1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
import unittest
import warnings
import numpy as np
import numpy.testing as npt
from skbio.stats import subsample_counts, isubsample
def setup():
"""Ignore warnings during tests."""
warnings.simplefilter("ignore")
def teardown():
"""Clear the list of warning filters, so that no filters are active."""
warnings.resetwarnings()
class SubsampleCountsTests(unittest.TestCase):
def test_subsample_counts_nonrandom(self):
a = np.array([0, 5, 0])
# Subsample same number of items that are in input (without
# replacement).
npt.assert_equal(subsample_counts(a, 5), a)
# Can only choose from one bin.
exp = np.array([0, 2, 0])
npt.assert_equal(subsample_counts(a, 2), exp)
npt.assert_equal(
subsample_counts(a, 2, replace=True), exp)
# Subsample zero items.
a = [3, 0, 1]
exp = np.array([0, 0, 0])
npt.assert_equal(subsample_counts(a, 0), exp)
npt.assert_equal(subsample_counts(a, 0, replace=True), exp)
def test_subsample_counts_without_replacement(self):
# Selecting 2 counts from the vector 1000 times yields each of the two
# possible results at least once each.
a = np.array([2, 0, 1])
actual = set()
for i in range(1000):
obs = subsample_counts(a, 2)
actual.add(tuple(obs))
self.assertEqual(actual, {(1, 0, 1), (2, 0, 0)})
obs = subsample_counts(a, 2)
self.assertTrue(np.array_equal(obs, np.array([1, 0, 1])) or
np.array_equal(obs, np.array([2, 0, 0])))
def test_subsample_counts_with_replacement(self):
# Can choose from all in first bin, all in last bin (since we're
# sampling with replacement), or split across bins.
a = np.array([2, 0, 1])
actual = set()
for i in range(1000):
obs = subsample_counts(a, 2, replace=True)
actual.add(tuple(obs))
self.assertEqual(actual, {(1, 0, 1), (2, 0, 0), (0, 0, 2)})
# Test that selecting 35 counts from a 36-count vector 1000 times
# yields more than 10 different subsamples. If we were subsampling
# *without* replacement, there would be only 10 possible subsamples
# because there are 10 nonzero bins in array a. However, there are more
# than 10 possibilities when sampling *with* replacement.
a = np.array([2, 0, 1, 2, 1, 8, 6, 0, 3, 3, 5, 0, 0, 0, 5])
actual = set()
for i in range(1000):
obs = subsample_counts(a, 35, replace=True)
self.assertEqual(obs.sum(), 35)
actual.add(tuple(obs))
self.assertTrue(len(actual) > 10)
def test_subsample_counts_with_replacement_equal_n(self):
# test when n == counts.sum()
a = np.array([0, 0, 3, 4, 2, 1])
actual = set()
for i in range(1000):
obs = subsample_counts(a, 10, replace=True)
self.assertEqual(obs.sum(), 10)
actual.add(tuple(obs))
self.assertTrue(len(actual) > 1)
def test_subsample_counts_invalid_input(self):
# Negative n.
with self.assertRaises(ValueError):
subsample_counts([1, 2, 3], -1)
# Wrong number of dimensions.
with self.assertRaises(ValueError):
subsample_counts([[1, 2, 3], [4, 5, 6]], 2)
# Input has too few counts.
with self.assertRaises(ValueError):
subsample_counts([0, 5, 0], 6, replace=False)
# Input has too counts, but should work with bootstrap
subsample_counts([0, 5, 0], 6, replace=True)
class ISubsampleTests(unittest.TestCase):
def setUp(self):
np.random.seed(123)
# comment indicates the expected random value
self.sequences = [
('a_1', 'AATTGGCC-a1'), # 2, 3624216819017203053
('a_2', 'AATTGGCC-a2'), # 5, 5278339153051796802
('b_1', 'AATTGGCC-b1'), # 4, 4184670734919783522
('b_2', 'AATTGGCC-b2'), # 0, 946590342492863505
('a_4', 'AATTGGCC-a4'), # 3, 4048487933969823850
('a_3', 'AATTGGCC-a3'), # 7, 7804936597957240377
('c_1', 'AATTGGCC-c1'), # 8, 8868534167180302049
('a_5', 'AATTGGCC-a5'), # 1, 3409506807702804593
('c_2', 'AATTGGCC-c2'), # 9, 8871627813779918895
('c_3', 'AATTGGCC-c3') # 6, 7233291490207274528
]
def mock_sequence_iter(self, items):
return ({'SequenceID': sid, 'Sequence': seq} for sid, seq in items)
def test_isubsample_simple(self):
maximum = 10
def bin_f(x):
return x['SequenceID'].rsplit('_', 1)[0]
# note, the result here is sorted by sequence_id but is in heap order
# by the random values associated to each sequence
exp = sorted([('a', {'SequenceID': 'a_5', 'Sequence': 'AATTGGCC-a5'}),
('a', {'SequenceID': 'a_1', 'Sequence': 'AATTGGCC-a1'}),
('a', {'SequenceID': 'a_4', 'Sequence': 'AATTGGCC-a4'}),
('a', {'SequenceID': 'a_3', 'Sequence': 'AATTGGCC-a3'}),
('a', {'SequenceID': 'a_2', 'Sequence': 'AATTGGCC-a2'}),
('b', {'SequenceID': 'b_2', 'Sequence': 'AATTGGCC-b2'}),
('b', {'SequenceID': 'b_1', 'Sequence': 'AATTGGCC-b1'}),
('c', {'SequenceID': 'c_3', 'Sequence': 'AATTGGCC-c3'}),
('c', {'SequenceID': 'c_2', 'Sequence': 'AATTGGCC-c2'}),
('c', {'SequenceID': 'c_1', 'Sequence': 'AATTGGCC-c1'})],
key=lambda x: x[0])
obs = isubsample(self.mock_sequence_iter(self.sequences), maximum,
bin_f=bin_f)
self.assertEqual(sorted(obs, key=lambda x: x[0]), exp)
def test_per_sample_sequences_min_seqs(self):
maximum = 10
minimum = 3
def bin_f(x):
return x['SequenceID'].rsplit('_', 1)[0]
# note, the result here is sorted by sequence_id but is in heap order
# by the random values associated to each sequence
exp = sorted([('a', {'SequenceID': 'a_5', 'Sequence': 'AATTGGCC-a5'}),
('a', {'SequenceID': 'a_1', 'Sequence': 'AATTGGCC-a1'}),
('a', {'SequenceID': 'a_4', 'Sequence': 'AATTGGCC-a4'}),
('a', {'SequenceID': 'a_3', 'Sequence': 'AATTGGCC-a3'}),
('a', {'SequenceID': 'a_2', 'Sequence': 'AATTGGCC-a2'}),
('c', {'SequenceID': 'c_3', 'Sequence': 'AATTGGCC-c3'}),
('c', {'SequenceID': 'c_2', 'Sequence': 'AATTGGCC-c2'}),
('c', {'SequenceID': 'c_1', 'Sequence': 'AATTGGCC-c1'})],
key=lambda x: x[0])
obs = isubsample(self.mock_sequence_iter(self.sequences), maximum,
minimum, bin_f=bin_f)
self.assertEqual(sorted(obs, key=lambda x: x[0]), exp)
def test_per_sample_sequences_complex(self):
maximum = 2
def bin_f(x):
return x['SequenceID'].rsplit('_', 1)[0]
exp = sorted([('a', {'SequenceID': 'a_2', 'Sequence': 'AATTGGCC-a2'}),
('a', {'SequenceID': 'a_3', 'Sequence': 'AATTGGCC-a3'}),
('b', {'SequenceID': 'b_2', 'Sequence': 'AATTGGCC-b2'}),
('b', {'SequenceID': 'b_1', 'Sequence': 'AATTGGCC-b1'}),
('c', {'SequenceID': 'c_1', 'Sequence': 'AATTGGCC-c1'}),
('c', {'SequenceID': 'c_2', 'Sequence': 'AATTGGCC-c2'})],
key=lambda x: x[0])
obs = isubsample(self.mock_sequence_iter(self.sequences), maximum,
bin_f=bin_f, buf_size=1)
self.assertEqual(sorted(obs, key=lambda x: x[0]), exp)
def test_min_gt_max(self):
gen = isubsample([1, 2, 3], maximum=2, minimum=10)
with self.assertRaises(ValueError):
next(gen)
def test_min_lt_zero(self):
gen = isubsample([1, 2, 3], maximum=0, minimum=-10)
with self.assertRaises(ValueError):
next(gen)
def test_max_lt_zero(self):
gen = isubsample([1, 2, 3], maximum=-10)
with self.assertRaises(ValueError):
next(gen)
def test_binf_is_none(self):
maximum = 2
items = [1, 2]
exp = [(True, 1), (True, 2)]
obs = isubsample(items, maximum)
self.assertEqual(list(obs), exp)
if __name__ == '__main__':
unittest.main()
|