadata`` object for further
    data manipulation using the pandas API. Individual ``MetadataColumn``
    objects can be retrieved to gain access to APIs applicable to a single
    metadata column.

    Missing values may be encoded in one of the following schemes:

    'blank'
      The default, which treats `None`/`NaN` as the only valid missing values.

    'no-missing'
      Indicates there are no missing values in a column, any `None`/`NaN`
      values should be considered an error. If a scheme other than 'blank' is
      used by default, this scheme can be provided to preserve strings as
      categorical terms.

    'INSDC:missing'
      The INSDC vocabulary for missing values. The current implementation
      supports only lower-case terms which match exactly:
      'not applicable', 'missing', 'not provided', 'not collected', and
      'restricted access'.

    Parameters
    ----------
    dataframe : pandas.DataFrame
        Dataframe containing metadata. The dataframe's index defines the IDs,
        and the index name (``Index.name``) must match one of the required ID
        headers described in the metadata file format spec. Each column in the
        dataframe defines a metadata column, and the metadata column's type
        (i.e. *categorical* or *numeric*) is determined based on the column's
        dtype. If a column has ``dtype=object``, it may contain strings or
        pandas missing values (e.g. ``np.nan``, ``None``). Columns matching
        this requirement are assumed to be *categorical*. If a column in the
        dataframe has ``dtype=float`` or ``dtype=int``, it may contain floating
        point numbers or integers, as well as pandas missing values
        (e.g. ``np.nan``). Columns matching this requirement are assumed to be
        *numeric*. Regardless of column type (categorical vs numeric), the
        dataframe stored within the ``Metadata`` object will have any missing
        values normalized to ``np.nan``. Columns with ``dtype=int`` will be
        cast to ``dtype=float``. To obtain a dataframe from the ``Metadata``
        object containing these normalized data types and values, use
        ``Metadata.to_dataframe()``.
    column_missing_schemes : dict, optional
        Describe the metadata column handling for missing values described
        in the dataframe. This is a dict mapping column names (str) to
        missing-value schemes (str).  Valid values are 'blank',
        'no-missing', and 'INSDC:missing'. Column names may be omitted.
    default_missing_scheme : str, optional
        The missing scheme to use when none has been provided in the file
        or in `column_missing_schemes`.

    """

    default_write_format = "sample_metadata"

    @classmethod
    def load(
        cls,
        filepath,
        column_types=None,
        column_missing_schemes=None,
        default_missing_scheme=DEFAULT_MISSING,
    ):
        """Load a TSV metadata file.

        The TSV metadata file format is described at https://docs.qiime2.org in
        the Metadata Tutorial.

        Parameters
        ----------
        filepath : str
            Path to TSV metadata file to be loaded.
        column_types : dict, optional
            Override metadata column types specified or inferred in the file.
            This is a dict mapping column names (str) to column types (str).
            Valid column types are 'categorical' and 'numeric'. Column names
            may be omitted from this dict to use the column types read from the
            file.
        column_missing_schemes : dict, optional
            Override the metadata column handling for missing values described
            in the file. This is a dict mapping column names (str) to
            missing-value schemes (str).  Valid values are 'blank',
            'no-missing', and 'INSDC:missing'. Column names may be omitted.
        default_missing_scheme : str, optional
            The missing scheme to use when none has been provided in the file
            or in `column_missing_schemes`.

        Returns
        -------
        Metadata
            Metadata object loaded from `filepath`.

        Raises
        ------
        MetadataFileError
            If the metadata file is invalid in any way (e.g. doesn't meet the
            file format's requirements).

        See Also
        --------
        save

        """
        from .io import MetadataReader

        return MetadataReader(filepath).read(
            into=cls,
            column_types=column_types,
            column_missing_schemes=column_missing_schemes,
            default_missing_scheme=default_missing_scheme,
        )

    @property
    def columns(self):
        """Ordered mapping of column names to ColumnProperties.

        The mapping that is returned is read-only. This property is also
        read-only.

        Returns
        -------
        types.MappingProxyType
            Ordered mapping of column names to ColumnProperties.

        """
        # Read-only proxy to the OrderedDict mapping column names to
        # ColumnProperties.
        return types.MappingProxyType(self._columns)

    @property
    def column_count(self):
        """Number of metadata columns.

        This property is read-only.

        Returns
        -------
        int
            Number of metadata columns.

        Notes
        -----
        Zero metadata columns are allowed.

        See Also
        --------
        id_count

        """
        return len(self._columns)

    def __init__(
        self,
        dataframe,
        column_missing_schemes=None,
        default_missing_scheme=DEFAULT_MISSING,
    ):
        if not isinstance(dataframe, pd.DataFrame):
            raise TypeError(
                "%s constructor requires a pandas.DataFrame object, not "
                "%r" % (self.__class__.__name__, type(dataframe))
            )

        super().__init__(dataframe.index)

        if column_missing_schemes is None:
            column_missing_schemes = {}

        self._dataframe, self._columns = self._normalize_dataframe(
            dataframe, column_missing_schemes, default_missing_scheme
        )
        self._validate_index(self._dataframe.columns, axis="column")

    def _normalize_dataframe(
        self, dataframe, column_missing_schemes, default_missing_scheme
    ):
        norm_df = dataframe.copy()

        # Do not attempt to strip empty metadata
        if not norm_df.columns.empty:
            norm_df.columns = norm_df.columns.str.strip()

        norm_df.index = norm_df.index.str.strip()

        columns = collections.OrderedDict()
        for column_name, series in norm_df.items():
            missing_scheme = column_missing_schemes.get(
                column_name, default_missing_scheme
            )
            metadata_column = self._metadata_column_factory(series, missing_scheme)
            norm_df[column_name] = metadata_column.to_series()
            properties = ColumnProperties(
                type=metadata_column.type, missing_scheme=missing_scheme
            )
            columns[column_name] = properties

        return norm_df, columns

    def _metadata_column_factory(self, series, missing_scheme):
        series = _missing.series_encode_missing(series, missing_scheme)
        # Collapse dtypes except for all NaN columns so that we can preserve
        # empty categorical columns. Empty numeric columns will already have
        # the expected dtype and values
        if not series.isna().all():
            series = series.infer_objects()
        dtype = series.dtype
        if NumericMetadataColumn._is_supported_dtype(dtype):
            column = NumericMetadataColumn(series, missing_scheme)
        elif CategoricalMetadataColumn._is_supported_dtype(dtype):
            column = CategoricalMetadataColumn(series, missing_scheme)
        else:
            raise TypeError(
                "Metadata column %r has an unsupported pandas dtype of %s. "
                "Supported dtypes: float, int, object" % (series.name, dtype)
            )

        return column

    def __repr__(self):
        """Return the string summary of the metadata and its columns."""
        lines = []

        # Header
        lines.append(self.__class__.__name__)
        lines.append("-" * len(self.__class__.__name__))

        # Dimensions
        lines.append(
            "%d ID%s x %d column%s"
            % (
                self.id_count,
                "" if self.id_count == 1 else "s",
                self.column_count,
                "" if self.column_count == 1 else "s",
            )
        )

        # Column properties
        if self.column_count != 0:
            max_name_len = max((len(name) for name in self.columns))
            for name, props in self.columns.items():
                padding = " " * ((max_name_len - len(name)) + 1)
                lines.append("%s:%s%r" % (name, padding, props))

        # Epilogue
        lines.append("")
        lines.append("Call to_dataframe() for a tabular representation.")

        return "\n".join(lines)

    def __eq__(self, other):
        """Determine if this metadata is equal to another.

        ``Metadata`` objects are equal if their IDs, columns (including column
        names, types, and ordering), ID headers, and metadata values are equal.

        Parameters
        ----------
        other : Metadata
            Metadata to test for equality.

        Returns
        -------
        bool
            Indicates whether this ``Metadata`` object is equal to `other`.

        See Also
        --------
        __ne__

        """
        return (
            super().__eq__(other)
            and self._columns == other._columns
            and self._dataframe.equals(other._dataframe)
        )

    def __ne__(self, other):
        """Determine if this metadata is not equal to another.

        ``Metadata`` objects are not equal if their IDs, columns (including
        column names, types, or ordering), ID headers, or metadata values are
        not equal.

        Parameters
        ----------
        other : Metadata
            Metadata to test for inequality.

        Returns
        -------
        bool
            Indicates whether this ``Metadata`` object is not equal to `other`.

        See Also
        --------
        __eq__

        """
        return not (self == other)

    def to_dataframe(self, encode_missing=False):
        """Create a pandas dataframe from the metadata.

        The dataframe's index name (``Index.name``) will match this metadata
        object's ``id_header``, and the index will contain this metadata
        object's IDs. The dataframe's column names will match the column names
        in this metadata. Categorical columns will be stored as
        ``dtype=object`` (containing strings), and numeric columns will be
        stored as ``dtype=float``.

        Parameters
        ----------
        encode_missing : bool, optional
            Whether to convert missing values (NaNs) back into their original
            vocabulary (strings) if a missing scheme was used.

        Returns
        -------
        pandas.DataFrame
            Dataframe constructed from the metadata.

        """
        df = self._dataframe.copy()
        if encode_missing:

            def replace_nan(series):
                missing = _missing.series_extract_missing(series)
                # avoid dtype changing if there's no missing values
                if not missing.empty:
                    series = series.astype(object)
                    series[missing.index] = missing
                return series

            df = df.apply(replace_nan)

        return df

    def get_column(self, name):
        """Retrieve metadata column based on column name.

        Parameters
        ----------
        name : str
            Name of the metadata column to retrieve.

        Returns
        -------
        MetadataColumn
            Requested metadata column (``CategoricalMetadataColumn`` or
            ``NumericMetadataColumn``).

        See Also
        --------
        get_ids

        """
        try:
            series = self._dataframe[name]
            missing_scheme = self._columns[name].missing_scheme
        except KeyError:
            raise ValueError(
                "%r is not a column in the metadata. Available columns: "
                "%s" % (name, ", ".join(repr(c) for c in self.columns))
            )

        return self._metadata_column_factory(series, missing_scheme)

    def get_ids(self, where=None):
        """Retrieve IDs matching search criteria.

        Parameters
        ----------
        where : str, optional
            SQLite WHERE clause specifying criteria IDs must meet to be
            included in the results. All IDs are included by default.

        Returns
        -------
        set
            IDs matching search criteria specified in `where`.

        See Also
        --------
        ids
        filter_ids
        get_column

        Notes
        -----
        The ID header (``Metadata.id_header``) may be used in the `where`
        clause to query the table's ID column.

        """
        if where is None:
            return set(self._ids)

        conn = sqlite3.connect(":memory:")
        conn.row_factory = lambda cursor, row: row[0]

        # https://github.com/pandas-dev/pandas/blob/
        # 7c7bd569ce8e0f117c618d068e3d2798134dbc73/pandas/io/sql.py#L1306
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore", "The spaces in these column names will not.*"
            )
            self._dataframe.to_sql(
                "metadata", conn, index=True, index_label=self.id_header
            )
        c = conn.cursor()

        # In general we wouldn't want to format our query in this way because
        # it leaves us open to sql injection, but it seems acceptable here for
        # a few reasons:
        # 1) This is a throw-away database which we're just creating to have
        #    access to the query language, so any malicious behavior wouldn't
        #    impact any data that isn't temporary
        # 2) The substitution syntax recommended in the docs doesn't allow
        #    us to specify complex `where` statements, which is what we need to
        #    do here. For example, we need to specify things like:
        #        WHERE Subject='subject-1' AND SampleType='gut'
        #    but their qmark/named-style syntaxes only supports substition of
        #    variables, such as:
        #        WHERE Subject=?
        # 3) sqlite3.Cursor.execute will only execute a single statement so
        #    inserting multiple statements
        #    (e.g., "Subject='subject-1'; DROP...") will result in an
        #    OperationalError being raised.
        query = (
            'SELECT "{0}" FROM metadata WHERE {1} GROUP BY "{0}" '
            'ORDER BY "{0}";'.format(self.id_header, where)
        )

        try:
            c.execute(query)
        except sqlite3.OperationalError as e:
            conn.close()
            raise ValueError(
                "Selection of IDs failed with query:\n %s\n\n"
                "If one of the metadata column names specified "
                "in the `where` statement is on this list "
                "of reserved keywords "
                "(http://www.sqlite.org/lang_keywords.html), "
                "please ensure it is quoted appropriately in the "
                "`where` statement." % query
            ) from e

        ids = set(c.fetchall())
        conn.close()
        return ids

    def merge(self, *others):
        """Merge this ``Metadata`` object with other ``Metadata`` objects.

        Returns a new ``Metadata`` object containing the merged contents of
        this ``Metadata`` object and `others`. The merge is not in-place and
        will always return a **new** merged ``Metadata`` object.

        The merge will include only those IDs that are shared across **all**
        ``Metadata`` objects being merged (i.e. the merge is an *inner join*).

        Each metadata column being merged must have a unique name; merging
        metadata with overlapping column names will result in an error.

        Parameters
        ----------
        others : tuple
            One or more ``Metadata`` objects to merge with this ``Metadata``
            object.

        Returns
        -------
        Metadata
            New object containing merged metadata. The merged IDs will be in
            the same relative order as the IDs in this ``Metadata`` object
            after performing the inner join. The merged column order will match
            the column order of ``Metadata`` objects being merged from left to
            right.

        Raises
        ------
        ValueError
            If zero ``Metadata`` objects are provided in `others` (there is
            nothing to merge in this case).

        Notes
        -----
        The merged ``Metadata`` object will always have its ``id_header``
        property set to ``'id'``, regardless of the ``id_header`` values on the
        ``Metadata`` objects being merged.

        """
        if len(others) < 1:
            raise ValueError(
                "At least one Metadata object must be provided to merge into "
                "this Metadata object (otherwise there is nothing to merge)."
            )

        dfs = []
        columns = []
        for md in itertools.chain([self], others):
            df = md._dataframe
            dfs.append(df)
            columns.extend(df.columns.tolist())

        columns = pd.Index(columns)
        if columns.has_duplicates:
            raise ValueError(
                "Cannot merge metadata with overlapping columns. The "
                "following columns overlap: %s"
                % ", ".join([repr(e) for e in columns[columns.duplicated()].unique()])
            )

        merged_df = dfs[0].join(dfs[1:], how="inner")

        # Not using DataFrame.empty because empty columns are allowed in
        # Metadata.
        if merged_df.index.empty:
            raise ValueError(
                "Cannot merge because there are no IDs shared across metadata "
                "objects."
            )

        merged_df.index.name = "id"
        merged_md = self.__class__(merged_df)
        return merged_md

    def filter_ids(self, ids_to_keep):
        """Filter metadata by IDs.

        Parameters
        ----------
        ids_to_keep : iterable of str
            IDs that should be retained in the filtered ``Metadata`` object. If
            any IDs in `ids_to_keep` are not contained in this ``Metadata``
            object, a ``ValueError`` will be raised. The filtered ``Metadata``
            object will retain the same relative ordering of IDs in this
            ``Metadata`` object. Thus, the ordering of IDs in `ids_to_keep`
            does not determine the ordering of IDs in the filtered ``Metadata``
            object.

        Returns
        -------
        Metadata
            The metadata filtered by IDs.

        See Also
        --------
        get_ids
        filter_columns

        """
        filtered_df = self._filter_ids_helper(
            self._dataframe, self.get_ids(), ids_to_keep
        )
        filtered_md = self.__class__(filtered_df)
        return filtered_md

    def filter_columns(
        self,
        *,
        column_type=None,
        drop_all_unique=False,
        drop_zero_variance=False,
        drop_all_missing=False,
    ):
        """Filter metadata by columns.

        Parameters
        ----------
        column_type : str, optional
            If supplied, will retain only columns of this type. The currently
            supported column types are 'numeric' and 'categorical'.
        drop_all_unique : bool, optional
            If ``True``, columns that contain a unique value for every ID will
            be dropped. Missing data (``np.nan``) are ignored when determining
            unique values. If a column consists solely of missing data, it will
            be dropped.
        drop_zero_variance : bool, optional
            If ``True``, columns that contain the same value for every ID will
            be dropped. Missing data (``np.nan``) are ignored when determining
            variance. If a column consists solely of missing data, it will be
            dropped.
        drop_all_missing : bool, optional
            If ``True``, columns that have a missing value (``np.nan``) for
            every ID will be dropped.

        Returns
        -------
        Metadata
            The metadata filtered by columns.

        See Also
        --------
        filter_ids

        """
        if column_type is not None and column_type not in SUPPORTED_COLUMN_TYPES:
            raise ValueError(
                "Unknown column type %r. Supported column types: %s"
                % (column_type, ", ".join(sorted(SUPPORTED_COLUMN_TYPES)))
            )

        # Build up a set of columns to drop. Short-circuit as soon as we know a
        # given column can be dropped (no need to apply further filters to it).
        columns_to_drop = set()
        for column, props in self.columns.items():
            if column_type is not None and props.type != column_type:
                columns_to_drop.add(column)
                continue

            series = self._dataframe[column]
            if drop_all_unique or drop_zero_variance:
                # Ignore nans in the unique count, and compare to the number of
                # non-nan values in the series.
                num_unique = series.nunique(dropna=True)
                if drop_all_unique and num_unique == series.count():
                    columns_to_drop.add(column)
                    continue

                # If num_unique == 0, the series was empty (all nans). If
                # num_unique == 1, the series contained only a single unique
                # value (ignoring nans).
                if drop_zero_variance and num_unique < 2:
                    columns_to_drop.add(column)
                    continue

            if drop_all_missing and series.isna().all():
                columns_to_drop.add(column)
                continue

        filtered_df = self._dataframe.drop(columns_to_drop, axis=1, inplace=False)
        filtered_md = self.__class__(filtered_df)
        return filtered_md


class MetadataColumn(_MetadataBase, metaclass=abc.ABCMeta):
    """Abstract base class representing a single metadata column.

    Concrete subclasses represent specific metadata column types, e.g.
    ``CategoricalMetadataColumn`` and ``NumericMetadataColumn``.

    See the ``Metadata`` class docstring for details about ``Metadata`` and
    ``MetadataColumn`` objects, including a description of column types.

    The main difference in constructing ``MetadataColumn`` vs ``Metadata``
    objects is that ``MetadataColumn`` objects are constructed from a
    ``pandas.Series`` object instead of a ``pandas.DataFrame``. Otherwise, the
    same restrictions, considerations, and data normalization are applied as
    with ``Metadata`` objects.

    Parameters
    ----------
    series : pd.Series
        The series to construct a column from.
    missing_scheme : "blank", "no-missing", "INSDC:missing"
        How to interpret terms for missing values. These will be converted
        to NaN. The default treatment is to take no action.

    """

    # Abstract, must be defined by subclasses.
    type = None

    @classmethod
    @abc.abstractmethod
    def _is_supported_dtype(cls, dtype):
        """Return True if dtype is supported False otherwise.

        Contract: Return ``True`` if the series `dtype` is supported by this
        object and can be handled appropriately by ``_normalize_``. Return
        ``False`` otherwise.
        """
        raise NotImplementedError

    @classmethod
    @abc.abstractmethod
    def _normalize_(cls, series):
        """Return a normalized copy of series.

        Contract: Return a copy of `series` that has been converted to the
        appropriate internal dtype and has any other necessary normalization or
        validation applied (e.g. missing value representations, disallowing
        certain values, etc). Raise an error with a detailed error message if
        the operation cannot be completed.
        """
        raise NotImplementedError

    @property
    def name(self):
        """Metadata column name.

        This property is read-only.

        Returns
        -------
        str
            Metadata column name.

        """
        return self._series.name

    @property
    def missing_scheme(self):
        """Return the vocabulary used to encode missing values.

        This property is read-only.

        Returns
        -------
        str
           "blank", "no-missing", or "INSDC:missing"

        """
        return self._missing_scheme

    def __init__(self, series, missing_scheme=DEFAULT_MISSING):
        if not isinstance(series, pd.Series):
            raise TypeError(
                "%s constructor requires a pandas.Series object, not %r"
                % (self.__class__.__name__, type(series))
            )

        super().__init__(series.index)

        series = _missing.series_encode_missing(series, missing_scheme)
        # if the series has values with a consistent dtype, make the series
        # that dtype. Don't change the dtype if there is a column of all NaN
        if not series.isna().all():
            series = series.infer_objects()

        if not self._is_supported_dtype(series.dtype):
            raise TypeError(
                "%s %r does not support a pandas.Series object with dtype %s"
                % (self.__class__.__name__, series.name, series.dtype)
            )

        self._missing_scheme = missing_scheme
        self._series = self._normalize_(series)

        self._validate_index([self._series.name], axis="column")

    def __repr__(self):
        """Return String summary of the metadata column."""
        return "<%s name=%r id_count=%d>" % (
            self.__class__.__name__,
            self.name,
            self.id_count,
        )

    def __eq__(self, other):
        """Determine if this metadata column is equal to another.

        ``MetadataColumn`` objects are equal if their IDs, column names, column
        types, ID headers and metadata values are equal.

        Parameters
        ----------
        other : MetadataColumn
            Metadata column to test for equality.

        Returns
        -------
        bool
            Indicates whether this ``MetadataColumn`` object is equal to
            `other`.

        See Also
        --------
        __ne__

        """
        return (
            super().__eq__(other)
            and self.name == other.name
            and self._series.equals(other._series)
        )

    def __ne__(self, other):
        """Determine if this metadata column is not equal to another.

        ``MetadataColumn`` objects are not equal if their IDs, column names,
        column types, ID headers, or metadata values are not
        equal.

        Parameters
        ----------
        other : MetadataColumn
            Metadata column to test for inequality.

        Returns
        -------
        bool
            Indicates whether this ``MetadataColumn`` object is not equal to
            `other`.

        See Also
        --------
        __eq__

        """
        return not (self == other)

    def to_series(self, encode_missing=False):
        """Create a pandas series from the metadata column.

        The series index name (``Index.name``) will match this metadata
        column's ``id_header``, and the index will contain this metadata
        column's IDs. The series name will match this metadata column's name.

        Parameters
        ----------
        encode_missing : bool, optional
            Whether to convert missing values (NaNs) back into their original
            vocabulary (strings) if a missing scheme was used.

        Returns
        -------
        pandas.Series
            Series constructed from the metadata column.

        See Also
        --------
        to_dataframe

        """
        series = self._series.copy()
        if encode_missing:
            missing = self.get_missing()
            if not missing.empty:
                series[missing.index] = missing

        return series

    def to_dataframe(self, encode_missing=False):
        """Create a pandas dataframe from the metadata column.

        The dataframe will contain exactly one column. The dataframe's index
        name (``Index.name``) will match this metadata column's ``id_header``,
        and the index will contain this metadata column's IDs. The dataframe's
        column name will match this metadata column's name.

        Parameters
        ----------
        encode_missing : bool, optional
            Whether to convert missing values (NaNs) back into their original
            vocabulary (strings) if a missing scheme was used.

        Returns
        -------
        pandas.DataFrame
            Dataframe constructed from the metadata column.

        See Also
        --------
        to_series

        """
        return self.to_series(encode_missing=encode_missing).to_frame()

    def get_missing(self):
        """Return a series containing only missing values (with an index).

        If the column was constructed with a missing scheme, then the values
        of the series will be the original terms instead of NaN.

        """
        return _missing.series_extract_missing(self._series)

    def get_value(self, id):
        """Retrieve metadata column value associated with an ID.

        Parameters
        ----------
        id : str
            ID corresponding to the metadata column value to retrieve.

        Returns
        -------
        object
            Value associated with the provided `id`.

        """
        if id not in self._series.index:
            raise ValueError("ID %r is not present in %r" % (id, self))
        return self._series.loc[id]

    def has_missing_values(self):
        """Determine if the metadata column has one or more missing values.

        Returns
        -------
        bool
            ``True`` if the metadata column has one or more missing values
            (``np.nan``), ``False`` otherwise.

        See Also
        --------
        drop_missing_values
        get_ids

        """
        return len(self.get_ids(where_values_missing=True)) > 0

    def drop_missing_values(self):
        """Filter out missing values from the metadata column.

        Returns
        -------
        MetadataColumn
            Metadata column with missing values removed.

        See Also
        --------
        has_missing_values
        get_ids

        """
        missing = self.get_ids(where_values_missing=True)
        present = self.get_ids() - missing
        return self.filter_ids(present)

    def get_ids(self, where_values_missing=False):
        """Retrieve IDs matching search criteria.

        Parameters
        ----------
        where_values_missing : bool, optional
            If ``True``, only return IDs that are associated with missing
            values (``np.nan``). If ``False`` (the default), return all IDs in
            the metadata column.

        Returns
        -------
        set
            IDs matching search criteria.

        See Also
        --------
        ids
        filter_ids
        has_missing_values
        drop_missing_values

        """
        if where_values_missing:
            ids = self._series.index[self._series.isna()]
        else:
            ids = self._ids
        return set(ids)

    def filter_ids(self, ids_to_keep):
        """Filter metadata column by IDs.

        Parameters
        ----------
        ids_to_keep : iterable of str
            IDs that should be retained in the filtered ``MetadataColumn``
            object. If any IDs in `ids_to_keep` are not contained in this
            ``MetadataColumn`` object, a ``ValueError`` will be raised. The
            filtered ``MetadataColumn`` object will retain the same relative
            ordering of IDs in this ``MetadataColumn`` object. Thus, the
            ordering of IDs in `ids_to_keep` does not determine the ordering of
            IDs in the filtered ``MetadataColumn`` object.

        Returns
        -------
        MetadataColumn
            The metadata column filtered by IDs.

        See Also
        --------
        get_ids

        """
        filtered_series = self._filter_ids_helper(
            self._series, self.get_ids(), ids_to_keep
        )
        filtered_mdc = self.__class__(filtered_series)
        return filtered_mdc


class CategoricalMetadataColumn(MetadataColumn):
    """A single metadata column containing categorical data.

    See the ``Metadata`` class docstring for details about ``Metadata`` and
    ``MetadataColumn`` objects, including a description of column types and
    supported data formats.

    """

    type = "categorical"

    @classmethod
    def _is_supported_dtype(cls, dtype):
        return dtype == "object"

    @classmethod
    def _normalize_(cls, series):
        def normalize(value):
            if isinstance(value, str):
                value = value.strip()
                if value == "":
                    raise ValueError(
                        "%s does not support empty strings as values. Use an "
                        "appropriate pandas missing value type "
                        "(e.g. `numpy.nan`) or supply a non-empty string as "
                        "the value in column %r." % (cls.__name__, series.name)
                    )
                else:
                    return value
            elif pd.isna(value):  # permits np.nan, Python float nan, None
                if isinstance(value, float) and np.isnan(value):
                    # if type(value) is float and np.isnan(value):
                    return value
                return np.nan
            else:
                raise TypeError(
                    "%s only supports strings or missing values. Found value "
                    "%r of type %r in column %r."
                    % (cls.__name__, value, type(value), series.name)
                )

        norm_series = series.apply(normalize)
        norm_series = norm_series.astype(object)
        norm_series.index = norm_series.index.str.strip()
        norm_series.name = norm_series.name.strip()
        return norm_series


class NumericMetadataColumn(MetadataColumn):
    """A single metadata column containing numeric data.

    See the ``Metadata`` class docstring for details about ``Metadata`` and
    ``MetadataColumn`` objects, including a description of column types and
    supported data formats.

    """

    type = "numeric"

    @classmethod
    def _is_supported_dtype(cls, dtype):
        return dtype == "float" or dtype == "int" or dtype == "int64"

    @classmethod
    def _normalize_(cls, series):
        series = series.astype(float, copy=True, errors="raise")
        if np.isinf(series).any():
            raise ValueError(
                "%s does not support positive or negative infinity as a "
                "floating point value in column %r." % (cls.__name__, series.name)
            )
        return series