File: io.py

package info (click to toggle)
python-skbio 0.6.2-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 9,312 kB
  • sloc: python: 60,482; ansic: 672; makefile: 224
file content (540 lines) | stat: -rw-r--r-- 22,250 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
"""Contains io functionality for the Metadata module."""
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import csv
import itertools
import os.path
import re

import numpy as np
import pandas as pd

from skbio.io._fileobject import SaneTextIOWrapper
from skbio.util import find_duplicates
from .missing import DEFAULT_MISSING, BUILTIN_MISSING, series_encode_missing
from .base import SUPPORTED_COLUMN_TYPES, FORMATTED_ID_HEADERS, is_id_header
from ..metadata._metadata import SampleMetadata, MetadataColumn


class MetadataFileError(Exception):
    """Exception for errors with Metadata files."""

    _suffix = (
        "There may be more errors present in the metadata file. To get a full "
        "report, sample/feature metadata files can be validated with Keemei: "
        "https://keemei.qiime2.org\n\nFind details on QIIME 2 metadata "
        "requirements here: https://docs.qiime2.org/"
    )

    def __init__(self, message, include_suffix=True):
        """Initialize the MetadataFileError."""
        # LH NOTE/TODO: in Qiime2 this linked to the specific Qiime2 release.
        # However since this is not Qiime2 It did break and I removed this

        if include_suffix:
            message = message + "\n\n" + self._suffix
        super().__init__(message)


class MetadataReader:
    """Reader for Metadata files."""

    def __init__(self, filepath_or_filehandle):
        """Initialize the Reader for Metadata files."""
        # check if the filepath_filehandle is a path... if it is check if it
        # points to a file
        # TODO: Refine this check to be more specific
        if isinstance(filepath_or_filehandle, str):
            self._file_is_filehandle = False
            if not os.path.isfile(filepath_or_filehandle):
                raise MetadataFileError(
                    "Metadata file path doesn't exist, or the path points to "
                    "something other than a file. Please check that the path "
                    "exists, has read permissions, and points to a regular file "
                    "(not a directory): %s" % filepath_or_filehandle
                )
        else:
            self._file_is_filehandle = True

        self._filepath = filepath_or_filehandle

        # Used by `read()` to store an iterator yielding rows with
        # leading/trailing whitespace stripped from their cells (this is a
        # preprocessing step that should happen with *every* row). The iterator
        # protocol is the only guaranteed API on this object.
        self._reader = None

    def read(
        self,
        into,
        column_types=None,
        column_missing_schemes=None,
        default_missing_scheme=DEFAULT_MISSING,
    ):
        """Return a Metadata object read from the given file."""
        if column_types is None:
            column_types = {}

        try:
            # choose the appropriate context manager depending
            # on if a filehandle has been passed.
            if self._file_is_filehandle:
                cm = self._filepath
            else:
                # Newline settings based on recommendation from csv docs:
                #     https://docs.python.org/3/library/csv.html#id3

                # Ignore BOM on read (but do not write BOM)
                cm = open(self._filepath, "r", newline="", encoding="utf-8-sig")

            with cm as fh:
                tsv_reader = csv.reader(fh, dialect="excel-tab", strict=True)
                self._reader = (self._strip_cell_whitespace(row) for row in tsv_reader)
                header = self._read_header()
                directives = self._read_directives(header)
                ids, data = self._read_data(header)
        except UnicodeDecodeError as e:
            if "0xff in position 0" in str(e) or "0xfe in position 0" in str(e):
                raise MetadataFileError(
                    "Metadata file must be encoded as UTF-8 or ASCII, found "
                    "UTF-16. If this file is from Microsoft Excel, save "
                    "as a plain text file, not 'UTF-16 Unicode'"
                )

            raise MetadataFileError(
                "Metadata file must be encoded as UTF-8 or ASCII. The "
                "following error occurred when decoding the file:\n\n%s" % e
            )
        finally:
            self._reader = None

        index = pd.Index(ids, name=header[0], dtype=object)
        df = pd.DataFrame(data, columns=header[1:], index=index, dtype=object)

        # TODO: move these checks over to Metadata.__init__() so that you can
        # pass column_types with an untyped dataframe. This would require a bit
        # of a refactor and doesn't buy a whole lot at the moment, hence the
        # TODO.
        for name, type in column_types.items():
            if name not in df.columns:
                raise MetadataFileError(
                    "Column name %r specified in `column_types` is not a "
                    "column in the metadata file." % name
                )
            if type not in SUPPORTED_COLUMN_TYPES:
                fmt_column_types = ", ".join(
                    repr(e) for e in sorted(SUPPORTED_COLUMN_TYPES)
                )
                raise MetadataFileError(
                    "Column name %r specified in `column_types` has an "
                    "unrecognized column type %r. Supported column types: %s"
                    % (name, type, fmt_column_types)
                )

        resolved_column_types = directives.get("types", {})
        resolved_column_types.update(column_types)

        if column_missing_schemes is None:
            column_missing_schemes = {}

        resolved_missing = {c: default_missing_scheme for c in df.columns}
        resolved_missing.update(directives.get("missing", {}))
        resolved_missing.update(column_missing_schemes)

        try:
            # Cast each column to the appropriate dtype based on column type.
            df = df.apply(
                self._cast_column,
                axis="index",
                column_types=resolved_column_types,
                missing_schemes=resolved_missing,
            )
        except MetadataFileError as e:
            # HACK: If an exception is raised within `DataFrame.apply`, pandas
            # adds an extra tuple element to `e.args`, making the original
            # error message difficult to read because a tuple is repr'd instead
            # of a string. To work around this, we catch and reraise a
            # MetadataFileError with the original error message. We use
            # `include_suffix=False` to avoid adding another suffix to the
            # error message we're reraising.
            msg = e.args[0]
            raise MetadataFileError(msg, include_suffix=False)

        try:
            return into(
                df,
                column_missing_schemes=resolved_missing,
                default_missing_scheme=default_missing_scheme,
            )
        except Exception as e:
            raise MetadataFileError(
                "There was an issue with loading the metadata file:\n\n%s" % e
            )

    def _read_header(self):
        header = None
        for row in self._reader:
            if self._is_header(row):
                header = row
                break
            elif self._is_comment(row):
                continue
            elif self._is_empty(row):
                continue
            elif self._is_directive(row):
                raise MetadataFileError(
                    "Found directive %r while searching for header. "
                    "Directives may only appear immediately after the header." % row[0]
                )
            else:
                raise MetadataFileError(
                    "Found unrecognized ID column name %r while searching for "
                    "header. The first column name in the header defines the "
                    "ID column, and must be one of these values:\n\n%s\n\n"
                    "NOTE: Metadata files must contain tab-separated values."
                    % (row[0], FORMATTED_ID_HEADERS)
                )

        if header is None:
            raise MetadataFileError(
                "Failed to locate header. The metadata file may be empty, or "
                "consists only of comments or empty rows."
            )

        # Trim trailing empty cells from header.
        data_extent = None
        for idx, cell in enumerate(header):
            if cell != "":
                data_extent = idx
        header = header[: data_extent + 1]

        # Basic validation to 1) fail early before processing entire file; and
        # 2) make some basic guarantees about the header for things in this
        # class that use the header as part of reading the file.
        column_names = set(header)
        if "" in column_names:
            raise MetadataFileError(
                "Found at least one column without a name in the header. Each "
                "column must be named."
            )
        elif len(header) != len(column_names):
            duplicates = find_duplicates(header)
            raise MetadataFileError(
                "Column names must be unique. The following column names are "
                "duplicated: %s" % (", ".join(repr(e) for e in sorted(duplicates)))
            )

        # Skip the first element of the header because we know it is a valid ID
        # header. The other column names are validated to ensure they *aren't*
        # valid ID headers.
        for column_name in header[1:]:
            if is_id_header(column_name):
                raise MetadataFileError(
                    "Metadata column name %r conflicts with a name reserved "
                    "for the ID column header. Reserved ID column headers:"
                    "\n\n%s" % (column_name, FORMATTED_ID_HEADERS)
                )

        return header

    def _read_directives(self, header):
        directives = {}
        for row in self._reader:
            directive_kind = None

            if not self._is_directive(row):
                self._reader = itertools.chain([row], self._reader)
                break

            if self._is_column_types_directive(row):
                directive_kind = "types"
            elif self._is_missing_directive(row):
                directive_kind = "missing"
            else:
                raise MetadataFileError(
                    "Unrecognized directive %r. Only the #sk:types, #q2:types"
                    " and #sk:missing, #q2:missing directives are supported at this"
                    " time." % row[0]
                )

            if directive_kind in directives:
                raise MetadataFileError(
                    "Found duplicate directive %r. Each directive may "
                    "only be specified a single time." % row[0]
                )

            row = self._match_header_len(row, header)

            collected = {name: arg for name, arg in zip(header[1:], row[1:]) if arg}

            directives[directive_kind] = collected

        if "types" in directives:
            column_types = directives["types"]
            for column_name, column_type in column_types.items():
                type_nocase = column_type.lower()
                if type_nocase in SUPPORTED_COLUMN_TYPES:
                    column_types[column_name] = type_nocase
                else:
                    fmt_column_types = ", ".join(
                        repr(e) for e in sorted(SUPPORTED_COLUMN_TYPES)
                    )
                    raise MetadataFileError(
                        "Column %r has an unrecognized column type %r "
                        "specified in its #sk:types or #q2:types directive. "
                        "Supported column types (case-insensitive): %s"
                        % (column_name, column_type, fmt_column_types)
                    )

        if "missing" in directives:
            for column_name, column_missing in directives["missing"].items():
                if column_missing not in BUILTIN_MISSING:
                    raise MetadataFileError(
                        "Column %r has an unrecognized missing value scheme %r"
                        " specified in its #sk:missing or #q2:missing directive."
                        " Supported missing value schemes (case-sensitive): %s"
                        % (column_name, column_missing, list(BUILTIN_MISSING))
                    )

        return directives

    def _read_data(self, header):
        ids = []
        data = []
        for row in self._reader:
            if self._is_comment(row):
                continue
            elif self._is_empty(row):
                continue
            elif self._is_directive(row):
                raise MetadataFileError(
                    "Found directive %r outside of the directives section of "
                    "the file. Directives may only appear immediately after "
                    "the header." % row[0]
                )
            elif self._is_header(row):
                raise MetadataFileError(
                    "Metadata ID %r conflicts with a name reserved for the ID "
                    "column header. Reserved ID column headers:\n\n%s"
                    % (row[0], FORMATTED_ID_HEADERS)
                )

            row = self._match_header_len(row, header)
            ids.append(row[0])
            data.append(row[1:])
        return ids, data

    def _strip_cell_whitespace(self, row):
        return [cell.strip() for cell in row]

    def _match_header_len(self, row, header):
        row_len = len(row)
        header_len = len(header)

        if row_len < header_len:
            # Pad row with empty cells to match header length.
            row = row + [""] * (header_len - row_len)
        elif row_len > header_len:
            trailing_row = row[header_len:]
            if not self._is_empty(trailing_row):
                raise MetadataFileError(
                    "Metadata row contains more cells than are declared by "
                    "the header. The row has %d cells, while the header "
                    "declares %d cells." % (row_len, header_len)
                )
            row = row[:header_len]
        return row

    def _is_empty(self, row):
        # `all` returns True for an empty iterable, so this check works for a
        # row of zero elements (corresponds to a blank line in the file).
        return all((cell == "" for cell in row))

    def _is_comment(self, row):
        return (
            len(row) > 0
            and row[0].startswith("#")
            and not self._is_directive(row)
            and not self._is_header(row)
        )

    def _is_header(self, row):
        if len(row) == 0:
            return False
        return is_id_header(row[0])

    def _is_directive(self, row):
        return len(row) > 0 and row[0].startswith(("#sk:", "#q2:"))

    def _is_column_types_directive(self, row):
        return len(row) > 0 and (row[0].split(" ")[0] in ["#sk:types", "#q2:types"])

    def _is_missing_directive(self, row):
        return len(row) > 0 and (row[0].split(" ")[0] in ["#sk:missing", "#q2:missing"])

    def _cast_column(self, series, column_types, missing_schemes):
        if series.name in missing_schemes:
            scheme = missing_schemes[series.name]
            series = series_encode_missing(series, scheme)
        if series.name in column_types:
            if column_types[series.name] == "numeric":
                return self._to_numeric(series)
            else:  # 'categorical'
                return self._to_categorical(series)
        else:
            # Infer type
            try:
                return self._to_numeric(series)
            except MetadataFileError:
                return self._to_categorical(series)

    def _to_categorical(self, series):
        # Replace empty strings with `None` to force the series to remain
        # dtype=object (this only matters if the series consists solely of
        # missing data). Replacing with np.nan and casting to dtype=object
        # won't retain the correct dtype in the resulting dataframe
        # (`DataFrame.apply` seems to force series consisting solely of np.nan
        # to dtype=float64, even if dtype=object is specified.
        #
        # To replace a value with `None`, the following invocation of
        # `Series.replace` must be used because `None` is a sentinel:
        #     https://stackoverflow.com/a/17097397/3776794
        return series.replace([""], [None])

    def _to_numeric(self, series):
        series = series.replace("", np.nan)
        is_numeric = series.apply(self._is_numeric)
        if is_numeric.all():
            return pd.to_numeric(series, errors="raise")
        else:
            non_numerics = series[~is_numeric].unique()
            raise MetadataFileError(
                "Cannot convert metadata column %r to numeric. The following "
                "values could not be interpreted as numeric: %s"
                % (series.name, ", ".join(repr(e) for e in sorted(non_numerics)))
            )

    def _is_numeric(self, value):
        return isinstance(value, float) or len(_numeric_regex.findall(value)) == 1


class MetadataWriter:
    """Writer for Metadata."""

    def __init__(self, metadata):
        """Initialize Writer for Metadata."""
        self._metadata = metadata

    def write(self, filepath_or_filehandle):
        """Write metadata object to passed file or filehandle."""
        if isinstance(filepath_or_filehandle, str):
            # Newline settings based on recommendation from csv docs:
            # https://docs.python.org/3/library/csv.html#id3
            # Do NOT write a BOM, hence utf-8 not utf-8-sig
            cm = open(filepath_or_filehandle, "w", newline="", encoding="utf-8")
        else:
            cm = filepath_or_filehandle

        with cm as fh:
            tsv_writer = csv.writer(fh, dialect="excel-tab", strict=True)

            md = self._metadata
            header = [md.id_header]
            # NOTE/TODO: The Metadata files written with this method
            # will always have the directives of type #sk:
            # even if a metadata file with directives of type #q2:
            # has been read. This can be changed in the future
            # however we could also decide to just stick with the sk: types.
            types_directive = ["#sk:types"]
            missing_directive = ["#sk:missing"]

            if isinstance(md, SampleMetadata):
                for name, props in md.columns.items():
                    header.append(name)
                    types_directive.append(props.type)
                    missing_directive.append(props.missing_scheme)
            elif isinstance(md, MetadataColumn):
                header.append(md.name)
                types_directive.append(md.type)
                missing_directive.append(md.missing_scheme)
            else:
                raise NotImplementedError

            tsv_writer.writerow(header)
            tsv_writer.writerow(types_directive)
            if self._non_default_missing(missing_directive):
                tsv_writer.writerow(missing_directive)

            df = md.to_dataframe(encode_missing=True)
            df.fillna("", inplace=True)
            # since `applymap` is going to be deprecated soon
            # and `map` may not work on older versions of pandas
            try:
                mapper_ = df.map
            except AttributeError:
                mapper_ = df.applymap
            df = mapper_(self._format)

            tsv_writer.writerows(df.itertuples(index=True))

    def _non_default_missing(self, missing_directive):
        missing = missing_directive[1:]
        result = False
        for m in missing:
            if m != DEFAULT_MISSING:
                result = True
                break

        return result

    def _format(self, value):
        if isinstance(value, str):
            return value
        elif isinstance(value, float):
            # Use fixed precision or scientific notation as necessary (both are
            # roundtrippable in the metadata file format), with up to 15 digits
            # *total* precision (i.e. before and after the decimal point),
            # rounding if necessary. Trailing zeros or decimal points will not
            # be included in the formatted string (e.g. 42.0 will be formatted
            # as "42"). A precision of 15 digits is used because that is within
            # the 64-bit floating point spec (things get weird after that).
            #
            # Using repr() and str() each have their own predefined precision
            # which varies across Python versions. Using the string formatting
            # presentation types (e.g. %g, %f) without specifying a precision
            # will usually default to 6 digits past the decimal point, which
            # seems a little low.
            #
            # References:
            #
            # - https://stackoverflow.com/a/2440786/3776794
            # - https://stackoverflow.com/a/2440708/3776794
            # - https://docs.python.org/3/library/string.html#
            #       format-specification-mini-language
            # - https://stackoverflow.com/a/20586479/3776794
            # - https://drj11.wordpress.com/2007/07/03/python-poor-printing-
            #       of-floating-point/
            return "{0:.15g}".format(value)
        else:
            raise NotImplementedError


# Credit: https://stackoverflow.com/a/4703508/3776794
_numeric_pattern = r"""
    ^[-+]? # optional sign
    (?:
        (?: \d* \. \d+ ) # .1 .12 .123 etc 9.1 etc 98.1 etc
        |
        (?: \d+ \.? ) # 1. 12. 123. etc 1 12 123 etc
    )
    # followed by optional exponent part if desired
    (?: [Ee] [+-]? \d+ ) ?$
"""

_numeric_regex = re.compile(_numeric_pattern, re.VERBOSE)