File: _base.py

package info (click to toggle)
python-skbio 0.6.2-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 9,312 kB
  • sloc: python: 60,482; ansic: 672; makefile: 224
file content (1438 lines) | stat: -rw-r--r-- 48,534 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import itertools
from copy import deepcopy

import numpy as np
import pandas as pd
from scipy.spatial.distance import squareform

from skbio._base import SkbioObject
from skbio.stats._misc import _pprint_strs
from skbio.util import find_duplicates
from skbio.util._decorator import classonlymethod
from skbio.util._misc import resolve_key
from skbio.util._plotting import PlottableMixin

from ._utils import is_symmetric_and_hollow
from ._utils import distmat_reorder, distmat_reorder_condensed


class DissimilarityMatrixError(Exception):
    """General error for dissimilarity matrix validation failures."""

    pass


class DistanceMatrixError(DissimilarityMatrixError):
    """General error for distance matrix validation failures."""

    pass


class MissingIDError(DissimilarityMatrixError):
    """Error for ID lookup that doesn't exist in the dissimilarity matrix."""

    def __init__(self, missing_id):
        super(MissingIDError, self).__init__()
        self.args = ("The ID '%s' is not in the dissimilarity matrix." % missing_id,)


class DissimilarityMatrix(SkbioObject, PlottableMixin):
    """Store dissimilarities between objects.

    A `DissimilarityMatrix` instance stores a square, hollow, two-dimensional
    matrix of dissimilarities between objects. Objects could be, for example,
    samples or DNA sequences. A sequence of IDs accompanies the
    dissimilarities.

    Methods are provided to load and save dissimilarity matrices from/to disk,
    as well as perform common operations such as extracting dissimilarities
    based on object ID.

    Parameters
    ----------
    data : array_like or DissimilarityMatrix
        Square, hollow, two-dimensional ``numpy.ndarray`` of dissimilarities
        (floats), or a structure that can be converted to a ``numpy.ndarray``
        using ``numpy.asarray`` or a one-dimensional vector of dissimilarities
        (floats), as defined by `scipy.spatial.distance.squareform`. Can
        instead be a `DissimilarityMatrix` (or subclass) instance,
        in which case the instance's data will be used.
        Data will be converted to a float ``dtype`` if necessary. A copy will
        *not* be made if already a ``numpy.ndarray`` with a float ``dtype``.
    ids : sequence of str, optional
        Sequence of strings to be used as object IDs. Must match the number of
        rows/cols in `data`. If ``None`` (the default), IDs will be
        monotonically-increasing integers cast as strings, with numbering
        starting from zero, e.g., ``('0', '1', '2', '3', ...)``.
    validate : bool, optional
        If `validate` is ``True`` (the default) and data is not a
        DissimilarityMatrix object, the input data will be validated.

    See Also
    --------
    DistanceMatrix
    scipy.spatial.distance.squareform

    Notes
    -----
    The dissimilarities are stored in redundant (square-form) format [1]_.

    The data are not checked for symmetry, nor guaranteed/assumed to be
    symmetric.

    References
    ----------
    .. [1] http://docs.scipy.org/doc/scipy/reference/spatial.distance.html

    """

    default_write_format = "lsmat"
    # Used in __str__
    _matrix_element_name = "dissimilarity"

    def __init__(self, data, ids=None, validate=True):
        validate_full = validate
        validate_shape = False
        validate_ids = False

        if isinstance(data, DissimilarityMatrix):
            if isinstance(data, self.__class__):
                # Never validate when copying from an object
                # of the same type
                # We should be able to assume it is already
                # in a good state.
                validate_full = False
                validate_shape = False
                # but do validate ids, if redefining them
                validate_ids = False if ids is None else True
            ids = data.ids if ids is None else ids
            data = data.data

        # It is necessary to standardize the representation of the .data
        # attribute of this object. The input types might be list, tuple,
        # np.array, or possibly some other object type. Generally, this
        # normalization of type will require a copy of data. For example,
        # moving from a Python type representation (e.g., [[0, 1], [1, 0]])
        # requires casting all of the values to numpy types, which is handled
        # as an implicit copy via np.asarray. However, these copies are
        # unnecessary if the data object is already a numpy array. np.asarray
        # is smart enough to not copy the data, however if a dtype change is
        # requested it will. The following block of code limits the use of
        # np.asarray to situations where the data are (a) not already a numpy
        # array or (b) the data are not a single or double precision numpy
        # data type.
        _issue_copy = True
        if isinstance(data, np.ndarray):
            if data.dtype in (np.float32, np.float64):
                _issue_copy = False

        if _issue_copy:
            data = np.asarray(data, dtype="float")

        if data.ndim == 1:
            # We can assume squareform will return a symmetric square matrix
            # so no need for full validation.
            # Still do basic checks (e.g. zero length)
            # and id validation
            data = squareform(data, force="tomatrix", checks=False)
            validate_full = False
            validate_shape = True
            validate_ids = True

        if ids is None:
            ids = (str(i) for i in range(data.shape[0]))
            # I just created the ids, so no need to re-validate them
            validate_ids = False
        ids = tuple(ids)

        if validate_full:
            self._validate(data, ids)
        else:
            if validate_shape:
                self._validate_shape(data)
            if validate_ids:
                self._validate_ids(data, ids)

        self._data = data
        self._ids = ids
        self._id_index = self._index_list(self._ids)

    @classonlymethod
    def from_iterable(cls, iterable, metric, key=None, keys=None):
        """Create DissimilarityMatrix from an iterable given a metric.

        Parameters
        ----------
        iterable : iterable
            Iterable containing objects to compute pairwise dissimilarities on.
        metric : callable
            A function that takes two arguments and returns a float
            representing the dissimilarity between the two arguments.
        key : callable or metadata key, optional
            A function that takes one argument and returns a string
            representing the id of the element in the dissimilarity matrix.
            Alternatively, a key to a `metadata` property if it exists for
            each element in the `iterable`. If None, then default ids will be
            used.
        keys : iterable, optional
            An iterable of the same length as `iterable`. Each element will be
            used as the respective key.

        Returns
        -------
        DissimilarityMatrix
            The `metric` applied to all pairwise elements in the `iterable`.

        Raises
        ------
        ValueError
            If `key` and `keys` are both provided.

        """
        iterable = list(iterable)
        if key is not None and keys is not None:
            raise ValueError("Cannot use both `key` and `keys` at the same" " time.")

        keys_ = None
        if key is not None:
            keys_ = [resolve_key(e, key) for e in iterable]
        elif keys is not None:
            keys_ = keys

        dm = np.empty((len(iterable),) * 2)
        for i, a in enumerate(iterable):
            for j, b in enumerate(iterable):
                dm[i, j] = metric(a, b)

        return cls(dm, keys_)

    @property
    def data(self):
        """Array of dissimilarities.

        A square, hollow, two-dimensional ``numpy.ndarray`` of dissimilarities
        (floats). A copy is *not* returned.

        Notes
        -----
        This property is not writeable.

        """
        return self._data

    @property
    def ids(self):
        """Tuple of object IDs.

        A tuple of strings, one for each object in the dissimilarity matrix.

        Notes
        -----
        This property is writeable, but the number of new IDs must match the
        number of objects in `data`.

        """
        return self._ids

    @ids.setter
    def ids(self, ids_):
        ids_ = tuple(ids_)
        self._validate_ids(self.data, ids_)
        self._ids = ids_
        self._id_index = self._index_list(self._ids)

    @property
    def dtype(self):
        """Data type of the dissimilarities."""
        return self.data.dtype

    @property
    def shape(self):
        """Two-element tuple containing the dissimilarity matrix dimensions.

        Notes
        -----
        As the dissimilarity matrix is guaranteed to be square, both tuple
        entries will always be equal.

        """
        return self.data.shape

    @property
    def size(self):
        """Total number of elements in the dissimilarity matrix.

        Notes
        -----
        Equivalent to ``self.shape[0] * self.shape[1]``.

        """
        return self.data.size

    @property
    def T(self):
        """Transpose of the dissimilarity matrix.

        See Also
        --------
        transpose

        """
        return self.transpose()

    def transpose(self):
        """Return the transpose of the dissimilarity matrix.

        Notes
        -----
        A deep copy is returned.

        Returns
        -------
        DissimilarityMatrix
            Transpose of the dissimilarity matrix. Will be the same type as
            `self`.

        """
        # Note: Skip validation, since we assume self was already validated
        return self.__class__(self.data.T.copy(), deepcopy(self.ids), validate=False)

    def index(self, lookup_id):
        """Return the index of the specified ID.

        Parameters
        ----------
        lookup_id : str
            ID whose index will be returned.

        Returns
        -------
        int
            Row/column index of `lookup_id`.

        Raises
        ------
        MissingIDError
            If `lookup_id` is not in the dissimilarity matrix.

        """
        if lookup_id in self:
            return self._id_index[lookup_id]
        else:
            raise MissingIDError(lookup_id)

    def redundant_form(self):
        """Return an array of dissimilarities in redundant format.

        As this is the native format that the dissimilarities are stored in,
        this is simply an alias for `data`.

        Returns
        -------
        ndarray
            Two-dimensional ``numpy.ndarray`` of dissimilarities in redundant
            format.

        Notes
        -----
        Redundant format is described in [1]_.

        Does *not* return a copy of the data.

        References
        ----------
        .. [1] http://docs.scipy.org/doc/scipy/reference/spatial.distance.html

        """
        return self.data

    def copy(self):
        """Return a deep copy of the dissimilarity matrix.

        Returns
        -------
        DissimilarityMatrix
            Deep copy of the dissimilarity matrix. Will be the same type as
            `self`.

        """
        # We deepcopy IDs in case the tuple contains mutable objects at some
        # point in the future.
        # Note: Skip validation, since we assume self was already validated
        return self.__class__(self.data.copy(), deepcopy(self.ids), validate=False)

    def rename(self, mapper, strict=True):
        """Rename IDs in the dissimilarity matrix.

        Parameters
        ----------
        mapper : dict or callable
            A dictionary or function that maps current IDs to new IDs.
        strict : bool, optional
           If ``True`` (default), every ID in the matrix must be included in
           ``mapper``. If ``False``, only the specified IDs will be renamed.

        Raises
        ------
        ValueError
            If ``mapper`` does not contain all of the same IDs in the matrix
            whereas in strict mode.

        Examples
        --------
        >>> from skbio import DistanceMatrix
        >>> dm = DistanceMatrix([[0, 1], [1, 0]], ids=['a', 'b'])
        >>> dm.rename({'a': 'x', 'b': 'y'})
        >>> print(dm.ids)
        ('x', 'y')

        """
        if isinstance(mapper, dict):
            if strict and not set(self.ids).issubset(mapper):
                raise ValueError(
                    "The IDs in mapper do not include all IDs in the matrix."
                )
            new_ids = [mapper.get(x, x) for x in self.ids]
        else:
            new_ids = [mapper(x) for x in self.ids]
        self.ids = new_ids

    def filter(self, ids, strict=True):
        """Filter the dissimilarity matrix by IDs.

        Parameters
        ----------
        ids : iterable of str
            IDs to retain. May not contain duplicates or be empty. Each ID must
            be present in the dissimilarity matrix.
        strict : bool, optional
            If `strict` is ``True`` and an ID that is not found in the distance
            matrix is found in `ids`, a ``MissingIDError`` exception will be
            raised, otherwise the ID will be ignored.

        Returns
        -------
        DissimilarityMatrix
            Filtered dissimilarity matrix containing only the IDs specified in
            `ids`. IDs will be in the same order as they appear in `ids`.

        Raises
        ------
        MissingIDError
            If an ID in `ids` is not in the object's list of IDs.

        """
        if tuple(self._ids) == tuple(ids):
            return self.__class__(self._data, self._ids)

        if strict:
            idxs = [self.index(id_) for id_ in ids]
        else:
            # get the indices to slice the inner numpy array
            idxs = []
            # save the IDs that were found in the distance matrix
            found_ids = []
            for id_ in ids:
                try:
                    idxs.append(self.index(id_))
                    found_ids.append(id_)
                except MissingIDError:
                    pass
            ids = found_ids

        # Note: Skip validation, since we assume self was already validated
        # But ids are new, so validate them explicitly
        filtered_data = distmat_reorder(self._data, idxs)
        self._validate_ids(filtered_data, ids)
        return self.__class__(filtered_data, ids, validate=False)

    def _stable_order(self, ids):
        """Obtain a stable ID order with respect to self.

        Parameters
        ----------
        ids : Iterable of ids
            The IDs to establish a stable ordering for.

        Returns
        -------
        np.array, dtype=int
            The corresponding index values

        """
        id_order = sorted(self._id_index[i] for i in ids)
        return np.array(id_order, dtype=int)

    def within(self, ids):
        """Obtain all the distances among the set of IDs.

        Parameters
        ----------
        ids : Iterable of str
            The IDs to obtain distances for. All pairs of distances are
            returned such that, if provided ['a', 'b', 'c'], the distances
            for [('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'b'),
            ('b', 'c'), ('c', 'a'), ('c', 'b'), ('c', 'c')] are gathered.

        Returns
        -------
        pd.DataFrame
            (i, j, value) representing the source ID ("i"), the target ID ("j")
            and the distance ("value").

        Raises
        ------
        MissingIDError
            If an ID(s) specified is not in the dissimilarity matrix.

        Notes
        -----
        Order of the return items is stable, meaning that requesting IDs
        ['a', 'b'] is equivalent to ['b', 'a']. The order is with respect
        to the order of the .ids attribute of self.

        Examples
        --------
        >>> from skbio.stats.distance import DissimilarityMatrix
        >>> dm = DissimilarityMatrix([[0, 1, 2, 3, 4], [1, 0, 1, 2, 3],
        ...                           [2, 1, 0, 1, 2], [3, 2, 1, 0, 1],
        ...                           [4, 3, 2, 1, 0]],
        ...                          ['A', 'B', 'C', 'D', 'E'])
        >>> dm.within(['A', 'B', 'C'])
           i  j  value
        0  A  A    0.0
        1  A  B    1.0
        2  A  C    2.0
        3  B  A    1.0
        4  B  B    0.0
        5  B  C    1.0
        6  C  A    2.0
        7  C  B    1.0
        8  C  C    0.0

        """
        ids = set(ids)
        not_present = ids - set(self._id_index)
        if not_present:
            raise MissingIDError(
                "At least one ID (e.g., '%s') was not " "found." % not_present.pop()
            )

        return self._subset_to_dataframe(ids, ids)

    def between(self, from_, to_, allow_overlap=False):
        """Obtain the distances between the two groups of IDs.

        Parameters
        ----------
        from_ : Iterable of str
            The IDs to obtain distances from. Distances from all pairs of IDs
            in from and to will be obtained.
        to_ : Iterable of str
            The IDs to obtain distances to. Distances from all pairs of IDs
            in to and from will be obtained.

        allow_overlap : bool, optional
            If True, allow overlap in the IDs of from and to (which would in
            effect be collecting the within distances). Default is False.

        Returns
        -------
        pd.DataFrame
            (i, j, value) representing the source ID ("i"), the target ID ("j")
            and the distance ("value").

        Raises
        ------
        MissingIDError
            If an ID(s) specified is not in the dissimilarity matrix.

        Notes
        -----
        Order of the return items is stable, meaning that requesting IDs
        ['a', 'b'] is equivalent to ['b', 'a']. The order is with respect to
        the .ids attribute of self.

        Examples
        --------
        >>> from skbio.stats.distance import DissimilarityMatrix
        >>> dm = DissimilarityMatrix([[0, 1, 2, 3, 4], [1, 0, 1, 2, 3],
        ...                           [2, 1, 0, 1, 2], [3, 2, 1, 0, 1],
        ...                           [4, 3, 2, 1, 0]],
        ...                          ['A', 'B', 'C', 'D', 'E'])
        >>> dm.between(['A', 'B'], ['C', 'D', 'E'])
           i  j  value
        0  A  C    2.0
        1  A  D    3.0
        2  A  E    4.0
        3  B  C    1.0
        4  B  D    2.0
        5  B  E    3.0

        """
        from_ = set(from_)
        to_ = set(to_)

        all_ids = from_ | to_
        not_present = all_ids - set(self._id_index)
        if not_present:
            raise MissingIDError(
                "At least one ID (e.g., '%s') was not " "found." % not_present.pop()
            )

        overlapping = from_ & to_
        if not allow_overlap and overlapping:
            raise KeyError(
                "At least one ID overlaps in from_ and to_ "
                "(e.g., '%s'). This constraint can removed with "
                "allow_overlap=True." % overlapping.pop()
            )

        return self._subset_to_dataframe(from_, to_)

    def _subset_to_dataframe(self, i_ids, j_ids):
        """Extract a subset of self and express as a DataFrame.

        Parameters
        ----------
        i_ids : Iterable of str
            The "from" IDs.
        j_ids : Iterable of str
            The "to" IDs.

        Notes
        -----
        ID membership is not tested by this private method, and it is assumed
        the caller has asserted the IDs are present.

        Returns
        -------
        pd.DataFrame
            (i, j, value) representing the source ID ("i"), the target ID ("j")
            and the distance ("value").

        """
        i_indices = self._stable_order(i_ids)
        j_indices = self._stable_order(j_ids)

        j_length = len(j_indices)
        j_labels = tuple([self.ids[j] for j in j_indices])

        i = []
        j = []

        # np.hstack([]) throws a ValueError. However, np.hstack([np.array([])])
        # is valid and returns an empty array. Accordingly, an empty array is
        # included here so that np.hstack works in the event that either i_ids
        # or j_ids is empty.
        values = [np.array([])]
        for i_idx in i_indices:
            i.extend([self.ids[i_idx]] * j_length)
            j.extend(j_labels)

            subset = self._data[i_idx, j_indices]
            values.append(subset)

        i = pd.Series(i, name="i", dtype=str)
        j = pd.Series(j, name="j", dtype=str)
        values = pd.Series(np.hstack(values), name="value")

        return pd.concat([i, j, values], axis=1)

    def plot(self, cmap=None, title=""):
        """Create a heatmap of the dissimilarity matrix.

        Parameters
        ----------
        cmap: str or matplotlib.colors.Colormap, optional
            Sets the color scheme of the heatmap
            If ``None``, defaults to the colormap specified in the matplotlib
            rc file.

        title: str, optional
            Sets the title label of the heatmap
            (Default is blank)

        Returns
        -------
        matplotlib.figure.Figure
            Figure containing the heatmap and colorbar of the plotted
            dissimilarity matrix.

        Examples
        --------
        .. plot::

           Define a dissimilarity matrix with five objects labeled A-E:

           >>> from skbio.stats.distance import DissimilarityMatrix
           >>> dm = DissimilarityMatrix([[0, 1, 2, 3, 4], [1, 0, 1, 2, 3],
           ...                           [2, 1, 0, 1, 2], [3, 2, 1, 0, 1],
           ...                           [4, 3, 2, 1, 0]],
           ...                          ['A', 'B', 'C', 'D', 'E'])

           Plot the dissimilarity matrix as a heatmap:

           >>> fig = dm.plot(cmap='Reds', title='Example heatmap')  # doctest: +SKIP

        """
        self._get_mpl_plt()

        # based on http://stackoverflow.com/q/14391959/3776794
        fig, ax = self.plt.subplots()

        # use pcolormesh instead of pcolor for performance
        heatmap = ax.pcolormesh(self.data, cmap=cmap)
        fig.colorbar(heatmap)

        # center labels within each cell
        ticks = np.arange(0.5, self.shape[0])
        ax.set_xticks(ticks, minor=False)
        ax.set_yticks(ticks, minor=False)

        # Ensure there is no white border around the heatmap by manually
        # setting the limits
        ax.set_ylim(0, len(self.ids))
        ax.set_xlim(0, len(self.ids))

        # display data as it is stored in the dissimilarity matrix
        # (default is to have y-axis inverted)
        ax.invert_yaxis()

        ax.set_xticklabels(self.ids, rotation=90, minor=False)
        ax.set_yticklabels(self.ids, minor=False)

        ax.set_title(title)

        return fig

    def to_data_frame(self):
        """Create a ``pandas.DataFrame`` from this ``DissimilarityMatrix``.

        Returns
        -------
        pd.DataFrame
            ``pd.DataFrame`` with IDs on index and columns.

        Examples
        --------
        >>> from skbio import DistanceMatrix
        >>> dm = DistanceMatrix([[0, 1, 2],
        ...                      [1, 0, 3],
        ...                      [2, 3, 0]], ids=['a', 'b', 'c'])
        >>> df = dm.to_data_frame()
        >>> df
             a    b    c
        a  0.0  1.0  2.0
        b  1.0  0.0  3.0
        c  2.0  3.0  0.0

        """
        return pd.DataFrame(data=self.data, index=self.ids, columns=self.ids)

    def __str__(self):
        """Return a string representation of the dissimilarity matrix.

        Summary includes matrix dimensions, a (truncated) list of IDs, and
        (truncated) array of dissimilarities.

        Returns
        -------
        str
            String representation of the dissimilarity matrix.

        """
        return "%dx%d %s matrix\nIDs:\n%s\nData:\n" % (
            self.shape[0],
            self.shape[1],
            self._matrix_element_name,
            _pprint_strs(self.ids),
        ) + str(self.data)

    def __eq__(self, other):
        """Compare this dissimilarity matrix to another for equality.

        Two dissimilarity matrices are equal if they have the same shape, IDs
        (in the same order!), and have data arrays that are equal.

        Checks are *not* performed to ensure that `other` is a
        `DissimilarityMatrix` instance.

        Parameters
        ----------
        other : DissimilarityMatrix
            Dissimilarity matrix to compare to for equality.

        Returns
        -------
        bool
            ``True`` if `self` is equal to `other`, ``False`` otherwise.

        """
        equal = True

        # The order these checks are performed in is important to be as
        # efficient as possible. The check for shape equality is not strictly
        # necessary as it should be taken care of in np.array_equal, but I'd
        # rather explicitly bail before comparing IDs or data. Use array_equal
        # instead of (a == b).all() because of this issue:
        #     http://stackoverflow.com/a/10582030
        try:
            if self.shape != other.shape:
                equal = False
            elif self.ids != other.ids:
                equal = False
            elif not np.array_equal(self.data, other.data):
                equal = False
        except AttributeError:
            equal = False

        return equal

    def __ne__(self, other):
        """Determine whether two dissimilarity matrices are not equal.

        Parameters
        ----------
        other : DissimilarityMatrix
            Dissimilarity matrix to compare to.

        Returns
        -------
        bool
            ``True`` if `self` is not equal to `other`, ``False`` otherwise.

        See Also
        --------
        __eq__

        """
        return not self == other

    def __contains__(self, lookup_id):
        """Check if the specified ID is in the dissimilarity matrix.

        Parameters
        ----------
        lookup_id : str
            ID to search for.

        Returns
        -------
        bool
            ``True`` if `lookup_id` is in the dissimilarity matrix, ``False``
            otherwise.

        See Also
        --------
        index

        """
        return lookup_id in self._id_index

    def __getitem__(self, index):
        """Slice into dissimilarity data by object ID or numpy indexing.

        Extracts data from the dissimilarity matrix by object ID, a pair of
        IDs, or numpy indexing/slicing.

        Parameters
        ----------
        index : str, two-tuple of str, or numpy index
            `index` can be one of the following forms: an ID, a pair of IDs, or
            a numpy index.

            If `index` is a string, it is assumed to be an ID and a
            ``numpy.ndarray`` row vector is returned for the corresponding ID.
            Note that the ID's row of dissimilarities is returned, *not* its
            column. If the matrix is symmetric, the two will be identical, but
            this makes a difference if the matrix is asymmetric.

            If `index` is a two-tuple of strings, each string is assumed to be
            an ID and the corresponding matrix element is returned that
            represents the dissimilarity between the two IDs. Note that the
            order of lookup by ID pair matters if the matrix is asymmetric: the
            first ID will be used to look up the row, and the second ID will be
            used to look up the column. Thus, ``dm['a', 'b']`` may not be the
            same as ``dm['b', 'a']`` if the matrix is asymmetric.

            Otherwise, `index` will be passed through to
            ``DissimilarityMatrix.data.__getitem__``, allowing for standard
            indexing of a ``numpy.ndarray`` (e.g., slicing).

        Returns
        -------
        ndarray or scalar
            Indexed data, where return type depends on the form of `index` (see
            description of `index` for more details).

        Raises
        ------
        MissingIDError
            If the ID(s) specified in `index` are not in the dissimilarity
            matrix.

        Notes
        -----
        The lookup based on ID(s) is quick.

        """
        if isinstance(index, str):
            return self.data[self.index(index)]
        elif self._is_id_pair(index):
            return self.data[self.index(index[0]), self.index(index[1])]
        else:
            return self.data.__getitem__(index)

    def _validate_ids(self, data, ids):
        """Validate the IDs.

        Checks that IDs are unique and that the number of IDs matches the
        number of rows/cols in the data array.

        Subclasses can override this method to perform different/more specific
        validation.

        Notes
        -----
        Accepts arguments instead of inspecting instance attributes to avoid
        creating an invalid dissimilarity matrix before raising an error.
        Otherwise, the invalid dissimilarity matrix could be used after the
        exception is caught and handled.

        """
        duplicates = find_duplicates(ids)
        if duplicates:
            formatted_duplicates = ", ".join(repr(e) for e in duplicates)
            raise DissimilarityMatrixError(
                "IDs must be unique. Found the "
                "following duplicate IDs: %s" % formatted_duplicates
            )
        if 0 == len(ids):
            raise DissimilarityMatrixError("IDs must be at least 1 in " "size.")
        if len(ids) != data.shape[0]:
            raise DissimilarityMatrixError(
                "The number of IDs (%d) must match "
                "the number of rows/columns in the "
                "data (%d)." % (len(ids), data.shape[0])
            )

    def _validate_shape(self, data):
        """Validate the data array shape.

        Checks that the data is at least 1x1 in size, 2D, square, and
        contains only floats.

        Notes
        -----
        Accepts arguments instead of inspecting instance attributes to avoid
        creating an invalid dissimilarity matrix before raising an error.
        Otherwise, the invalid dissimilarity matrix could be used after the
        exception is caught and handled.

        """
        if 0 in data.shape:
            raise DissimilarityMatrixError("Data must be at least 1x1 in " "size.")
        if len(data.shape) != 2:
            raise DissimilarityMatrixError("Data must have exactly two " "dimensions.")
        if data.shape[0] != data.shape[1]:
            raise DissimilarityMatrixError(
                "Data must be square (i.e., have "
                "the same number of rows and "
                "columns)."
            )
        if data.dtype not in (np.float32, np.float64):
            raise DissimilarityMatrixError(
                "Data must contain only floating " "point values."
            )

    def _validate(self, data, ids):
        """Validate the data array and IDs.

        Checks that the data is at least 1x1 in size, 2D, square, and
        contains only floats. Also checks that IDs are unique and that the
        number of IDs matches the number of rows/cols in the data array.

        Subclasses can override this method to perform different/more specific
        validation (e.g., see `DistanceMatrix`).

        Notes
        -----
        Accepts arguments instead of inspecting instance attributes to avoid
        creating an invalid dissimilarity matrix before raising an error.
        Otherwise, the invalid dissimilarity matrix could be used after the
        exception is caught and handled.

        """
        self._validate_shape(data)
        self._validate_ids(data, ids)

    def _index_list(self, list_):
        return {id_: idx for idx, id_ in enumerate(list_)}

    def _is_id_pair(self, index):
        return (
            isinstance(index, tuple)
            and len(index) == 2
            and all(map(lambda e: isinstance(e, str), index))
        )


class DistanceMatrix(DissimilarityMatrix):
    """Store distances between objects.

    A `DistanceMatrix` is a `DissimilarityMatrix` with the additional
    requirement that the matrix data is symmetric. There are additional methods
    made available that take advantage of this symmetry.

    See Also
    --------
    DissimilarityMatrix

    Notes
    -----
    The distances are stored in redundant (square-form) format [1]_. To
    facilitate use with other scientific Python routines (e.g., scipy), the
    distances can be retrieved in condensed (vector-form) format using
    `condensed_form`.

    `DistanceMatrix` only requires that the distances it stores are symmetric.
    Checks are *not* performed to ensure the other three metric properties
    hold (non-negativity, identity of indiscernibles, and triangle inequality)
    [2]_. Thus, a `DistanceMatrix` instance can store distances that are not
    metric.

    References
    ----------
    .. [1] http://docs.scipy.org/doc/scipy/reference/spatial.distance.html
    .. [2] http://planetmath.org/metricspace

    """

    # Override here, used in superclass __str__
    _matrix_element_name = "distance"

    @classonlymethod
    def from_iterable(cls, iterable, metric, key=None, keys=None, validate=True):
        """Create DistanceMatrix from all pairs in an iterable given a metric.

        Parameters
        ----------
        iterable : iterable
            Iterable containing objects to compute pairwise distances on.
        metric : callable
            A function that takes two arguments and returns a float
            representing the distance between the two arguments.
        key : callable or metadata key, optional
            A function that takes one argument and returns a string
            representing the id of the element in the distance matrix.
            Alternatively, a key to a `metadata` property if it exists for
            each element in the `iterable`. If None, then default ids will be
            used.
        keys : iterable, optional
            An iterable of the same length as `iterable`. Each element will be
            used as the respective key.
        validate : boolean, optional
            If ``True``, all pairwise distances are computed, including upper
            and lower triangles and the diagonal, and the resulting matrix is
            validated for symmetry and hollowness. If ``False``, `metric` is
            assumed to be hollow and symmetric and only the lower triangle
            (excluding the diagonal) is computed. Pass ``validate=False`` if
            you are sure `metric` is hollow and symmetric for improved
            performance.

        Returns
        -------
        DistanceMatrix
            The `metric` applied to pairwise elements in the `iterable`.

        Raises
        ------
        ValueError
            If `key` and `keys` are both provided.

        """
        if validate:
            return super(DistanceMatrix, cls).from_iterable(iterable, metric, key, keys)

        iterable = list(iterable)
        if key is not None and keys is not None:
            raise ValueError("Cannot use both `key` and `keys` at the same" " time.")

        keys_ = None
        if key is not None:
            keys_ = [resolve_key(e, key) for e in iterable]
        elif keys is not None:
            keys_ = keys

        dm = np.zeros((len(iterable),) * 2)
        for i, a in enumerate(iterable):
            for j, b in enumerate(iterable[:i]):
                dm[i, j] = dm[j, i] = metric(a, b)

        return cls(dm, keys_)

    def condensed_form(self):
        """Return an array of distances in condensed format.

        Returns
        -------
        ndarray
            One-dimensional ``numpy.ndarray`` of distances in condensed format.

        Notes
        -----
        Condensed format is described in [1]_.

        The conversion is not a constant-time operation, though it should be
        relatively quick to perform.

        References
        ----------
        .. [1] http://docs.scipy.org/doc/scipy/reference/spatial.distance.html

        """
        return squareform(self._data, force="tovector", checks=False)

    def permute(self, condensed=False):
        """Randomly permute both rows and columns in the matrix.

        Randomly permutes the ordering of rows and columns in the matrix. The
        same permutation is applied to both rows and columns in order to
        maintain symmetry and hollowness. Only the rows/columns in the distance
        matrix are permuted; the IDs are *not* permuted.

        Parameters
        ----------
        condensed : bool, optional
            If ``True``, return the permuted distance matrix in condensed
            format. Otherwise, return the permuted distance matrix as a new
            ``DistanceMatrix`` instance.

        Returns
        -------
        DistanceMatrix or ndarray
            Permuted distances as a new ``DistanceMatrix`` or as a ``ndarray``
            in condensed format.

        See Also
        --------
        condensed_form

        Notes
        -----
        This method does not modify the distance matrix that it is called on.
        It is more efficient to pass ``condensed=True`` than permuting the
        distance matrix and then converting to condensed format.

        """
        order = np.random.permutation(self.shape[0])

        if condensed:
            permuted_condensed = distmat_reorder_condensed(self._data, order)
            return permuted_condensed
        else:
            # Note: Skip validation, since we assume self was already validated
            permuted = distmat_reorder(self._data, order)
            return self.__class__(permuted, self.ids, validate=False)

    def _validate(self, data, ids):
        """Validate the data array and IDs.

        Overrides the superclass `_validate`. Performs a check for symmetry in
        addition to the checks performed in the superclass.

        """
        super(DistanceMatrix, self)._validate(data, ids)

        data_sym, data_hol = is_symmetric_and_hollow(data)

        if not data_sym:
            raise DistanceMatrixError("Data must be symmetric and cannot contain NaNs.")

        if not data_hol:
            raise DistanceMatrixError(
                "Data must be hollow (i.e., the diagonal" " can only contain zeros)."
            )

    def to_series(self):
        """Create a ``pandas.Series`` from this ``DistanceMatrix``.

        The series will contain distances in condensed form: only distances
        from one matrix triangle are included, and the diagonal is excluded.
        The series' index will be a ``pd.MultiIndex`` relating pairs of IDs to
        distances. The pairs of IDs will be in row-major order with respect to
        the upper matrix triangle.

        To obtain all distances (i.e. both upper and lower matrix triangles and
        the diagonal), use ``DistanceMatrix.to_data_frame``. To obtain *only*
        the distances in condensed form (e.g. for use with SciPy), use
        ``DistanceMatrix.condensed_form``.

        Returns
        -------
        pd.Series
            ``pd.Series`` with pairs of IDs on the index.

        See Also
        --------
        to_data_frame
        condensed_form
        scipy.spatial.distance.squareform

        Examples
        --------
        >>> from skbio import DistanceMatrix
        >>> dm = DistanceMatrix([[0, 1, 2, 3],
        ...                      [1, 0, 4, 5],
        ...                      [2, 4, 0, 6],
        ...                      [3, 5, 6, 0]], ids=['a', 'b', 'c', 'd'])
        >>> dm.to_series()
        a  b    1.0
           c    2.0
           d    3.0
        b  c    4.0
           d    5.0
        c  d    6.0
        dtype: float64

        """
        distances = self.condensed_form()
        # `id_pairs` will not be interpreted as a `pd.MultiIndex` if it is an
        # iterable returned by `itertools.combinations`.
        id_pairs = list(itertools.combinations(self.ids, 2))
        index = pd.Index(id_pairs, tupleize_cols=True)
        return pd.Series(data=distances, index=index, dtype=float)


def randdm(num_objects, ids=None, constructor=None, random_fn=None):
    """Generate a distance matrix populated with random distances.

    Using the default `random_fn`, distances are randomly drawn from a uniform
    distribution over ``[0, 1)``.

    Regardless of `random_fn`, the resulting distance matrix is guaranteed to
    be symmetric and hollow.

    Parameters
    ----------
    num_objects : int
        The number of objects in the resulting distance matrix. For example, if
        `num_objects` is 3, a 3x3 distance matrix will be returned.
    ids : sequence of str or None, optional
        A sequence of strings to be used as IDs. ``len(ids)`` must be equal to
        `num_objects`. If not provided, IDs will be monotonically-increasing
        integers cast as strings (numbering starts at 1). For example,
        ``('1', '2', '3')``.
    constructor : type, optional
        `DissimilarityMatrix` or subclass constructor to use when creating the
        random distance matrix. The returned distance matrix will be of this
        type. If ``None`` (the default), a `DistanceMatrix` instance will be
        returned.
    random_fn : function, optional
        Function to generate random values. `random_fn` must accept two
        arguments (number of rows and number of columns) and return a 2D
        ``numpy.ndarray`` of floats (or something that can be cast to float).
        If ``None`` (the default), ``numpy.random.rand`` will be used.

    Returns
    -------
    DissimilarityMatrix
        `DissimilarityMatrix` (or subclass) instance of random distances. Type
        depends on `constructor`.

    See Also
    --------
    numpy.random.rand

    """
    if constructor is None:
        constructor = DistanceMatrix
    if random_fn is None:
        random_fn = np.random.rand

    data = np.tril(random_fn(num_objects, num_objects), -1)
    data += data.T

    if not ids:
        ids = map(str, range(1, num_objects + 1))

    return constructor(data, ids)


# helper functions for anosim and permanova


def _preprocess_input_sng(ids, sample_size, grouping, column):
    """Compute intermediate results not affected by permutations.

    These intermediate results can be computed a single time for efficiency,
    regardless of grouping vector permutations (i.e., when calculating the
    p-value). These intermediate results are used by both ANOSIM and PERMANOVA.

    Also validates and normalizes input (e.g., converting ``DataFrame`` column
    into grouping vector).

    """
    if isinstance(grouping, pd.DataFrame):
        if column is None:
            raise ValueError("Must provide a column name if supplying a DataFrame.")
        else:
            grouping = _df_to_vector(ids, grouping, column)
    elif isinstance(grouping, pd.Series):
        if (column is not None) and (column != grouping.name):
            raise ValueError(
                "Column name does not match your Series name. Try not"
                " providing column at all."
            )
        else:
            grouping = _df_to_vector(ids, grouping.to_frame(), column=grouping.name)
    elif column is not None:
        raise ValueError("Must provide a DataFrame if supplying a column name.")

    if len(grouping) != sample_size:
        raise ValueError(
            "Grouping vector size must match the number of IDs in the "
            "distance matrix."
        )

    # Find the group labels and convert grouping to an integer vector
    # (factor).
    groups, grouping = np.unique(grouping, return_inverse=True)
    num_groups = len(groups)

    if num_groups == len(grouping):
        raise ValueError(
            "All values in the grouping vector are unique. This method cannot "
            "operate on a grouping vector with only unique values (e.g., "
            "there are no 'within' distances because each group of objects "
            "contains only a single object)."
        )
    if num_groups == 1:
        raise ValueError(
            "All values in the grouping vector are the same. This method "
            "cannot operate on a grouping vector with only a single group of "
            "objects (e.g., there are no 'between' distances because there is "
            "only a single group)."
        )

    return num_groups, grouping


def _preprocess_input(distance_matrix, grouping, column):
    """Compute intermediate results not affected by permutations.

    These intermediate results can be computed a single time for efficiency,
    regardless of grouping vector permutations (i.e., when calculating the
    p-value). These intermediate results are used by both ANOSIM and PERMANOVA.

    Also validates and normalizes input (e.g., converting ``DataFrame`` column
    into grouping vector).

    """
    if not isinstance(distance_matrix, DistanceMatrix):
        raise TypeError("Input must be a DistanceMatrix.")
    sample_size = distance_matrix.shape[0]

    num_groups, grouping = _preprocess_input_sng(
        distance_matrix.ids, sample_size, grouping, column
    )

    tri_idxs = np.triu_indices(sample_size, k=1)
    distances = distance_matrix.condensed_form()

    return sample_size, num_groups, grouping, tri_idxs, distances


def _df_to_vector(ids, df, column):
    """Return a grouping vector from a ``DataFrame`` column.

    Parameters
    ----------
    ids : liat
        IDs that will be mapped to group labels.
    df : pandas.DataFrame
        ``DataFrame`` (indexed by distance matrix ID).
    column : str
        Column name in `df` containing group labels.

    Returns
    -------
    list
        Grouping vector (vector of labels) based on the IDs in
        `ids`. Each ID's label is looked up in the ``DataFrame``
        under the column specified by `column`.

    Raises
    ------
    ValueError
        If `column` is not in the ``DataFrame``, or a distance matrix ID is
        not in the ``DataFrame``.

    """
    if column not in df:
        raise ValueError("Column '%s' not in DataFrame." % column)

    grouping = df.reindex(ids, axis=0).loc[:, column]
    if grouping.isnull().any():
        raise ValueError(
            "One or more IDs in the distance matrix are not in the data " "frame."
        )
    return grouping.tolist()


def _run_monte_carlo_stats(test_stat_function, grouping, permutations):
    """Run stat test and compute significance with Monte Carlo permutations."""
    if permutations < 0:
        raise ValueError(
            "Number of permutations must be greater than or equal to zero."
        )

    stat = test_stat_function(grouping)

    p_value = np.nan
    if permutations > 0:
        perm_stats = np.empty(permutations, dtype=np.float64)

        for i in range(permutations):
            perm_grouping = np.random.permutation(grouping)
            perm_stats[i] = test_stat_function(perm_grouping)

        p_value = ((perm_stats >= stat).sum() + 1) / (permutations + 1)

    return stat, p_value


def _build_results(
    method_name, test_stat_name, sample_size, num_groups, stat, p_value, permutations
):
    """Return ``pandas.Series`` containing results of statistical test."""
    return pd.Series(
        data=[
            method_name,
            test_stat_name,
            sample_size,
            num_groups,
            stat,
            p_value,
            permutations,
        ],
        index=[
            "method name",
            "test statistic name",
            "sample size",
            "number of groups",
            "test statistic",
            "p-value",
            "number of permutations",
        ],
        name="%s results" % method_name,
    )