File: composition.py

package info (click to toggle)
python-skbio 0.6.2-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 9,312 kB
  • sloc: python: 60,482; ansic: 672; makefile: 224
file content (2060 lines) | stat: -rw-r--r-- 68,344 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
r"""Composition Statistics (:mod:`skbio.stats.composition`)
=======================================================

.. currentmodule:: skbio.stats.composition

This module provides functions for compositional data analysis.

Many omics datasets are inherently compositional -- meaning that they are best
interpreted as proportions or percentages rather than absolute counts.

Formally, sample :math:`x` is a composition if :math:`\sum_{i=0}^D x_{i} = c`
and :math:`x_{i} > 0`, :math:`1 \leq i \leq D` and :math:`c` is a real-valued
constant and there are :math:`D` components (features) for this composition.
In this module :math:`c=1`. Compositional data can be analyzed using
**Aitchison geometry** [1]_.

However, in this framework, standard real Euclidean operations such as addition
and multiplication no longer apply. Only operations such as perturbation and
power can be used to manipulate this data.

This module allows two styles of manipulation of compositional data.
Compositional data can be analyzed using perturbation and power operations,
which can be useful for simulation studies. The alternative strategy is to
transform compositional data into the real space. Right now, the centre log
ratio transform (clr) and the isometric log ratio transform (ilr) [2]_ can be
used to accomplish this. This transform can be useful for performing standard
statistical methods such as parametric hypothesis testing, regression and more.

The major caveat of using this framework is dealing with zeros. In Aitchison
geometry, only compositions with non-zero components can be considered.
The multiplicative replacement technique [3]_ can be used to substitute these
zeros with small pseudocounts without introducing major distortions to the
data.

Functions
---------

.. autosummary::
   :toctree:

   closure
   multi_replace
   multiplicative_replacement
   perturb
   perturb_inv
   power
   inner
   clr
   clr_inv
   ilr
   ilr_inv
   alr
   alr_inv
   centralize
   vlr
   pairwise_vlr
   tree_basis
   ancom
   sbp_basis
   dirmult_ttest

References
----------
.. [1] V. Pawlowsky-Glahn, J. J. Egozcue, R. Tolosana-Delgado (2015),
   Modeling and Analysis of Compositional Data, Wiley, Chichester, UK

.. [2] J. J. Egozcue.,  "Isometric Logratio Transformations for
   Compositional Data Analysis" Mathematical Geology, 35.3 (2003)

.. [3] J. A. Martin-Fernandez,  "Dealing With Zeros and Missing Values in
   Compositional Data Sets Using Nonparametric Imputation",
   Mathematical Geology, 35.3 (2003)

"""  # noqa: D205, D415

# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

from warnings import warn, simplefilter

import numpy as np
import pandas as pd
import scipy.stats
from scipy.sparse import coo_matrix
from scipy.stats import t, gmean
from statsmodels.stats.weightstats import CompareMeans

from skbio.stats.distance import DistanceMatrix
from skbio.util import find_duplicates
from skbio.util._misc import get_rng
from skbio.util._warning import _warn_deprecated
from statsmodels.stats.multitest import multipletests as sm_multipletests


def closure(mat):
    """Perform closure to ensure that all elements add up to 1.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        The matrix where all of the values are non-zero and each composition
        (row) adds up to 1.

    Raises
    ------
    ValueError
        If any values are negative.
    ValueError
        If the matrix has more than two dimensions.
    ValueError
        If there is a row that has all zeros.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import closure
    >>> X = np.array([[2, 2, 6], [4, 4, 2]])
    >>> closure(X)
    array([[ 0.2,  0.2,  0.6],
           [ 0.4,  0.4,  0.2]])

    """
    mat = np.atleast_2d(mat)
    if np.any(mat < 0):
        raise ValueError("Cannot have negative proportions")
    if mat.ndim > 2:
        raise ValueError("Input matrix can only have two dimensions or less")
    if np.all(mat == 0, axis=1).sum() > 0:
        raise ValueError("Input matrix cannot have rows with all zeros")
    mat = mat / mat.sum(axis=1, keepdims=True)
    return mat.squeeze()


def multi_replace(mat, delta=None):
    r"""Replace all zeros with small non-zero values.

    It uses the multiplicative replacement strategy [1]_, replacing zeros with
    a small positive :math:`\delta` and ensuring that the compositions still
    add up to 1.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    delta : float, optional
        A small number to be used to replace zeros. If not specified, the
        default value is :math:`\delta = \frac{1}{N^2}` where :math:`N` is the
        number of components.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        The matrix where all of the values are non-zero and each composition
        (row) adds up to 1.

    Raises
    ------
    ValueError
        If negative proportions are created due to a large ``delta``.

    Notes
    -----
    This method will result in negative proportions if a large delta is chosen.

    References
    ----------
    .. [1] J. A. Martin-Fernandez. "Dealing With Zeros and Missing Values in
           Compositional Data Sets Using Nonparametric Imputation"

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import multi_replace
    >>> X = np.array([[.2, .4, .4, 0],[0, .5, .5, 0]])
    >>> multi_replace(X)
    array([[ 0.1875,  0.375 ,  0.375 ,  0.0625],
           [ 0.0625,  0.4375,  0.4375,  0.0625]])

    """
    mat = closure(mat)
    z_mat = mat == 0

    num_feats = mat.shape[-1]
    tot = z_mat.sum(axis=-1, keepdims=True)

    if delta is None:
        delta = (1.0 / num_feats) ** 2

    zcnts = 1 - tot * delta
    if np.any(zcnts) < 0:
        raise ValueError(
            "The multiplicative replacement created negative "
            "proportions. Consider using a smaller `delta`."
        )
    mat = np.where(z_mat, delta, zcnts * mat)
    return mat.squeeze()


def multiplicative_replacement(mat, delta=None):
    r"""Replace all zeros with small non-zero values.

    This function is an alias for ``multi_replace``.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    delta : float, optional
        A small number to be used to replace zeros. If not specified, the
        default value is :math:`\delta = \frac{1}{N^2}` where :math:`N` is the
        number of components.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        The matrix where all of the values are non-zero and each composition
        (row) adds up to 1.

    Raises
    ------
    ValueError
        If negative proportions are created due to a large ``delta``.

    Warnings
    --------
    ``multiplicative_replacement`` is deprecated as of ``0.6.0`` in favor of
    ``multi_replace``.

    See Also
    --------
    multi_replace

    """
    _warn_deprecated(multiplicative_replacement, "0.6.0")
    return multi_replace(mat, delta)


def perturb(x, y):
    r"""Perform the perturbation operation.

    This operation is defined as:

    .. math::
        x \oplus y = C[x_1 y_1, \ldots, x_D y_D]

    :math:`C[x]` is the closure operation defined as:

    .. math::
        C[x] = \left[\frac{x_1}{\sum_{i=1}^{D} x_i},\ldots,
                     \frac{x_D}{\sum_{i=1}^{D} x_i} \right]

    for some :math:`D` dimensional real vector :math:`x` and
    :math:`D` is the number of components for every composition.

    Parameters
    ----------
    x : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    y : array_like of shape (n_compositions, n_components)
        A matrix of proportions.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
       A matrix of proportions where all of the values are non-zero and each
       composition (row) adds up to 1.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import perturb

    Consider a very simple environment with only three species. The species in
    the environment are evenly distributed and their proportions are equal:

    >>> before = np.array([1/3, 1/3, 1/3])

    Suppose that an antibiotic kills off half of the population for the first
    two species, but doesn't harm the third species. Then the perturbation
    vector would be as follows:

    >>> after = np.array([1/2, 1/2, 1])

    And the resulting perturbation would be:

    >>> perturb(before, after)
    array([ 0.25,  0.25,  0.5 ])

    """
    x, y = closure(x), closure(y)
    return closure(x * y)


def perturb_inv(x, y):
    r"""Perform the inverse perturbation operation.

    This operation is defined as:

    .. math::
        x \ominus y = C[x_1 y_1^{-1}, \ldots, x_D y_D^{-1}]

    :math:`C[x]` is the closure operation defined as:

    .. math::
        C[x] = \left[\frac{x_1}{\sum_{i=1}^{D} x_i},\ldots,
                     \frac{x_D}{\sum_{i=1}^{D} x_i} \right]

    for some :math:`D` dimensional real vector :math:`x` and :math:`D` is the
    number of components for every composition.

    Parameters
    ----------
    x : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    y : array_like of shape (n_compositions, n_components)
        A matrix of proportions.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        A matrix of proportions where all of the values are non-zero and each
        composition (row) adds up to 1.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import perturb_inv
    >>> x = np.array([.1, .3, .4, .2])
    >>> y = np.array([1/6, 1/6, 1/3, 1/3])
    >>> perturb_inv(x, y)
    array([ 0.14285714,  0.42857143,  0.28571429,  0.14285714])

    """
    x, y = closure(x), closure(y)
    return closure(x / y)


def power(x, a):
    r"""Perform the power operation.

    This operation is defined as follows:

    .. math::
        `x \odot a = C[x_1^a, \ldots, x_D^a]

    :math:`C[x]` is the closure operation defined as:

    .. math::
        C[x] = \left[\frac{x_1}{\sum_{i=1}^{D} x_i},\ldots,
                     \frac{x_D}{\sum_{i=1}^{D} x_i} \right]

    for some :math:`D` dimensional real vector :math:`x` and
    :math:`D` is the number of components for every composition.

    Parameters
    ----------
    x : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    a : float
        A scalar exponent.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
       The matrix where all of the values are non-zero and each composition
       (row) adds up to 1.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import power
    >>> x = np.array([.1, .3, .4, .2])
    >>> power(x, .1)
    array([ 0.23059566,  0.25737316,  0.26488486,  0.24714631])

    """
    x = closure(x)
    return closure(x**a).squeeze()


def inner(x, y):
    r"""Calculate the Aitchson inner product.

    This inner product is defined as follows:

    .. math::
        \langle x, y \rangle_a =
        \frac{1}{2D} \sum\limits_{i=1}^{D} \sum\limits_{j=1}^{D}
        \ln\left(\frac{x_i}{x_j}\right) \ln\left(\frac{y_i}{y_j}\right)

    Parameters
    ----------
    x : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    y : array_like of shape (n_compositions, n_components)
        A matrix of proportions.

    Returns
    -------
    ndarray or scalar of shape (n_compositions, n_compositions)
        Inner product result.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import inner
    >>> x = np.array([.1, .3, .4, .2])
    >>> y = np.array([.2, .4, .2, .2])
    >>> inner(x, y)  # doctest: +ELLIPSIS
    0.2107852473...

    """
    x = closure(x)
    y = closure(y)
    a, b = clr(x), clr(y)
    return a.dot(b.T)


def clr(mat):
    r"""Perform centre log ratio transformation.

    This function transforms compositions from Aitchison geometry to the real
    space. The :math:`clr` transform is both an isometry and an isomorphism
    defined on the following spaces:

    .. math::
        clr: S^D \rightarrow U

    where :math:`U=
    \{x :\sum\limits_{i=1}^D x = 0 \; \forall x \in \mathbb{R}^D\}`

    It is defined for a composition :math:`x` as follows:

    .. math::
        clr(x) = \ln\left[\frac{x_1}{g_m(x)}, \ldots, \frac{x_D}{g_m(x)}\right]

    where :math:`g_m(x) = (\prod\limits_{i=1}^{D} x_i)^{1/D}` is the geometric
    mean of :math:`x`.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        Clr-transformed matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import clr
    >>> x = np.array([.1, .3, .4, .2])
    >>> clr(x)
    array([-0.79451346,  0.30409883,  0.5917809 , -0.10136628])

    """
    mat = closure(mat)
    lmat = np.log(mat)
    gm = lmat.mean(axis=-1, keepdims=True)
    return (lmat - gm).squeeze()


def clr_inv(mat):
    r"""Perform inverse centre log ratio transformation.

    This function transforms compositions from the real space to Aitchison
    geometry. The :math:`clr^{-1}` transform is both an isometry, and an
    isomorphism defined on the following spaces:

    .. math::
        clr^{-1}: U \rightarrow S^D

    where :math:`U=
    \{x :\sum\limits_{i=1}^D x = 0 \; \forall x \in \mathbb{R}^D\}`

    This transformation is defined as follows:

    .. math::
        clr^{-1}(x) = C[\exp( x_1, \ldots, x_D)]

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of clr-transformed data.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        Inverse clr-transformed matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import clr_inv
    >>> x = np.array([.1, .3, .4, .2])
    >>> clr_inv(x)
    array([ 0.21383822,  0.26118259,  0.28865141,  0.23632778])

    """
    # for numerical stability (aka softmax trick)
    mat = np.atleast_2d(mat)
    emat = np.exp(mat - mat.max(axis=-1, keepdims=True))
    return closure(emat)


def ilr(mat, basis=None, check=True):
    r"""Perform isometric log ratio transformation.

    This function transforms compositions from Aitchison simplex to the real
    space. The :math:`ilr` transform is both an isometry, and an isomorphism
    defined on the following spaces:

    .. math::
        ilr: S^D \rightarrow \mathbb{R}^{D-1}

    The ilr transformation is defined as follows:

    .. math::
        ilr(x) =
        [\langle x, e_1 \rangle_a, \ldots, \langle x, e_{D-1} \rangle_a]

    where :math:`[e_1,\ldots,e_{D-1}]` is an orthonormal basis in the simplex.

    If an orthornormal basis isn't specified, the J. J. Egozcue orthonormal
    basis derived from Gram-Schmidt orthogonalization will be used by default.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    basis : ndarray or sparse matrix, optional
        Orthonormal basis for Aitchison simplex. Defaults to J. J. Egozcue
        orthonormal basis.
    check : bool
        Check to see if basis is orthonormal.

    Returns
    -------
    ndarray of shape (n_compositions, n_components - 1)
        Ilr-transformed matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import ilr
    >>> x = np.array([.1, .3, .4, .2])
    >>> ilr(x)
    array([-0.7768362 , -0.68339802,  0.11704769])

    Notes
    -----
    If the ``basis`` parameter is specified, it is expected to be a basis in
    the Aitchison simplex. If there are :math:`D - 1` elements specified in
    ``mat``, then the dimensions of the basis needs be :math:`(D-1) \times D`,
    where rows represent basis vectors, and the columns represent proportions.

    """
    mat = closure(mat)
    if basis is None:
        d = mat.shape[-1]
        basis = _gram_schmidt_basis(d)  # dimension (d-1) x d
    else:
        if len(basis.shape) != 2:
            raise ValueError(
                "Basis needs to be a 2D matrix, "
                "not a %dD matrix." % (len(basis.shape))
            )
        if check:
            _check_orthogonality(basis)

    return clr(mat) @ basis.T


def ilr_inv(mat, basis=None, check=True):
    r"""Perform inverse isometric log ratio transform.

    This function transforms compositions from the real space to Aitchison
    geometry. The :math:`ilr^{-1}` transform is both an isometry, and an
    isomorphism defined on the following spaces:

    .. math::
        ilr^{-1}: \mathbb{R}^{D-1} \rightarrow S^D

    The inverse ilr transformation is defined as follows:

    .. math::
        ilr^{-1}(x) = \bigoplus\limits_{i=1}^{D-1} x \odot e_i

    where :math:`[e_1,\ldots, e_{D-1}]` is an orthonormal basis in the simplex.

    If an orthonormal basis isn't specified, the J. J. Egozcue orthonormal
    basis derived from Gram-Schmidt orthogonalization will be used by
    default.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components - 1)
        A matrix of ilr-transformed data.
    basis : ndarray or sparse matrix, optional
        Orthonormal basis for Aitchison simplex. Defaults to J. J. Egozcue
        orthonormal basis.
    check : bool
        Check to see if basis is orthonormal.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        Inverse ilr-transformed matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import ilr
    >>> x = np.array([.1, .3, .6,])
    >>> ilr_inv(x)
    array([ 0.34180297,  0.29672718,  0.22054469,  0.14092516])

    Notes
    -----
    If the ``basis`` parameter is specified, it is expected to be a basis in
    the Aitchison simplex. If there are :math:`D - 1` elements specified in
    ``mat``, then the dimensions of the basis needs be :math:`(D-1) \times D`,
    where rows represent basis vectors, and the columns represent proportions.

    """
    mat = np.atleast_2d(mat)
    if basis is None:
        # dimension d-1 x d basis
        basis = _gram_schmidt_basis(mat.shape[-1] + 1)
    else:
        if len(basis.shape) != 2:
            raise ValueError(
                "Basis needs to be a 2D matrix, "
                "not a %dD matrix." % (len(basis.shape))
            )
        if check:
            _check_orthogonality(basis)
        # this is necessary, since the clr function
        # performs np.squeeze()
        basis = np.atleast_2d(basis)

    return clr_inv(mat @ basis)


def alr(mat, denominator_idx=0):
    r"""Perform additive log ratio transformation.

    This function transforms compositions from a D-part Aitchison simplex to
    a non-isometric real space of D-1 dimensions. The argument
    ``denominator_col`` defines the index of the column used as the common
    denominator. The :math:`alr` transformed data are amenable to multivariate
    analysis as long as statistics don't involve distances.

    .. math::
        alr: S^D \rightarrow \mathbb{R}^{D-1}

    The alr transformation is defined as follows

    .. math::
        alr(x) = \left[ \ln \frac{x_1}{x_D}, \ldots,
        \ln \frac{x_{D-1}}{x_D} \right]

    where :math:`D` is the index of the part used as common denominator.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    denominator_idx : int
        The index of the column (2-D matrix) or position (vector) of ``mat``
        which should be used as the reference composition. Default is 0 which
        specifies the first column or position.

    Returns
    -------
    ndarray of shape (n_compositions, n_components - 1)
        Alr-transformed data projected in a non-isometric real space of
        :math:`D - 1` dimensions for a *D*-parts composition.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import alr
    >>> x = np.array([.1, .3, .4, .2])
    >>> alr(x)
    array([ 1.09861229,  1.38629436,  0.69314718])

    """
    mat = closure(mat)
    if mat.ndim == 2:
        mat_t = mat.T
        numerator_idx = list(range(0, mat_t.shape[0]))
        del numerator_idx[denominator_idx]
        lr = np.log(mat_t[numerator_idx, :] / mat_t[denominator_idx, :]).T
    elif mat.ndim == 1:
        numerator_idx = list(range(0, mat.shape[0]))
        del numerator_idx[denominator_idx]
        lr = np.log(mat[numerator_idx] / mat[denominator_idx])
    else:
        raise ValueError("mat must be either 1D or 2D")
    return lr


def alr_inv(mat, denominator_idx=0):
    r"""Perform inverse additive log ratio transform.

    This function transforms compositions from the non-isometric real space of
    alrs to Aitchison geometry.

    .. math::
        alr^{-1}: \mathbb{R}^{D-1} \rightarrow S^D

    The inverse alr transformation is defined as follows:

    .. math::
         alr^{-1}(x) = C[exp([y_1, y_2, ..., y_{D-1}, 0])]

    where :math:`C[x]` is the closure operation defined as

    .. math::
        C[x] = \left[\frac{x_1}{\sum_{i=1}^{D} x_i},\ldots,
                     \frac{x_D}{\sum_{i=1}^{D} x_i} \right]

    for some :math:`D` dimensional real vector :math:`x` and
    :math:`D` is the number of components for every composition.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components - 1)
        A matrix of alr-transformed data.
    denominator_idx : int
        The index of the column (2-D matrix) or position (vector) of ``mat``
        which should be used as the reference composition. Default is 0 which
        specifies the first column or position.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        Inverse alr-transformed matrix or vector where rows sum to 1.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import alr, alr_inv
    >>> x = np.array([.1, .3, .4, .2])
    >>> alr_inv(alr(x))
    array([ 0.1,  0.3,  0.4,  0.2])

    """
    mat = np.array(mat)
    if mat.ndim == 2:
        mat_idx = np.insert(mat, denominator_idx, np.repeat(0, mat.shape[0]), axis=1)
        comp = np.zeros(mat_idx.shape)
        comp[:, denominator_idx] = 1 / (np.exp(mat).sum(axis=1) + 1)
        numerator_idx = list(range(0, comp.shape[1]))
        del numerator_idx[denominator_idx]
        for i in numerator_idx:
            comp[:, i] = comp[:, denominator_idx] * np.exp(mat_idx[:, i])
    elif mat.ndim == 1:
        mat_idx = np.insert(mat, denominator_idx, 0, axis=0)
        comp = np.zeros(mat_idx.shape)
        comp[denominator_idx] = 1 / (np.exp(mat).sum(axis=0) + 1)
        numerator_idx = list(range(0, comp.shape[0]))
        del numerator_idx[denominator_idx]
        for i in numerator_idx:
            comp[i] = comp[denominator_idx] * np.exp(mat_idx[i])
    else:
        raise ValueError("mat must be either 1D or 2D")
    return comp


def centralize(mat):
    r"""Center data around its geometric average.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.

    Returns
    -------
    ndarray of shape (n_compositions, n_components)
        Centered composition matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import centralize
    >>> X = np.array([[.1, .3, .4, .2], [.2, .2, .2, .4]])
    >>> centralize(X)
    array([[ 0.17445763,  0.30216948,  0.34891526,  0.17445763],
           [ 0.32495488,  0.18761279,  0.16247744,  0.32495488]])

    """
    mat = closure(mat)
    cen = gmean(mat, axis=0)
    return perturb_inv(mat, cen)


def _vlr(x, y, ddof):
    r"""Calculate variance log ratio.

    Parameters
    ----------
    x : array_like of shape (n_components,)
        A vector of proportions.
    y : array_like of shape (n_components,)
        A vector of proportions.
    ddof : int
        Degrees of freedom.

    Returns
    -------
    float
        Variance log ratio value.

    """
    # Log transformation
    x = np.log(x)
    y = np.log(y)

    # Variance log ratio
    return np.var(x - y, ddof=ddof)


def _robust_vlr(x, y, ddof):
    r"""Calculate variance log ratio while masking zeros.

    Parameters
    ----------
    x : array_like of shape (n_components,)
        A vector of proportions.
    y : array_like of shape (n_components,)
        A vector of proportions.
    ddof : int
        Degrees of freedom.

    Returns
    -------
    float
        Variance log ratio value.

    """
    # Mask zeros
    x = np.ma.masked_array(x, mask=x == 0)
    y = np.ma.masked_array(y, mask=y == 0)

    # Log transformation
    x = np.ma.log(x)
    y = np.ma.log(y)

    # Variance log ratio
    return np.ma.var(x - y, ddof=ddof)


def vlr(x, y, ddof=1, robust=False):
    r"""Calculate variance log ratio.

    Parameters
    ----------
    x : array_like of shape (n_components,)
        A vector of proportions.
    y : array_like of shape (n_components,)
        A vector of proportions.
    ddof : int
        Degrees of freedom.
    robust : bool
        Whether to mask zeros at the cost of performance.

    Returns
    -------
    float
        Variance log ratio value.

    Notes
    -----
    Variance log ratio was described in [1]_ and [2]_.

    References
    ----------
    .. [1] V. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S,
           Bähler J (2015) Proportionality: A Valid Alternative to
           Correlation for Relative Data. PLoS Comput Biol 11(3): e1004075.
           https://doi.org/10.1371/journal.pcbi.1004075
    .. [2] Erb, I., Notredame, C.
           How should we measure proportionality on relative gene
           expression data?. Theory Biosci. 135, 21-36 (2016).
           https://doi.org/10.1007/s12064-015-0220-8

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import vlr
    >>> x = np.exp([1, 2, 3])
    >>> y = np.exp([2, 3, 4])
    >>> vlr(x, y)  # no zeros
    0.0

    """
    # Convert array_like to numpy array
    x = closure(x)
    y = closure(y)

    # Set up input and parameters
    kwargs = {
        "x": x,
        "y": y,
        "ddof": ddof,
    }

    # Run backend function
    if robust:
        return _robust_vlr(**kwargs)
    else:
        return _vlr(**kwargs)


def _pairwise_vlr(mat, ddof):
    r"""Perform pairwise variance log ratio transformation.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    ddof : int
        Degrees of freedom.

    Returns
    -------
    ndarray of shape (n_compositions, n_compositions)
        Distance matrix of variance log ratio values.

    """
    # Log Transform
    X_log = np.log(mat)

    # Variance Log Ratio
    covariance = np.cov(X_log.T, ddof=ddof)
    diagonal = np.diagonal(covariance)
    vlr_data = -2 * covariance + diagonal[:, np.newaxis] + diagonal
    return vlr_data


def pairwise_vlr(mat, ids=None, ddof=1, robust=False, validate=True):
    r"""Perform pairwise variance log ratio transformation.

    Parameters
    ----------
    mat : array_like of shape (n_compositions, n_components)
        A matrix of proportions.
    ids : array_like of str of shape (n_components,)
        Component names.
    ddof : int
        Degrees of freedom.
    robust : bool
        Whether to mask zeros at the cost of performance.
    validate : bool
        Whether to validate the distance matrix after construction.

    Returns
    -------
    skbio.DistanceMatrix if validate=True
        Distance matrix of variance log ratio values.
    skbio.DissimilarityMatrix if validate=False
        Dissimilarity matrix of variance log ratio values.

    Notes
    -----
    Pairwise variance log ratio transformation was described in [1]_ and [2]_.

    References
    ----------
    .. [1] V. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S,
           Bähler J (2015) Proportionality: A Valid Alternative to
           Correlation for Relative Data. PLoS Comput Biol 11(3): e1004075.
           https://doi.org/10.1371/journal.pcbi.1004075
    .. [2] Erb, I., Notredame, C.
           How should we measure proportionality on relative gene
           expression data?. Theory Biosci. 135, 21-36 (2016).
           https://doi.org/10.1007/s12064-015-0220-8

    Examples
    --------
    >>> import numpy as np
    >>> from skbio.stats.composition import pairwise_vlr
    >>> mat = np.array([np.exp([1, 2, 2]),
    ...                 np.exp([2, 3, 6]),
    ...                 np.exp([2, 3, 12])]).T
    >>> dism = pairwise_vlr(mat)
    >>> dism.redundant_form()
    array([[  0.,   3.,  27.],
           [  3.,   0.,  12.],
           [ 27.,  12.,   0.]])

    """
    # Mask zeros
    mat = closure(mat.astype(np.float64))

    # Set up input and parameters
    kwargs = {
        "mat": mat,
        "ddof": ddof,
    }

    # Variance log ratio
    if robust:
        raise NotImplementedError("Pairwise version of robust VLR not implemented.")
    else:
        vlr_data = _pairwise_vlr(**kwargs)

    # Return distance matrix
    if validate:
        vlr_data = 0.5 * (vlr_data + vlr_data.T)
        return DistanceMatrix(vlr_data, ids=ids)

    # Return dissimilarity matrix
    else:
        return DistanceMatrix(vlr_data, ids=ids, validate=False)


def tree_basis(tree):
    r"""Calculate the sparse representation of an ilr basis from a tree.

    This computes an orthonormal basis specified from a bifurcating tree.

    Parameters
    ----------
    tree : skbio.TreeNode
        Input bifurcating tree. Must be strictly bifurcating (i.e. every
        internal node needs to have exactly two children). This is used to
        specify the ilr basis.

    Returns
    -------
    scipy.sparse.coo_matrix
        The ilr basis required to perform the ilr_inv transform. This is also
        known as the sequential binary partition. Note that this matrix is
        represented in clr coordinates.
    list of str
        List of tree node names indicating the ordering in the basis.

    Raises
    ------
    ValueError
        If the tree doesn't contain two branches.

    Examples
    --------
    >>> from skbio import TreeNode
    >>> tree = u"((b,c)a, d)root;"
    >>> t = TreeNode.read([tree])
    >>> basis, nodes = tree_basis(t)
    >>> basis.toarray()
    array([[-0.40824829, -0.40824829,  0.81649658],
           [-0.70710678,  0.70710678,  0.        ]])

    """
    # Specifies which child is numerator and denominator
    # within any given node in a tree.
    NUMERATOR = 1
    DENOMINATOR = 0

    # this is inspired by @wasade in
    # https://github.com/biocore/gneiss/pull/8
    t = tree.copy()
    D = len(list(tree.tips()))

    # calculate number of tips under each node
    for n in t.postorder(include_self=True):
        if n.is_tip():
            n._tip_count = 1
        else:
            if len(n.children) == 2:
                left, right = (
                    n.children[NUMERATOR],
                    n.children[DENOMINATOR],
                )
            else:
                raise ValueError("Not a strictly bifurcating tree.")
            n._tip_count = left._tip_count + right._tip_count

    # calculate k, r, s, t coordinate for each node
    left, right = (
        t.children[NUMERATOR],
        t.children[DENOMINATOR],
    )
    t._k, t._r, t._s, t._t = 0, left._tip_count, right._tip_count, 0
    for n in t.preorder(include_self=False):
        if n.is_tip():
            n._k, n._r, n._s, n._t = 0, 0, 0, 0

        elif n == n.parent.children[NUMERATOR]:
            n._k = n.parent._k
            n._r = n.children[NUMERATOR]._tip_count
            n._s = n.children[DENOMINATOR]._tip_count
            n._t = n.parent._s + n.parent._t
        elif n == n.parent.children[DENOMINATOR]:
            n._k = n.parent._r + n.parent._k
            n._r = n.children[NUMERATOR]._tip_count
            n._s = n.children[DENOMINATOR]._tip_count
            n._t = n.parent._t
        else:
            raise ValueError("Tree topology is not correct.")

    # navigate through tree to build the basis in a sparse matrix form
    value = []
    row, col = [], []
    nodes = []
    i = 0

    for n in t.levelorder(include_self=True):
        if n.is_tip():
            continue

        for j in range(n._k, n._k + n._r):
            row.append(i)
            # consider tips in reverse order. May want to rethink
            # this orientation in the future.
            col.append(D - 1 - j)
            A = np.sqrt(n._s / (n._r * (n._s + n._r)))

            value.append(A)

        for j in range(n._k + n._r, n._k + n._r + n._s):
            row.append(i)
            col.append(D - 1 - j)
            B = -np.sqrt(n._r / (n._s * (n._s + n._r)))

            value.append(B)
        i += 1
        nodes.append(n.name)

    basis = coo_matrix((value, (row, col)), shape=(D - 1, D))

    return basis, nodes


def _calc_p_adjust(name, p):
    """
    Calculate the p-value adjustment for a given method.

    Parameters
    -------
        name : str
            The name of the *p*-value correction function.
            This should match one of the method names available
            in `statsmodels.stats.multitest.multipletests`.
        p : ndarray of shape (n_tests,)
            Original *p*-values.

    Returns
    -------
        p : ndarray of shape (n_tests,)
            Corrected *p*-values.

    Raises
    -------
        ValueError: If the given method name is not available.

    See Also
    --------
    statsmodels.stats.multitest.multipletests

    References
    ----------
    .. [1] https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html

    """
    name_ = name.lower()

    # Original options are kept for backwards compatibility
    if name_ in ("holm", "holm-bonferroni"):
        name_ = "holm"
    if name_ in ("bh", "fdr_bh", "benjamini-hochberg"):
        name_ = "fdr_bh"

    try:
        res = sm_multipletests(pvals=p, alpha=0.05, method=name_)
    except ValueError as e:
        if "method not recognized" in str(e):
            raise ValueError(f"{name} is not an available FDR correction method.")
        else:
            raise ValueError(f"Cannot perform FDR correction using the {name} method.")
    else:
        return res[1]


def ancom(
    table,
    grouping,
    alpha=0.05,
    tau=0.02,
    theta=0.1,
    p_adjust="holm",
    significance_test="f_oneway",
    percentiles=(0.0, 25.0, 50.0, 75.0, 100.0),
    multiple_comparisons_correction="holm-bonferroni",
):
    r"""Perform a differential abundance test using ANCOM.

    Analysis of composition of microbiomes (ANCOM) is done by calculating
    pairwise log ratios between all features and performing a significance
    test to determine if there is a significant difference in feature ratios
    with respect to the variable of interest.

    In an experiment with only two treatments, this tests the following
    hypothesis for feature :math:`i`:

    .. math::

        H_{0i}: \mathbb{E}[\ln(u_i^{(1)})] = \mathbb{E}[\ln(u_i^{(2)})]

    where :math:`u_i^{(1)}` is the mean abundance for feature :math:`i` in the
    first group and :math:`u_i^{(2)}` is the mean abundance for feature
    :math:`i` in the second group.

    Parameters
    ----------
    table : pd.DataFrame
        A 2-D matrix of strictly positive values (i.e. counts or proportions)
        where the rows correspond to samples and the columns correspond to
        features.
    grouping : pd.Series
        Vector indicating the assignment of samples to groups. For example,
        these could be strings or integers denoting which group a sample
        belongs to. It must be the same length as the samples in `table`.
        The index must be the same on `table` and `grouping` but need not be
        in the same order.
    alpha : float, optional
        Significance level for each of the statistical tests. This can can be
        anywhere between 0 and 1 exclusive.
    tau : float, optional
        A constant used to determine an appropriate cutoff. A value close to
        zero indicates a conservative cutoff. This can can be anywhere between
        0 and 1 exclusive.
    theta : float, optional
        Lower bound for the proportion for the *W*-statistic. If all *W*-
        statistics are lower than theta, then no features will be detected to
        be significantly different. This can can be anywhere between 0 and 1
        exclusive.
    p_adjust : str or None, optional
        Method to correct *p*-values for multiple comparisons. Options are Holm-
        Boniferroni ("holm" or "holm-bonferroni") (default), Benjamini-
        Hochberg ("bh", "fdr_bh" or "benjamini-hochberg"), or any method supported
        by statsmodels' ``multipletests`` function. Case-insensitive. If None, no
        correction will be performed.

        .. versionchanged:: 0.6.0

            Replaces ``multiple_comparisons_correction`` for conciseness.

    significance_test : str or callable, optional
        A function to test for significance between classes. It must be able to
        accept at least two vectors of floats and returns a test statistic and
        a *p*-value. Functions under ``scipy.stats`` can be directly specified
        by name. The default is one-way ANOVA ("f_oneway").

        .. versionchanged:: 0.6.0

            Accepts test names in addition to functions.

    percentiles : iterable of floats, optional
        Percentile abundances to return for each feature in each group. By
        default, will return the minimum, 25th percentile, median, 75th
        percentile, and maximum abundances for each feature in each group.
    multiple_comparisons_correction : str or None, optional
        Alias for ``p_adjust``. For backward compatibility. Deprecated.

    Returns
    -------
    pd.DataFrame
        A table of features, their *W*-statistics and whether the null
        hypothesis is rejected.

        - ``W``: *W*-statistic, or the number of features that the current
          feature is tested to be significantly different against.

        - ``Reject null hypothesis``: Whether the feature is differentially
          abundant across groups (``True``) or not (``False``).

    pd.DataFrame
        A table of features and their percentile abundances in each group. If
        ``percentiles`` is empty, this will be an empty ``pd.DataFrame``. The
        rows in this object will be features, and the columns will be a
        multi-index where the first index is the percentile, and the second
        index is the group.

    See Also
    --------
    multi_replace
    scipy.stats.ttest_ind
    scipy.stats.f_oneway
    scipy.stats.wilcoxon
    scipy.stats.kruskal

    Warnings
    --------
    ``multiple_comparisons_correction`` is deprecated as of ``0.6.0``. It has
    been renamed to ``p_adjust``.

    ``significance_test=None`` is deprecated as of ``0.6.0``. The default value
    is now "f_oneway".

    Notes
    -----
    The developers of ANCOM recommend the following significance tests ([1]_,
    Supplementary File 1, top of page 11):

    - If there are two groups, use the standard parametric *t*-test
      (``ttest_ind``) or the non-parametric Mann-Whitney rank test
      (``mannwhitneyu``).

    - For paired samples, use the parametric paired *t*-test (``ttest_rel``) or
      the non-parametric Wilcoxon signed-rank test (``wilcoxon``).

    - If there are more than two groups, use the parametric one-way ANOVA
      (``f_oneway``) or the non-parametric Kruskal-Wallis test (``kruskal``).

    - If there are multiple measurements obtained from the individuals, use a
      Friedman test (``friedmanchisquare``).

    Because one-way ANOVA is equivalent to the standard *t*-test when the
    number of groups is two, we default to ``f_oneway`` here, which can be used
    when there are two or more groups.

    Users should refer to the documentation of these tests in SciPy to
    understand the assumptions made by each test.

    This method cannot handle any zero counts as input, since the logarithm
    of zero cannot be computed.  While this is an unsolved problem, many
    studies, including [1]_, have shown promising results by adding
    pseudocounts to all values in the matrix. In [1]_, a pseudocount of 0.001
    was used, though the authors note that a pseudocount of 1.0 may also be
    useful. Zero counts can also be addressed using the ``multi_replace`` method.

    References
    ----------
    .. [1] Mandal et al. "Analysis of composition of microbiomes: a novel
       method for studying microbial composition", Microbial Ecology in Health
       & Disease, (2015), 26.

    Examples
    --------
    >>> from skbio.stats.composition import ancom
    >>> import pandas as pd

    Let's load in a DataFrame with six samples and seven features (e.g., these
    may be bacterial taxa):

    >>> table = pd.DataFrame([[12, 11, 10, 10, 10, 10, 10],
    ...                       [9,  11, 12, 10, 10, 10, 10],
    ...                       [1,  11, 10, 11, 10, 5,  9],
    ...                       [22, 21, 9,  10, 10, 10, 10],
    ...                       [20, 22, 10, 10, 13, 10, 10],
    ...                       [23, 21, 14, 10, 10, 10, 10]],
    ...                      index=['s1', 's2', 's3', 's4', 's5', 's6'],
    ...                      columns=['b1', 'b2', 'b3', 'b4', 'b5', 'b6',
    ...                               'b7'])

    Then create a grouping vector. In this example, there is a treatment group
    and a placebo group.

    >>> grouping = pd.Series(['treatment', 'treatment', 'treatment',
    ...                       'placebo', 'placebo', 'placebo'],
    ...                      index=['s1', 's2', 's3', 's4', 's5', 's6'])

    Now run ``ancom`` to determine if there are any features that are
    significantly different in abundance between the treatment and the placebo
    groups. The first DataFrame that is returned contains the ANCOM test
    results, and the second contains the percentile abundance data for each
    feature in each group.

    >>> ancom_df, percentile_df = ancom(table, grouping)
    >>> ancom_df['W'] # doctest: +ELLIPSIS
    b1    0
    b2    4
    b3    0
    b4    1
    b5    1
    b6    0
    b7    1
    Name: W, dtype: ...

    The *W*-statistic is the number of features that a single feature is tested
    to be significantly different against. In this scenario, ``b2`` was
    detected to have significantly different abundances compared to four of the
    other features. To summarize the results from the *W*-statistic, let's take
    a look at the results from the hypothesis test. The ``Reject null
    hypothesis`` column in the table indicates whether the null hypothesis was
    rejected, and that a feature was therefore observed to be differentially
    abundant across the groups.

    >>> ancom_df['Reject null hypothesis']
    b1    False
    b2     True
    b3    False
    b4    False
    b5    False
    b6    False
    b7    False
    Name: Reject null hypothesis, dtype: bool

    From this we can conclude that only ``b2`` was significantly different in
    abundance between the treatment and the placebo. We still don't know, for
    example, in which group ``b2`` was more abundant. We therefore may next be
    interested in comparing the abundance of ``b2`` across the two groups.
    We can do that using the second DataFrame that was returned. Here we
    compare the median (50th percentile) abundance of ``b2`` in the treatment
    and placebo groups:

    >>> percentile_df[50.0].loc['b2']
    Group
    placebo      21.0
    treatment    11.0
    Name: b2, dtype: float64

    We can also look at a full five-number summary for ``b2`` in the treatment
    and placebo groups:

    >>> percentile_df.loc['b2'] # doctest: +NORMALIZE_WHITESPACE
    Percentile  Group
    0.0         placebo      21.0
    25.0        placebo      21.0
    50.0        placebo      21.0
    75.0        placebo      21.5
    100.0       placebo      22.0
    0.0         treatment    11.0
    25.0        treatment    11.0
    50.0        treatment    11.0
    75.0        treatment    11.0
    100.0       treatment    11.0
    Name: b2, dtype: float64

    Taken together, these data tell us that ``b2`` is present in significantly
    higher abundance in the placebo group samples than in the treatment group
    samples.

    """
    if not isinstance(table, pd.DataFrame):
        raise TypeError(
            "`table` must be a `pd.DataFrame`, " "not %r." % type(table).__name__
        )
    if not isinstance(grouping, pd.Series):
        raise TypeError(
            "`grouping` must be a `pd.Series`," " not %r." % type(grouping).__name__
        )

    if np.any(table <= 0):
        raise ValueError(
            "Cannot handle zeros or negative values in `table`. "
            "Use pseudocounts or ``multi_replace``."
        )

    if not 0 < alpha < 1:
        raise ValueError("`alpha`=%f is not within 0 and 1." % alpha)

    if not 0 < tau < 1:
        raise ValueError("`tau`=%f is not within 0 and 1." % tau)

    if not 0 < theta < 1:
        raise ValueError("`theta`=%f is not within 0 and 1." % theta)

    # @deprecated
    if multiple_comparisons_correction != "holm-bonferroni":
        _warn_deprecated(ancom, "0.6.0")
        p_adjust = multiple_comparisons_correction

    if (grouping.isnull()).any():
        raise ValueError("Cannot handle missing values in `grouping`.")

    if (table.isnull()).any().any():
        raise ValueError("Cannot handle missing values in `table`.")

    percentiles = list(percentiles)
    for percentile in percentiles:
        if not 0.0 <= percentile <= 100.0:
            raise ValueError(
                "Percentiles must be in the range [0, 100], %r "
                "was provided." % percentile
            )

    duplicates = find_duplicates(percentiles)
    if duplicates:
        formatted_duplicates = ", ".join(repr(e) for e in duplicates)
        raise ValueError(
            "Percentile values must be unique. The following"
            " value(s) were duplicated: %s." % formatted_duplicates
        )

    groups = np.unique(grouping)
    num_groups = len(groups)

    if num_groups == len(grouping):
        raise ValueError(
            "All values in `grouping` are unique. This method cannot "
            "operate on a grouping vector with only unique values (e.g., "
            "there are no 'within' variance because each group of samples "
            "contains only a single sample)."
        )

    if num_groups == 1:
        raise ValueError(
            "All values the `grouping` are the same. This method cannot "
            "operate on a grouping vector with only a single group of samples"
            "(e.g., there are no 'between' variance because there is only a "
            "single group)."
        )

    # @deprecated
    if significance_test is None:
        significance_test = "f_oneway"

    table_index_len = len(table.index)
    grouping_index_len = len(grouping.index)
    mat, cats = table.align(grouping, axis=0, join="inner")
    if len(mat) != table_index_len or len(cats) != grouping_index_len:
        raise ValueError("`table` index and `grouping` " "index must be consistent.")

    n_feat = mat.shape[1]

    _logratio_mat = _log_compare(mat.values, cats.values, significance_test)
    logratio_mat = _logratio_mat + _logratio_mat.T

    # Multiple comparisons
    if p_adjust is not None:
        logratio_mat = np.apply_along_axis(
            lambda arr: _calc_p_adjust(p_adjust, arr), 1, logratio_mat
        )

    np.fill_diagonal(logratio_mat, 1)
    W = (logratio_mat < alpha).sum(axis=1)
    c_start = W.max() / n_feat
    if c_start < theta:
        reject = np.zeros_like(W, dtype=bool)
    else:
        # Select appropriate cutoff
        cutoff = c_start - np.linspace(0.05, 0.25, 5)
        prop_cut = np.array([(W > n_feat * cut).mean() for cut in cutoff])
        dels = np.abs(prop_cut - np.roll(prop_cut, -1))
        dels[-1] = 0

        if (dels[0] < tau) and (dels[1] < tau) and (dels[2] < tau):
            nu = cutoff[1]
        elif (dels[0] >= tau) and (dels[1] < tau) and (dels[2] < tau):
            nu = cutoff[2]
        elif (dels[1] >= tau) and (dels[2] < tau) and (dels[3] < tau):
            nu = cutoff[3]
        else:
            nu = cutoff[4]
        reject = W >= nu * n_feat

    feat_ids = mat.columns
    ancom_df = pd.DataFrame(
        {
            "W": pd.Series(W, index=feat_ids),
            "Reject null hypothesis": pd.Series(reject, index=feat_ids),
        }
    )

    if len(percentiles) == 0:
        return ancom_df, pd.DataFrame()
    else:
        data = []
        columns = []
        for group in groups:
            feat_dists = mat[cats == group]
            for percentile in percentiles:
                columns.append((percentile, group))
                data.append(np.percentile(feat_dists, percentile, axis=0))
        columns = pd.MultiIndex.from_tuples(columns, names=["Percentile", "Group"])
        percentile_df = pd.DataFrame(
            np.asarray(data).T, columns=columns, index=feat_ids
        )
        return ancom_df, percentile_df


def _log_compare(mat, cats, test="ttest_ind"):
    """Calculate pairwise log ratios and perform a significance test.

    Calculate pairwise log ratios between all features and perform a
    significance test (i.e. *t*-test) to determine if there is a significant
    difference in feature ratios with respect to the variable of interest.

    Parameters
    ----------
    mat : array_like of shape (n_samples, n_features)
        A matrix of proportions.
    cats : array_like of shape (n_samples,)
        A vector of categories.
    test : str or callable
        Statistical test to run.

    Returns
    -------
    log_ratio : ndarray
        Log ratio *p*-value matrix.

    Raises
    ------
    ValueError
        If specified test name is not a function under ``scipy.stats``.

    """
    c = mat.shape[1]
    log_ratio = np.zeros((c, c))
    log_mat = np.log(mat)
    cs = np.unique(cats)

    if isinstance(test, str):
        try:
            test = getattr(scipy.stats, test)
        except AttributeError:
            raise ValueError(f'Function "{test}" does not exist under scipy.stats.')

    def func(x):
        return test(*[x[cats == k] for k in cs])

    for i in range(c - 1):
        ratio = (log_mat[:, i].T - log_mat[:, i + 1 :].T).T
        _, p = np.apply_along_axis(func, axis=0, arr=ratio)
        log_ratio[i, i + 1 :] = np.squeeze(np.array(p.T))
    return log_ratio


def _gram_schmidt_basis(n):
    """Build clr-transformed basis derived from Gram-Schmidt orthogonalization.

    Parameters
    ----------
    n : int
        Dimension of the Aitchison simplex.

    Returns
    -------
    basis : array_like of shape (n - 1, n)
        Basis matrix.

    """
    basis = np.zeros((n, n - 1))
    for j in range(n - 1):
        i = j + 1
        e = np.array([(1 / i)] * i + [-1] + [0] * (n - i - 1)) * np.sqrt(i / (i + 1))
        basis[:, j] = e
    return basis.T


def sbp_basis(sbp):
    r"""Build an orthogonal basis from a sequential binary partition (SBP).

    A SBP is a hierarchical collection of binary divisions of compositional
    parts ([1]_). The child groups are divided again until all groups contain a
    single part. The SBP can be encoded in a :math:`(D - 1) \times D` matrix
    where, for each row, parts can be grouped by -1 and +1 tags, and 0 for
    excluded parts. The *i*-th balance is computed as follows:

    .. math::
        b_i = \sqrt{ \frac{r_i s_i}{r_i+s_i} }
        \ln \left( \frac{g(x_{r_i})}{g(x_{s_i})} \right)

    where :math:`b_i` is the *i*-th balance corresponding to the *i*-th row in
    the SBP, :math:`r_i` and :math:`s_i` and the number of respectively ``+1``
    and ``-1`` labels in the *i*-th row of the SBP and where :math:`g(x) =
    (\prod\limits_{i=1}^{D} x_i)^{1/D}` is the geometric mean of :math:`x`.

    Parameters
    ----------
    sbp : array_like of shape (n_partitions, n_features)
        A contrast matrix, also known as a sequential binary partition, where
        every row represents a partition between two groups of features. A part
        labelled ``+1`` would correspond to that feature being in the numerator
        of the given row partition, a part labelled ``-1`` would correspond to
        features being in the denominator of that given row partition, and
        ``0`` would correspond to features excluded in the row partition.

    Returns
    -------
    ndarray of shape (n_partitions, n_features)
        An orthonormal basis in the Aitchison simplex.

    Notes
    -----
    The ``sbp_basis`` method was derived from the ``gsi.buildilrBase()``
    function implemented in the R package "compositions" [2]_.

    Examples
    --------
    >>> import numpy as np
    >>> sbp = np.array([[1, 1,-1,-1,-1],
    ...                 [1,-1, 0, 0, 0],
    ...                 [0, 0, 1,-1,-1],
    ...                 [0, 0, 0, 1,-1]])
    ...
    >>> sbp_basis(sbp)
    array([[ 0.54772256,  0.54772256, -0.36514837, -0.36514837, -0.36514837],
           [ 0.70710678, -0.70710678,  0.        ,  0.        ,  0.        ],
           [ 0.        ,  0.        ,  0.81649658, -0.40824829, -0.40824829],
           [ 0.        ,  0.        ,  0.        ,  0.70710678, -0.70710678]])

    References
    ----------
    .. [1] Parent, S.É., Parent, L.E., Egozcue, J.J., Rozane, D.E.,
       Hernandes, A., Lapointe, L., Hébert-Gentile, V., Naess, K.,
       Marchand, S., Lafond, J., Mattos, D., Barlow, P., Natale, W., 2013.
       The plant ionome revisited by the nutrient balance concept.
       Front. Plant Sci. 4, 39.
    .. [2] van den Boogaart, K. Gerald, Tolosana-Delgado, Raimon and Bren,
       Matevz, 2014. `compositions`: Compositional Data Analysis. R package
       version 1.40-1. https://CRAN.R-project.org/package=compositions.

    """
    n_pos = (sbp == 1).sum(axis=1)
    n_neg = (sbp == -1).sum(axis=1)
    psi = np.zeros(sbp.shape)
    for i in range(0, sbp.shape[0]):
        psi[i, :] = sbp[i, :] * np.sqrt(
            (n_neg[i] / n_pos[i]) ** sbp[i, :] / np.sum(np.abs(sbp[i, :]))
        )
    return psi


def _check_orthogonality(basis):
    r"""Check to see if basis is truly orthonormal in the Aitchison simplex.

    Parameters
    ----------
    basis : ndarray
        Basis in the Aitchison simplex of dimension :math:`(D - 1) \times D`.

    """
    basis = np.atleast_2d(basis)
    if not np.allclose(basis @ basis.T, np.identity(len(basis)), rtol=1e-4, atol=1e-6):
        raise ValueError("Basis is not orthonormal.")


def _welch_ttest(a, b):
    r"""Perform Welch's *t*-test on two samples of unequal variances.

    Parameters
    ----------
    a, b : 1-D array_like
        Samples to test.

    Returns
    -------
    pd.DataFrame
        Test result. Columns are: T statistic, df, pvalue, Difference, CI(2.5),
        CI(97.5).

    See Also
    --------
    scipy.stats.ttest_ind
    statsmodels.stats.weightstats.CompareMeans

    Notes
    -----
    Compared with ``scipy.stats.ttest_ind`` with ``equal_var=False``, this
    function additionally returns confidence intervals. This implementation
    uses the ``CompareMeans`` class from ``statsmodels.stats.weightstats``.

    """
    # See https://stats.stackexchange.com/a/475345
    # See https://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.CompareMeans.html

    # Creating a CompareMeans object to perform Welch's t-test
    statsmodel_cm_object = CompareMeans.from_data(
        data1=a, data2=b, weights1=None, weights2=None
    )

    # Performing Welch's t-test using the object to obtain tstat, pvalue, and df
    ttest_cm_result = statsmodel_cm_object.ttest_ind(
        alternative="two-sided", usevar="unequal", value=0
    )

    tstat = ttest_cm_result[0]
    p = ttest_cm_result[1]
    df = ttest_cm_result[2]

    # Calculating difference between the two means
    m1 = np.mean(a)
    m2 = np.mean(b)

    delta = m1 - m2

    # Calculating confidence intervals using the aformentioned CompareMeans object
    conf_int = statsmodel_cm_object.tconfint_diff(
        alpha=0.05, alternative="two-sided", usevar="unequal"
    )

    lb = conf_int[0]
    ub = conf_int[1]

    return pd.DataFrame(
        np.array([tstat, df, p, delta, lb, ub]).reshape(1, -1),
        columns=["T statistic", "df", "pvalue", "Difference", "CI(2.5)", "CI(97.5)"],
    )


def dirmult_ttest(
    table,
    grouping,
    treatment,
    reference,
    pseudocount=0.5,
    draws=128,
    p_adjust="holm",
    seed=None,
):
    r"""*T*-test using Dirichlet-multinomial distribution.

    The Dirichlet-multinomial distribution is a compound distribution that
    combines a Dirichlet distribution over the probabilities of a multinomial
    distribution. This distribution is used to model the distribution of
    species abundances in a community.

    To perform the *t*-test, we first fit a Dirichlet-multinomial distribution
    for each sample, and then we compute the fold change and *p*-value for each
    feature. The fold change is computed as the difference between the
    samples of the two groups. *t*-tests are then performed on the posterior
    samples, drawn from each Dirichlet-multinomial distribution. The
    log-fold changes as well as their credible intervals, the *p*-values and
    the multiple comparison corrected *p*-values are reported.

    This process mirrors the approach performed by the R package "ALDEx2" [1]_.

    Parameters
    ----------
    table : pd.DataFrame
        Contingency table of counts where rows are features and columns are samples.
    grouping : pd.Series
        Vector indicating the assignment of samples to groups. For example,
        these could be strings or integers denoting which group a sample
        belongs to. It must be the same length as the samples in ``table``.
        The index must be the same on ``table`` and ``grouping`` but need not be
        in the same order. The *t*-test is computed between the ``treatment``
        group and the ``reference`` group specified in the ``grouping`` vector.
    treatment : str
        Name of the treatment group.
    reference : str
        Name of the reference group.
    pseudocount : float, optional
        A non-zero value added to the input counts to ensure that all of the
        estimated abundances are strictly greater than zero.
    draws : int, optional
        The number of draws from the Dirichilet-multinomial posterior distribution
        More draws provide higher uncertainty surrounding the estimated
        log-fold changes and *p*-values.
    p_adjust : str or None, optional
        Method to correct *p*-values for multiple comparisons. Options are Holm-
        Boniferroni ("holm" or "holm-bonferroni") (default), Benjamini-
        Hochberg ("bh", "fdr_bh" or "benjamini-hochberg"), or any method supported
        by statsmodels' ``multipletests`` function. Case-insensitive. If None, no
        correction will be performed.
    seed : int or np.random.Generator, optional
        A user-provided random seed or random generator instance.

    Returns
    -------
    pd.DataFrame
        A table of features, their log-fold changes and other relevant statistics.

        ``T statistic`` is the *t*-statistic outputted from the *t*-test. *t*-statistics
        are generated from each posterior draw.  The reported ``T statistic`` is the
        average across all of the posterior draws.

        ``df`` is the degrees of freedom from the *t*-test.

        ``Log2(FC)`` is the expected log2-fold change. Within each posterior draw
        the log2 fold-change is computed as the difference between the mean
        log-abundance the ``treatment`` group and the ``reference`` group. All log2
        fold changes are expressed in clr coordinates. The reported ``Log2(FC)``
        is the average of all of the log2-fold changes computed from each of the
        posterior draws.

        ``CI(2.5)`` is the 2.5% quantile of the log2-fold change. The reported
        ``CI(2.5)`` is the 2.5% quantile of all of the log2-fold changes computed
        from each of the posterior draws.

        ``CI(97.5)`` is the 97.5% quantile of the log2-fold change. The
        reported ``CI(97.5)`` is the 97.5% quantile of all of the log2-fold
        changes computed from each of the posterior draws.

        ``pvalue`` is the *p*-value of the *t*-test. The reported values are the
        average of all of the *p*-values computed from the *t*-tests calculated
        across all of the posterior draws.

        ``qvalue`` is the *p*-value of the *t*-test after performing multiple
        comparison correction.

        ``Reject null hypothesis`` indicates if feature is differentially
        abundant across groups (``True``) or not (``False``). In order for a
        feature to be differentially abundant, the qvalue needs to be significant
        (i.e. <0.05) and the confidence intervals reported by ``CI(2.5)`` and
        ``CI(97.5)`` must not overlap with zero.

    See Also
    --------
    scipy.stats.ttest_ind

    Notes
    -----
    The confidence intervals are computed using the mininum 2.5% and maximum
    97.5% bounds computed across all of the posterior draws.

    The reference frame here is the geometric mean. Extracting absolute log
    fold changes from this test assumes that the average feature abundance
    between the ``treatment`` and the ``reference`` groups are the same. If this
    assumption is violated, then the log-fold changes will be biased, and the
    *p*-values will not be reliable. However, the bias is the same across each
    feature, as a result the ordering of the log-fold changes can still be useful.

    One benefit of using the Dirichlet-multinomial distribution is that the
    statistical power increases with regards to the abundance magnitude. More counts
    per sample will shrink the size of the confidence intervals, and can result in
    lower *p*-values.

    References
    ----------
    .. [1] Fernandes et al. "Unifying the analysis of
       high-throughput sequencing datasets: characterizing RNA-seq,
       16S rRNA gene sequencing and selective growth experiments by
       compositional data analysis." Microbiome (2014).

    Examples
    --------
    >>> import pandas as pd
    >>> from skbio.stats.composition import dirmult_ttest
    >>> table = pd.DataFrame([[20,  110, 100, 101, 100, 103, 104],
    ...                       [33,  110, 120, 100, 101, 100, 102],
    ...                       [12,  110, 100, 110, 100, 50,  90],
    ...                       [202, 201, 9,  10, 10, 11, 11],
    ...                       [200, 202, 10, 10, 13, 10, 10],
    ...                       [203, 201, 14, 10, 10, 13, 12]],
    ...                      index=['s1', 's2', 's3', 's4', 's5', 's6'],
    ...                      columns=['b1', 'b2', 'b3', 'b4', 'b5', 'b6',
    ...                               'b7'])
    >>> grouping = pd.Series(['treatment', 'treatment', 'treatment',
    ...                       'placebo', 'placebo', 'placebo'],
    ...                      index=['s1', 's2', 's3', 's4', 's5', 's6'])
    >>> lfc_result = dirmult_ttest(table, grouping, 'treatment', 'placebo',
    ...                            seed=0)
    >>> lfc_result[["Log2(FC)", "CI(2.5)", "CI(97.5)", "qvalue"]]
        Log2(FC)   CI(2.5)  CI(97.5)    qvalue
    b1 -4.991987 -7.884498 -2.293463  0.020131
    b2 -2.533729 -3.594590 -1.462339  0.007446
    b3  1.627677 -1.048219  4.750792  0.068310
    b4  1.707221 -0.467481  4.164998  0.065613
    b5  1.528243 -1.036910  3.978387  0.068310
    b6  1.182343 -0.702656  3.556061  0.068310
    b7  1.480232 -0.601277  4.043888  0.068310

    """
    rng = get_rng(seed)
    if not isinstance(table, pd.DataFrame):
        raise TypeError(
            "`table` must be a `pd.DataFrame`, " "not %r." % type(table).__name__
        )
    if not isinstance(grouping, pd.Series):
        raise TypeError(
            "`grouping` must be a `pd.Series`," " not %r." % type(grouping).__name__
        )

    if np.any(table < 0):
        raise ValueError("Cannot handle negative values in `table`. ")

    if (grouping.isnull()).any():
        raise ValueError("Cannot handle missing values in `grouping`.")

    if (table.isnull()).any().any():
        raise ValueError("Cannot handle missing values in `table`.")

    table_index_len = len(table.index)
    grouping_index_len = len(grouping.index)
    mat, cats = table.align(grouping, axis=0, join="inner")
    if len(mat) != table_index_len or len(cats) != grouping_index_len:
        raise ValueError("`table` index and `grouping` " "index must be consistent.")

    trt_group = grouping.loc[grouping == treatment]
    ref_group = grouping.loc[grouping == reference]
    posterior = [
        rng.dirichlet(table.values[i] + pseudocount) for i in range(table.shape[0])
    ]
    dir_table = pd.DataFrame(clr(posterior), index=table.index, columns=table.columns)
    res = [
        _welch_ttest(
            np.array(dir_table.loc[trt_group.index, x].values),
            np.array(dir_table.loc[ref_group.index, x].values),
        )
        for x in table.columns
    ]
    res = pd.concat(res)
    for i in range(1, draws):
        posterior = [
            rng.dirichlet(table.values[i] + pseudocount) for i in range(table.shape[0])
        ]
        dir_table = pd.DataFrame(
            clr(posterior), index=table.index, columns=table.columns
        )

        ires = [
            _welch_ttest(
                np.array(dir_table.loc[trt_group.index, x].values),
                np.array(dir_table.loc[ref_group.index, x].values),
            )
            for x in table.columns
        ]
        ires = pd.concat(ires)
        # online average to avoid holding all of the results in memory
        res["Difference"] = (i * res["Difference"] + ires["Difference"]) / (i + 1)
        res["pvalue"] = (i * res["pvalue"] + ires["pvalue"]) / (i + 1)
        res["CI(2.5)"] = np.minimum(res["CI(2.5)"], ires["CI(2.5)"])
        res["CI(97.5)"] = np.maximum(res["CI(97.5)"], ires["CI(97.5)"])
        res["T statistic"] = (i * res["T statistic"] + ires["T statistic"]) / (i + 1)

    res.index = table.columns
    # convert all log fold changes to base 2
    res["Difference"] = res["Difference"] / np.log(2)
    res["CI(2.5)"] = res["CI(2.5)"] / np.log(2)
    res["CI(97.5)"] = res["CI(97.5)"] / np.log(2)

    # multiple comparison
    if p_adjust is not None:
        qval = _calc_p_adjust(p_adjust, res["pvalue"])
    else:
        qval = res["pvalue"].values

    # test to see if confidence interval includes 0.
    sig = np.logical_or(
        np.logical_and(res["CI(2.5)"] > 0, res["CI(97.5)"] > 0),
        np.logical_and(res["CI(2.5)"] < 0, res["CI(97.5)"] < 0),
    )

    reject = np.logical_and(qval[0], sig)

    res = res.rename(columns={"Difference": "Log2(FC)"})
    res["qvalue"] = qval
    res["Reject null hypothesis"] = reject

    col_order = [
        "T statistic",
        "df",
        "Log2(FC)",
        "CI(2.5)",
        "CI(97.5)",
        "pvalue",
        "qvalue",
        "Reject null hypothesis",
    ]
    return res[col_order]