File: _nj.py

package info (click to toggle)
python-skbio 0.6.2-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 9,312 kB
  • sloc: python: 60,482; ansic: 672; makefile: 224
file content (669 lines) | stat: -rw-r--r-- 24,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io

import numpy as np
import heapq as hq

from skbio.stats.distance import DistanceMatrix
from skbio.tree import TreeNode


def nj(dm, disallow_negative_branch_length=True, result_constructor=None):
    r"""Apply neighbor joining for phylogenetic reconstruction.

    Parameters
    ----------
    dm : skbio.DistanceMatrix
        Input distance matrix containing distances between taxa.
    disallow_negative_branch_length : bool, optional
        Neighbor joining can result in negative branch lengths, which don't
        make sense in an evolutionary context. If `True`, negative branch
        lengths will be returned as zero, a common strategy for handling this
        issue that was proposed by the original developers of the algorithm.
    result_constructor : function, optional
        Function to apply to construct the result object. This must take a
        newick-formatted string as input. The result of applying this function
        to a newick-formatted string will be returned from this function. This
        defaults to ``lambda x: TreeNode.read(StringIO(x), format='newick')``.

    Returns
    -------
    TreeNode
        By default, the result object is a `TreeNode`, though this can be
        overridden by passing `result_constructor`.

    See Also
    --------
    TreeNode.root_at_midpoint

    Notes
    -----
    Neighbor joining was initially described in Saitou and Nei (1987) [1]_. The
    example presented here is derived from the Wikipedia page on neighbor
    joining [2]_. Gascuel and Steel (2006) provide a detailed overview of
    Neighbor joining in terms of its biological relevance and limitations [3]_.

    Neighbor joining, by definition, creates unrooted trees. One strategy for
    rooting the resulting trees is midpoint rooting, which is accessible as
    ``TreeNode.root_at_midpoint``.

    References
    ----------
    .. [1] Saitou N, and Nei M. (1987) "The neighbor-joining method: a new
       method for reconstructing phylogenetic trees." Molecular Biology and
       Evolution. PMID: 3447015.
    .. [2] http://en.wikipedia.org/wiki/Neighbour_joining
    .. [3] Gascuel O, and Steel M. (2006) "Neighbor-Joining Revealed" Molecular
       Biology and Evolution, Volume 23, Issue 11, November 2006,
       Pages 1997–2000, https://doi.org/10.1093/molbev/msl072

    Examples
    --------
    Define a new distance matrix object describing the distances between five
    taxa: a, b, c, d, and e.

    >>> from skbio import DistanceMatrix
    >>> from skbio.tree import nj

    >>> data = [[0,  5,  9,  9,  8],
    ...         [5,  0, 10, 10,  9],
    ...         [9, 10,  0,  8,  7],
    ...         [9, 10,  8,  0,  3],
    ...         [8,  9,  7,  3,  0]]
    >>> ids = list('abcde')
    >>> dm = DistanceMatrix(data, ids)

    Construct the neighbor joining tree representing the relationship between
    those taxa. This is returned as a TreeNode object.

    >>> tree = nj(dm)
    >>> print(tree.ascii_art())
              /-d
             |
             |          /-c
             |---------|
    ---------|         |          /-b
             |          \--------|
             |                    \-a
             |
              \-e

    Again, construct the neighbor joining tree, but instead return the newick
    string representing the tree, rather than the TreeNode object. (Note that
    in this example the string output is truncated when printed to facilitate
    rendering.)

    >>> newick_str = nj(dm, result_constructor=str)
    >>> print(newick_str[:55], "...")
    (d:2.000000, (c:4.000000, (b:3.000000, a:2.000000):3.00 ...

    """
    if dm.shape[0] < 3:
        raise ValueError(
            "Distance matrix must be at least 3x3 to "
            "generate a neighbor joining tree."
        )

    if result_constructor is None:

        def result_constructor(x):
            return TreeNode.read(io.StringIO(x), format="newick")

    # initialize variables
    node_definition = None

    # while there are still more than three distances in the distance matrix,
    # join neighboring nodes.
    while dm.shape[0] > 3:
        # compute the Q matrix
        q = _compute_q(dm)

        # identify the pair of nodes that have the lowest Q value. if multiple
        # pairs have equally low Q values, the first pair identified (closest
        # to the top-left of the matrix) will be chosen. these will be joined
        # in the current node.
        idx1, idx2 = _lowest_index(q)
        pair_member_1 = dm.ids[idx1]
        pair_member_2 = dm.ids[idx2]
        # determine the distance of each node to the new node connecting them.
        pair_member_1_len, pair_member_2_len = _pair_members_to_new_node(
            dm, idx1, idx2, disallow_negative_branch_length
        )
        # define the new node in newick style
        node_definition = "(%s:%f, %s:%f)" % (
            pair_member_1,
            pair_member_1_len,
            pair_member_2,
            pair_member_2_len,
        )
        # compute the new distance matrix, which will contain distances of all
        # other nodes to this new node
        dm = _compute_collapsed_dm(
            dm,
            pair_member_1,
            pair_member_2,
            disallow_negative_branch_length=disallow_negative_branch_length,
            new_node_id=node_definition,
        )

    # When there are three distances left in the distance matrix, we have a
    # fully defined tree. The last node is internal, and its distances are
    # defined by these last three values.
    # First determine the distance between the last two nodes to be joined in
    # a pair...
    pair_member_1 = dm.ids[1]
    pair_member_2 = dm.ids[2]
    pair_member_1_len, pair_member_2_len = _pair_members_to_new_node(
        dm, pair_member_1, pair_member_2, disallow_negative_branch_length
    )
    # ...then determine their distance to the other remaining node, but first
    # handle the trivial case where the input dm was only 3 x 3
    node_definition = node_definition or dm.ids[0]
    internal_len = 0.5 * (
        dm[pair_member_1, node_definition]
        + dm[pair_member_2, node_definition]
        - dm[pair_member_1, pair_member_2]
    )
    if disallow_negative_branch_length and internal_len < 0:
        internal_len = 0

    # ...and finally create the newick string describing the whole tree.
    newick = "(%s:%f, %s:%f, %s:%f);" % (
        pair_member_1,
        pair_member_1_len,
        node_definition,
        internal_len,
        pair_member_2,
        pair_member_2_len,
    )

    # package the result as requested by the user and return it.
    return result_constructor(newick)


def _compute_q(dm):
    """Compute Q matrix, used to identify the next pair of nodes to join."""
    q = np.zeros(dm.shape)
    n = dm.shape[0]
    big_sum = np.array([dm.data.sum(1)] * dm.shape[0])
    big_sum_diffs = big_sum + big_sum.T
    q = (n - 2) * dm.data - big_sum_diffs
    np.fill_diagonal(q, 0)
    return DistanceMatrix(q, dm.ids)


def _compute_collapsed_dm(dm, i, j, disallow_negative_branch_length, new_node_id):
    """Return the distance matrix resulting from joining ids i and j in a node.

    If the input distance matrix has shape ``(n, n)``, the result will have
    shape ``(n-1, n-1)`` as the ids `i` and `j` are collapsed to a single new
    ids.

    """
    in_n = dm.shape[0]
    out_n = in_n - 1
    out_ids = [new_node_id]
    out_ids.extend([e for e in dm.ids if e not in (i, j)])
    result = np.zeros((out_n, out_n))
    # pre-populate the result array with known distances
    ij_indexes = [dm.index(i), dm.index(j)]
    result[1:, 1:] = np.delete(
        np.delete(dm.data, ij_indexes, axis=0), ij_indexes, axis=1
    )
    # calculate the new distances from the current DistanceMatrix
    k_to_u = 0.5 * (dm[i] + dm[j] - dm[i, j])
    # set negative branches to 0 if specified
    if disallow_negative_branch_length:
        k_to_u[k_to_u < 0] = 0
    # drop nodes being joined
    k_to_u = np.delete(k_to_u, ij_indexes)
    # assign the distances to the result array
    result[0] = result[:, 0] = np.concatenate([[0], k_to_u])
    return DistanceMatrix(result, out_ids)


def _lowest_index(dm):
    """Return the index of the lowest value in the input distance matrix.

    If there are ties for the lowest value, the index of top-left most
    occurrence of that value will be returned.

    This should be ultimately be replaced with a new DistanceMatrix object
    method (#228).

    """
    # get the positions of the lowest value
    results = np.vstack(np.where(dm.data == np.amin(dm.condensed_form()))).T
    # select results in the bottom-left of the array
    results = results[results[:, 0] > results[:, 1]]
    # calculate the distances of the results to [0, 0]
    res_distances = np.sqrt(results[:, 0] ** 2 + results[:, 1] ** 2)
    # detect distance ties & return the point which would have
    # been produced by the original function
    if np.count_nonzero(res_distances == np.amin(res_distances)) > 1:
        eqdistres = results[res_distances == np.amin(res_distances)]
        res_coords = eqdistres[np.argmin([r[0] for r in eqdistres])]
    else:
        res_coords = results[np.argmin(res_distances)]

    return tuple([res_coords[0], res_coords[1]])


def _pair_members_to_new_node(dm, i, j, disallow_negative_branch_length):
    """Return the distance between a new node and descendants of that new node.

    Parameters
    ----------
    dm : skbio.DistanceMatrix
        The input distance matrix.
    i, j : str
        Identifiers of entries in the distance matrix to be collapsed (i.e.,
        the descendants of the new node, which is internally represented as
        `u`).
    disallow_negative_branch_length : bool
        Neighbor joining can result in negative branch lengths, which don't
        make sense in an evolutionary context. If `True`, negative branch
        lengths will be returned as zero, a common strategy for handling this
        issue that was proposed by the original developers of the algorithm.

    """
    n = dm.shape[0]
    i_to_j = dm[i, j]
    i_to_u = (0.5 * i_to_j) + ((dm[i].sum() - dm[j].sum()) / (2 * (n - 2)))

    if disallow_negative_branch_length and i_to_u < 0:
        i_to_u = 0

    j_to_u = i_to_j - i_to_u

    if disallow_negative_branch_length and j_to_u < 0:
        j_to_u = 0

    return i_to_u, j_to_u


def nni(tree, dm, inplace=True):
    r"""Perform nearest neighbor interchange (NNI) on a phylogenetic tree.

    Parameters
    ----------
    tree : skbio.TreeNode
        Input phylogenetic tree to be rearranged.
    dm : skbio.DistanceMatrix
        Input distance matrix containing distances between taxa.
    inplace : bool, optional
        Whether manipulate the tree in place (``True``, default) or return a
        copy of the tree (``False``).

    Returns
    -------
    TreeNode
        Rearranged phylogenetic tree (if ``inplace`` is ``True``).

    Notes
    -----
    NNI algorithm for minimum evolution problem on phylogenetic trees. It rearranges
    an initial tree topology by performing subtree exchanges such that the distance
    is minimized. This implementation is based on the FastNNI algorithm [1]_.

    The input tree is required to be binary and rooted at a leaf node such that
    there is a unique descendant from the root.

    References
    ----------
    .. [1] Desper R, Gascuel O. Fast and accurate phylogeny reconstruction
       algorithms based on the minimum-evolution principle. J Comput Biol.
       2002;9(5):687-705. doi: 10.1089/106652702761034136. PMID: 12487758.

    Examples
    --------
    Define a new distance matrix object describing the distances between five
    taxa: human, monkey, pig, rat, and chicken.

    >>> from skbio import DistanceMatrix
    >>> from skbio.tree import nj

    >>> dm = DistanceMatrix([[0, 0.02,  0.18,  0.34,  0.55],
    ...                      [0.02,  0, 0.19, 0.35,  0.55],
    ...                      [0.18, 0.19,  0,  0.34,  0.54],
    ...                      [0.34, 0.35,  0.34,  0,  0.62],
    ...                      [0.55,  0.55,  0.54,  0.62,  0]],
    ...                      ['human','monkey','pig','rat','chicken'])

    Also, provide a tree topology to be rearranged. The tree provided is
    required to be a binary tree rooted at a leaf node.

    Note that the tree provided does not require to have assigned edge lengths.

    >>> from skbio.tree import TreeNode

    >>> tree = TreeNode.read(["(((human,chicken),(rat,monkey)))pig;"])
    >>> print(tree.ascii_art())
                                  /-human
                        /--------|
                       |          \-chicken
    -pig----- /--------|
                       |          /-rat
                        \--------|
                                  \-monkey

    Perform nearest neighbor interchange (NNI). By default, the tree is
    rearrangede in place.

    >>> nni(tree, dm)
    >>> print(tree.ascii_art())
                                  /-rat
                        /--------|
                       |          \-chicken
    -pig----- /--------|
                       |          /-monkey
                        \--------|
                                  \-human

    Besides rearranging the tree, estimated edge lengths are assigned to the
    tree.

    >>> rat = tree.find('rat')
    >>> print(rat.length)
    0.21

    """
    # Initialize and populate the average distance matrix
    if not inplace:
        tree = tree.copy()
    if len(tree.root().children) != 1:
        raise TypeError(
            "Could not perform NNI. " "Tree needs to be rooted at a leaf node."
        )
    for node in tree.non_tips():
        if len(node.children) != 2:
            raise TypeError("Could not perform NNI. Tree needs to be a binary tree.")
    adm = _average_distance_matrix(tree, dm)
    while True:
        # create heap of possible swaps and then swapping subtrees
        # until no more swaps are possible.
        adm = _average_distance_matrix(tree, dm)
        heap = _swap_heap(tree, adm)
        if not heap:
            break
        swap = hq.heappop(heap)
        _perform_swap(swap[1][0], swap[1][1])
    # edge values are added using an OLS framework.
    _edge_estimation(tree, dm)
    if not inplace:
        return tree


def _perform_swap(node1, node2):
    """Return a tree after swapping two subtrees."""
    parent1, parent2 = node1.parent, node2.parent
    parent1.append(node2)
    parent2.append(node1)


def _average_distance(node1, node2, dm):
    """Return the average distance between the leaves of two subtrees.

    Distances between nodes are calculated using a distance matrix.
    """
    nodelist1 = _tip_or_root(node1)
    nodelist2 = _tip_or_root(node2)
    df = dm.between(nodelist1, nodelist2)
    return df["value"].mean()


def _tip_or_root(node):
    """Get name(s) of a node if it's a tip or root, otherwise its descending tips."""
    if node.is_tip() or node.is_root():
        return [node.name]
    else:
        return [x.name for x in node.tips()]


def _average_distance_upper(node1, node2, dm):
    """Return the average distance between the leaves of two subtrees.

    Used for subtrees which have a set of tips that are the complement
    of the set of tips that are descendants from the node defining
    the subtree.

    Given an internal edge of a binary tree, exactly one adjacent edge
    will connect to a node defining a subtree of this form.
    """
    nodelist1 = _tip_or_root(node1)
    if node2.is_root():
        nodelist2 = []
    # Second subtree serves as the tree with a set of tips
    # complementary to the set of tips that descend from the
    # corresponding second node.
    else:
        root2 = node2.root()
        nodelist2 = [root2.name]
        nodelist2.extend(root2.subset() - node2.subset())
    df = dm.between(nodelist1, nodelist2)
    return df["value"].mean()


def _subtree_count(subtree):
    """Return the number of leaves in a subtree.

    Assumes the root as a leaf node.
    """
    if subtree.is_tip() or subtree.is_root():
        return 1
    else:
        return subtree.count(tips=True)


def _swap_length(a, b, c, d, i, j, k, m, adm):
    """Return the change in overall tree length after a given swap.

    The count of leaves contained in each subtree are denoted 'a, b, c, d' while
    each node defining the subtree has the index 'i, j, k, m', respectively.
    """
    lambda1 = (a * d + b * c) / ((a + b) * (c + d))
    lambda2 = (a * d + b * c) / ((a + c) * (b + d))
    return 0.5 * (
        (lambda1 - 1) * (adm[i][k] + adm[j][m])
        - (lambda2 - 1) * (adm[i][j] + adm[k][m])
        - (lambda1 - lambda2) * (adm[i][m] + adm[j][k])
    )


def _swap_heap(tree, adm):
    """Return a maxheap ordered by the swap length for all possible swaps."""
    heap = []
    ordered = list(tree.postorder(include_self=False))
    root = tree.root()
    n_taxa = root.count(tips=True) + 1
    # begin by finding nodes which are the child node of an internal edge
    for node in ordered:
        # ignore tips of the tree
        if node.is_tip():
            continue
        # identify the parent and grandparent nodes
        parent = node
        a = parent.parent
        # identify the index of each neighboring node
        for index, node in enumerate(ordered):
            if node == a:
                i1 = index
        for child in parent.children:
            if child.is_tip():
                continue
            childnode = child
            c, d = childnode.children
            for sibling in childnode.siblings():
                b = sibling
            for index, node in enumerate(ordered):
                if node == b:
                    i2 = index
                elif node == c:
                    i3 = index
                elif node == d:
                    i4 = index
            # count the tips of the subtrees defined by the neighboring nodes
            sub_tips = []
            for subtree in [b, c, d]:
                sub_tips.append(1 if subtree.is_tip() else subtree.count(tips=True))
            b_, c_, d_ = sub_tips
            a_ = n_taxa - b_ - c_ - d_
            # calculate the swap length for the two possible swaps given the edge
            swap_1 = _swap_length(a_, b_, c_, d_, i1, i2, i3, i4, adm)
            swap_2 = _swap_length(a_, b_, d_, c_, i1, i2, i4, i3, adm)
            # store the best possible swap into a maxheap
            if swap_1 > swap_2 and swap_1 > 0:
                swap = -1 * swap_1
                hq.heappush(heap, (swap, (b, c)))
            elif swap_2 > swap_1 and swap_2 > 0:
                swap = -1 * swap_2
                hq.heappush(heap, (swap, (b, d)))
    return heap


def _average_subtree_distance(a, b, a1, a2, dm):
    """Return the average distance between two subtrees."""
    return (
        _subtree_count(a1) * _average_distance(a1, b, dm)
        + _subtree_count(a2) * _average_distance(a2, b, dm)
    ) / _subtree_count(a)


def _average_distance_matrix(tree, dm):
    """Return the matrix of distances between pairs of subtrees."""
    ordered = list(tree.postorder(include_self=False))
    n = len(ordered)
    r = tree.root()
    taxa_size = r.count(tips=True) + 1
    adm = np.empty((n, n))
    for i, a in enumerate(ordered):
        # skip over unique descendant
        if a in tree.children:
            continue
        # find the average distance between given node and root
        if a.is_tip():
            adm[n - 1, i] = adm[i, n - 1] = dm[a.name, r.name]
        else:
            a1, a2 = a.children
            adm[n - 1, i] = adm[i, n - 1] = _average_subtree_distance(a, r, a1, a2, dm)
        # find the average distance between first node and a second node
        # which is above the first node in the postorder as well as an ancestor
        for j in range(i + 1, n - 1):  # part (a)
            b = ordered[j]
            # skipping over ancestors
            if b in a.ancestors():
                continue
            # both nodes are tips
            if a.is_tip() and b.is_tip():
                adm[i, j] = adm[j, i] = dm[a.name, b.name]
            # second node is a tip, but not the first node
            elif b.is_tip():
                a1, a2 = a.children
                adm[i, j] = adm[j, i] = _average_subtree_distance(a, b, a1, a2, dm)
            # neither node is a tip
            else:
                b1, b2 = b.children
                adm[i, j] = adm[j, i] = _average_subtree_distance(b, a, b1, b2, dm)
    # calculating for second nodes which are ancestors
    for j, b in enumerate(ordered):
        # skipping over unique descendant
        if b in tree.children:
            continue
        s_ = b.siblings()
        for sibling in s_:
            s = sibling
        p = b.parent
        for i, a in enumerate(ordered):
            if b in a.ancestors():
                adm[i, j] = adm[j, i] = (
                    _subtree_count(s) * _average_distance(a, s, dm)
                    + (taxa_size - _subtree_count(p))
                    * _average_distance_upper(a, p, dm)
                ) / (taxa_size - _subtree_count(b))
                # zero the diagonal
                adm[i, i] = 0
    return adm


def _edge_estimation(tree, dm):
    """Assign estimated edge values to a tree based on a given distance matrix.

    Estimation of edge values is based on an ordinary least squares (OLS) framework.
    """
    adm = _average_distance_matrix(tree, dm)
    ordered = list(tree.postorder(include_self=False))
    root = tree.root()
    taxa_size = root.count(tips=True) + 1
    # identify edges by first finding the child node of an edge
    for edge_node in ordered:
        parent = edge_node.parent
        # skip over root node
        if edge_node.is_root():
            continue
        # calculate edge length for the edge adjacent to the root
        elif parent.is_root():
            for index, node in enumerate(ordered):
                if node == edge_node:
                    i1 = index
            a, b = edge_node.children
            for index, node in enumerate(ordered):
                if node == a:
                    i2 = index
                elif node == b:
                    i3 = index
            edge_node.length = 0.5 * (adm[i2][i1] + adm[i3][i1] - adm[i2][i3])
        # calculate edge lengths for external edges
        elif edge_node.is_tip():
            a = parent.parent
            if a.is_root():
                for child in a.children:
                    a = child
            for siblingnode in edge_node.siblings():
                b = siblingnode
                for index, node in enumerate(ordered):
                    if node == edge_node:
                        i1 = index
                    if node == a:
                        i2 = index
                    if node == b:
                        i3 = index
            edge_node.length = 0.5 * (adm[i2][i1] + adm[i3][i1] - adm[i2][i3])
        # calculate edge lengths for internal edges
        else:
            a = parent.parent
            if a.is_root():
                for child in a.children:
                    a = child
            for index, node in enumerate(ordered):
                if node == a:
                    i1 = index
            c, d = edge_node.children
            for sibling in edge_node.siblings():
                b = sibling
            for index, node in enumerate(ordered):
                if node == b:
                    i2 = index
                elif node == c:
                    i3 = index
                elif node == d:
                    i4 = index
            # count the tips of subtrees which are adjacent to the internal edge
            sub_tips = []
            for subtree in [b, c, d]:
                sub_tips.append(1 if subtree.is_tip() else subtree.count(tips=True))
            b_, c_, d_ = sub_tips
            a_ = taxa_size - b_ - c_ - d_
            # calculate the edge length
            lambda1 = (a_ * d_ + b_ * c_) / ((a_ + b_) * (c_ + d_))
            edge_node.length = 0.5 * (
                (lambda1 * (adm[i1][i3] + adm[i2][i4]))
                + ((1 - lambda1) * (adm[i1][i4] + adm[i2][i3]))
                - (adm[i1][i2] + adm[i3][i4])
            )