1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
import io
import numpy as np
import heapq as hq
from skbio.stats.distance import DistanceMatrix
from skbio.tree import TreeNode
def nj(dm, disallow_negative_branch_length=True, result_constructor=None):
r"""Apply neighbor joining for phylogenetic reconstruction.
Parameters
----------
dm : skbio.DistanceMatrix
Input distance matrix containing distances between taxa.
disallow_negative_branch_length : bool, optional
Neighbor joining can result in negative branch lengths, which don't
make sense in an evolutionary context. If `True`, negative branch
lengths will be returned as zero, a common strategy for handling this
issue that was proposed by the original developers of the algorithm.
result_constructor : function, optional
Function to apply to construct the result object. This must take a
newick-formatted string as input. The result of applying this function
to a newick-formatted string will be returned from this function. This
defaults to ``lambda x: TreeNode.read(StringIO(x), format='newick')``.
Returns
-------
TreeNode
By default, the result object is a `TreeNode`, though this can be
overridden by passing `result_constructor`.
See Also
--------
TreeNode.root_at_midpoint
Notes
-----
Neighbor joining was initially described in Saitou and Nei (1987) [1]_. The
example presented here is derived from the Wikipedia page on neighbor
joining [2]_. Gascuel and Steel (2006) provide a detailed overview of
Neighbor joining in terms of its biological relevance and limitations [3]_.
Neighbor joining, by definition, creates unrooted trees. One strategy for
rooting the resulting trees is midpoint rooting, which is accessible as
``TreeNode.root_at_midpoint``.
References
----------
.. [1] Saitou N, and Nei M. (1987) "The neighbor-joining method: a new
method for reconstructing phylogenetic trees." Molecular Biology and
Evolution. PMID: 3447015.
.. [2] http://en.wikipedia.org/wiki/Neighbour_joining
.. [3] Gascuel O, and Steel M. (2006) "Neighbor-Joining Revealed" Molecular
Biology and Evolution, Volume 23, Issue 11, November 2006,
Pages 1997–2000, https://doi.org/10.1093/molbev/msl072
Examples
--------
Define a new distance matrix object describing the distances between five
taxa: a, b, c, d, and e.
>>> from skbio import DistanceMatrix
>>> from skbio.tree import nj
>>> data = [[0, 5, 9, 9, 8],
... [5, 0, 10, 10, 9],
... [9, 10, 0, 8, 7],
... [9, 10, 8, 0, 3],
... [8, 9, 7, 3, 0]]
>>> ids = list('abcde')
>>> dm = DistanceMatrix(data, ids)
Construct the neighbor joining tree representing the relationship between
those taxa. This is returned as a TreeNode object.
>>> tree = nj(dm)
>>> print(tree.ascii_art())
/-d
|
| /-c
|---------|
---------| | /-b
| \--------|
| \-a
|
\-e
Again, construct the neighbor joining tree, but instead return the newick
string representing the tree, rather than the TreeNode object. (Note that
in this example the string output is truncated when printed to facilitate
rendering.)
>>> newick_str = nj(dm, result_constructor=str)
>>> print(newick_str[:55], "...")
(d:2.000000, (c:4.000000, (b:3.000000, a:2.000000):3.00 ...
"""
if dm.shape[0] < 3:
raise ValueError(
"Distance matrix must be at least 3x3 to "
"generate a neighbor joining tree."
)
if result_constructor is None:
def result_constructor(x):
return TreeNode.read(io.StringIO(x), format="newick")
# initialize variables
node_definition = None
# while there are still more than three distances in the distance matrix,
# join neighboring nodes.
while dm.shape[0] > 3:
# compute the Q matrix
q = _compute_q(dm)
# identify the pair of nodes that have the lowest Q value. if multiple
# pairs have equally low Q values, the first pair identified (closest
# to the top-left of the matrix) will be chosen. these will be joined
# in the current node.
idx1, idx2 = _lowest_index(q)
pair_member_1 = dm.ids[idx1]
pair_member_2 = dm.ids[idx2]
# determine the distance of each node to the new node connecting them.
pair_member_1_len, pair_member_2_len = _pair_members_to_new_node(
dm, idx1, idx2, disallow_negative_branch_length
)
# define the new node in newick style
node_definition = "(%s:%f, %s:%f)" % (
pair_member_1,
pair_member_1_len,
pair_member_2,
pair_member_2_len,
)
# compute the new distance matrix, which will contain distances of all
# other nodes to this new node
dm = _compute_collapsed_dm(
dm,
pair_member_1,
pair_member_2,
disallow_negative_branch_length=disallow_negative_branch_length,
new_node_id=node_definition,
)
# When there are three distances left in the distance matrix, we have a
# fully defined tree. The last node is internal, and its distances are
# defined by these last three values.
# First determine the distance between the last two nodes to be joined in
# a pair...
pair_member_1 = dm.ids[1]
pair_member_2 = dm.ids[2]
pair_member_1_len, pair_member_2_len = _pair_members_to_new_node(
dm, pair_member_1, pair_member_2, disallow_negative_branch_length
)
# ...then determine their distance to the other remaining node, but first
# handle the trivial case where the input dm was only 3 x 3
node_definition = node_definition or dm.ids[0]
internal_len = 0.5 * (
dm[pair_member_1, node_definition]
+ dm[pair_member_2, node_definition]
- dm[pair_member_1, pair_member_2]
)
if disallow_negative_branch_length and internal_len < 0:
internal_len = 0
# ...and finally create the newick string describing the whole tree.
newick = "(%s:%f, %s:%f, %s:%f);" % (
pair_member_1,
pair_member_1_len,
node_definition,
internal_len,
pair_member_2,
pair_member_2_len,
)
# package the result as requested by the user and return it.
return result_constructor(newick)
def _compute_q(dm):
"""Compute Q matrix, used to identify the next pair of nodes to join."""
q = np.zeros(dm.shape)
n = dm.shape[0]
big_sum = np.array([dm.data.sum(1)] * dm.shape[0])
big_sum_diffs = big_sum + big_sum.T
q = (n - 2) * dm.data - big_sum_diffs
np.fill_diagonal(q, 0)
return DistanceMatrix(q, dm.ids)
def _compute_collapsed_dm(dm, i, j, disallow_negative_branch_length, new_node_id):
"""Return the distance matrix resulting from joining ids i and j in a node.
If the input distance matrix has shape ``(n, n)``, the result will have
shape ``(n-1, n-1)`` as the ids `i` and `j` are collapsed to a single new
ids.
"""
in_n = dm.shape[0]
out_n = in_n - 1
out_ids = [new_node_id]
out_ids.extend([e for e in dm.ids if e not in (i, j)])
result = np.zeros((out_n, out_n))
# pre-populate the result array with known distances
ij_indexes = [dm.index(i), dm.index(j)]
result[1:, 1:] = np.delete(
np.delete(dm.data, ij_indexes, axis=0), ij_indexes, axis=1
)
# calculate the new distances from the current DistanceMatrix
k_to_u = 0.5 * (dm[i] + dm[j] - dm[i, j])
# set negative branches to 0 if specified
if disallow_negative_branch_length:
k_to_u[k_to_u < 0] = 0
# drop nodes being joined
k_to_u = np.delete(k_to_u, ij_indexes)
# assign the distances to the result array
result[0] = result[:, 0] = np.concatenate([[0], k_to_u])
return DistanceMatrix(result, out_ids)
def _lowest_index(dm):
"""Return the index of the lowest value in the input distance matrix.
If there are ties for the lowest value, the index of top-left most
occurrence of that value will be returned.
This should be ultimately be replaced with a new DistanceMatrix object
method (#228).
"""
# get the positions of the lowest value
results = np.vstack(np.where(dm.data == np.amin(dm.condensed_form()))).T
# select results in the bottom-left of the array
results = results[results[:, 0] > results[:, 1]]
# calculate the distances of the results to [0, 0]
res_distances = np.sqrt(results[:, 0] ** 2 + results[:, 1] ** 2)
# detect distance ties & return the point which would have
# been produced by the original function
if np.count_nonzero(res_distances == np.amin(res_distances)) > 1:
eqdistres = results[res_distances == np.amin(res_distances)]
res_coords = eqdistres[np.argmin([r[0] for r in eqdistres])]
else:
res_coords = results[np.argmin(res_distances)]
return tuple([res_coords[0], res_coords[1]])
def _pair_members_to_new_node(dm, i, j, disallow_negative_branch_length):
"""Return the distance between a new node and descendants of that new node.
Parameters
----------
dm : skbio.DistanceMatrix
The input distance matrix.
i, j : str
Identifiers of entries in the distance matrix to be collapsed (i.e.,
the descendants of the new node, which is internally represented as
`u`).
disallow_negative_branch_length : bool
Neighbor joining can result in negative branch lengths, which don't
make sense in an evolutionary context. If `True`, negative branch
lengths will be returned as zero, a common strategy for handling this
issue that was proposed by the original developers of the algorithm.
"""
n = dm.shape[0]
i_to_j = dm[i, j]
i_to_u = (0.5 * i_to_j) + ((dm[i].sum() - dm[j].sum()) / (2 * (n - 2)))
if disallow_negative_branch_length and i_to_u < 0:
i_to_u = 0
j_to_u = i_to_j - i_to_u
if disallow_negative_branch_length and j_to_u < 0:
j_to_u = 0
return i_to_u, j_to_u
def nni(tree, dm, inplace=True):
r"""Perform nearest neighbor interchange (NNI) on a phylogenetic tree.
Parameters
----------
tree : skbio.TreeNode
Input phylogenetic tree to be rearranged.
dm : skbio.DistanceMatrix
Input distance matrix containing distances between taxa.
inplace : bool, optional
Whether manipulate the tree in place (``True``, default) or return a
copy of the tree (``False``).
Returns
-------
TreeNode
Rearranged phylogenetic tree (if ``inplace`` is ``True``).
Notes
-----
NNI algorithm for minimum evolution problem on phylogenetic trees. It rearranges
an initial tree topology by performing subtree exchanges such that the distance
is minimized. This implementation is based on the FastNNI algorithm [1]_.
The input tree is required to be binary and rooted at a leaf node such that
there is a unique descendant from the root.
References
----------
.. [1] Desper R, Gascuel O. Fast and accurate phylogeny reconstruction
algorithms based on the minimum-evolution principle. J Comput Biol.
2002;9(5):687-705. doi: 10.1089/106652702761034136. PMID: 12487758.
Examples
--------
Define a new distance matrix object describing the distances between five
taxa: human, monkey, pig, rat, and chicken.
>>> from skbio import DistanceMatrix
>>> from skbio.tree import nj
>>> dm = DistanceMatrix([[0, 0.02, 0.18, 0.34, 0.55],
... [0.02, 0, 0.19, 0.35, 0.55],
... [0.18, 0.19, 0, 0.34, 0.54],
... [0.34, 0.35, 0.34, 0, 0.62],
... [0.55, 0.55, 0.54, 0.62, 0]],
... ['human','monkey','pig','rat','chicken'])
Also, provide a tree topology to be rearranged. The tree provided is
required to be a binary tree rooted at a leaf node.
Note that the tree provided does not require to have assigned edge lengths.
>>> from skbio.tree import TreeNode
>>> tree = TreeNode.read(["(((human,chicken),(rat,monkey)))pig;"])
>>> print(tree.ascii_art())
/-human
/--------|
| \-chicken
-pig----- /--------|
| /-rat
\--------|
\-monkey
Perform nearest neighbor interchange (NNI). By default, the tree is
rearrangede in place.
>>> nni(tree, dm)
>>> print(tree.ascii_art())
/-rat
/--------|
| \-chicken
-pig----- /--------|
| /-monkey
\--------|
\-human
Besides rearranging the tree, estimated edge lengths are assigned to the
tree.
>>> rat = tree.find('rat')
>>> print(rat.length)
0.21
"""
# Initialize and populate the average distance matrix
if not inplace:
tree = tree.copy()
if len(tree.root().children) != 1:
raise TypeError(
"Could not perform NNI. " "Tree needs to be rooted at a leaf node."
)
for node in tree.non_tips():
if len(node.children) != 2:
raise TypeError("Could not perform NNI. Tree needs to be a binary tree.")
adm = _average_distance_matrix(tree, dm)
while True:
# create heap of possible swaps and then swapping subtrees
# until no more swaps are possible.
adm = _average_distance_matrix(tree, dm)
heap = _swap_heap(tree, adm)
if not heap:
break
swap = hq.heappop(heap)
_perform_swap(swap[1][0], swap[1][1])
# edge values are added using an OLS framework.
_edge_estimation(tree, dm)
if not inplace:
return tree
def _perform_swap(node1, node2):
"""Return a tree after swapping two subtrees."""
parent1, parent2 = node1.parent, node2.parent
parent1.append(node2)
parent2.append(node1)
def _average_distance(node1, node2, dm):
"""Return the average distance between the leaves of two subtrees.
Distances between nodes are calculated using a distance matrix.
"""
nodelist1 = _tip_or_root(node1)
nodelist2 = _tip_or_root(node2)
df = dm.between(nodelist1, nodelist2)
return df["value"].mean()
def _tip_or_root(node):
"""Get name(s) of a node if it's a tip or root, otherwise its descending tips."""
if node.is_tip() or node.is_root():
return [node.name]
else:
return [x.name for x in node.tips()]
def _average_distance_upper(node1, node2, dm):
"""Return the average distance between the leaves of two subtrees.
Used for subtrees which have a set of tips that are the complement
of the set of tips that are descendants from the node defining
the subtree.
Given an internal edge of a binary tree, exactly one adjacent edge
will connect to a node defining a subtree of this form.
"""
nodelist1 = _tip_or_root(node1)
if node2.is_root():
nodelist2 = []
# Second subtree serves as the tree with a set of tips
# complementary to the set of tips that descend from the
# corresponding second node.
else:
root2 = node2.root()
nodelist2 = [root2.name]
nodelist2.extend(root2.subset() - node2.subset())
df = dm.between(nodelist1, nodelist2)
return df["value"].mean()
def _subtree_count(subtree):
"""Return the number of leaves in a subtree.
Assumes the root as a leaf node.
"""
if subtree.is_tip() or subtree.is_root():
return 1
else:
return subtree.count(tips=True)
def _swap_length(a, b, c, d, i, j, k, m, adm):
"""Return the change in overall tree length after a given swap.
The count of leaves contained in each subtree are denoted 'a, b, c, d' while
each node defining the subtree has the index 'i, j, k, m', respectively.
"""
lambda1 = (a * d + b * c) / ((a + b) * (c + d))
lambda2 = (a * d + b * c) / ((a + c) * (b + d))
return 0.5 * (
(lambda1 - 1) * (adm[i][k] + adm[j][m])
- (lambda2 - 1) * (adm[i][j] + adm[k][m])
- (lambda1 - lambda2) * (adm[i][m] + adm[j][k])
)
def _swap_heap(tree, adm):
"""Return a maxheap ordered by the swap length for all possible swaps."""
heap = []
ordered = list(tree.postorder(include_self=False))
root = tree.root()
n_taxa = root.count(tips=True) + 1
# begin by finding nodes which are the child node of an internal edge
for node in ordered:
# ignore tips of the tree
if node.is_tip():
continue
# identify the parent and grandparent nodes
parent = node
a = parent.parent
# identify the index of each neighboring node
for index, node in enumerate(ordered):
if node == a:
i1 = index
for child in parent.children:
if child.is_tip():
continue
childnode = child
c, d = childnode.children
for sibling in childnode.siblings():
b = sibling
for index, node in enumerate(ordered):
if node == b:
i2 = index
elif node == c:
i3 = index
elif node == d:
i4 = index
# count the tips of the subtrees defined by the neighboring nodes
sub_tips = []
for subtree in [b, c, d]:
sub_tips.append(1 if subtree.is_tip() else subtree.count(tips=True))
b_, c_, d_ = sub_tips
a_ = n_taxa - b_ - c_ - d_
# calculate the swap length for the two possible swaps given the edge
swap_1 = _swap_length(a_, b_, c_, d_, i1, i2, i3, i4, adm)
swap_2 = _swap_length(a_, b_, d_, c_, i1, i2, i4, i3, adm)
# store the best possible swap into a maxheap
if swap_1 > swap_2 and swap_1 > 0:
swap = -1 * swap_1
hq.heappush(heap, (swap, (b, c)))
elif swap_2 > swap_1 and swap_2 > 0:
swap = -1 * swap_2
hq.heappush(heap, (swap, (b, d)))
return heap
def _average_subtree_distance(a, b, a1, a2, dm):
"""Return the average distance between two subtrees."""
return (
_subtree_count(a1) * _average_distance(a1, b, dm)
+ _subtree_count(a2) * _average_distance(a2, b, dm)
) / _subtree_count(a)
def _average_distance_matrix(tree, dm):
"""Return the matrix of distances between pairs of subtrees."""
ordered = list(tree.postorder(include_self=False))
n = len(ordered)
r = tree.root()
taxa_size = r.count(tips=True) + 1
adm = np.empty((n, n))
for i, a in enumerate(ordered):
# skip over unique descendant
if a in tree.children:
continue
# find the average distance between given node and root
if a.is_tip():
adm[n - 1, i] = adm[i, n - 1] = dm[a.name, r.name]
else:
a1, a2 = a.children
adm[n - 1, i] = adm[i, n - 1] = _average_subtree_distance(a, r, a1, a2, dm)
# find the average distance between first node and a second node
# which is above the first node in the postorder as well as an ancestor
for j in range(i + 1, n - 1): # part (a)
b = ordered[j]
# skipping over ancestors
if b in a.ancestors():
continue
# both nodes are tips
if a.is_tip() and b.is_tip():
adm[i, j] = adm[j, i] = dm[a.name, b.name]
# second node is a tip, but not the first node
elif b.is_tip():
a1, a2 = a.children
adm[i, j] = adm[j, i] = _average_subtree_distance(a, b, a1, a2, dm)
# neither node is a tip
else:
b1, b2 = b.children
adm[i, j] = adm[j, i] = _average_subtree_distance(b, a, b1, b2, dm)
# calculating for second nodes which are ancestors
for j, b in enumerate(ordered):
# skipping over unique descendant
if b in tree.children:
continue
s_ = b.siblings()
for sibling in s_:
s = sibling
p = b.parent
for i, a in enumerate(ordered):
if b in a.ancestors():
adm[i, j] = adm[j, i] = (
_subtree_count(s) * _average_distance(a, s, dm)
+ (taxa_size - _subtree_count(p))
* _average_distance_upper(a, p, dm)
) / (taxa_size - _subtree_count(b))
# zero the diagonal
adm[i, i] = 0
return adm
def _edge_estimation(tree, dm):
"""Assign estimated edge values to a tree based on a given distance matrix.
Estimation of edge values is based on an ordinary least squares (OLS) framework.
"""
adm = _average_distance_matrix(tree, dm)
ordered = list(tree.postorder(include_self=False))
root = tree.root()
taxa_size = root.count(tips=True) + 1
# identify edges by first finding the child node of an edge
for edge_node in ordered:
parent = edge_node.parent
# skip over root node
if edge_node.is_root():
continue
# calculate edge length for the edge adjacent to the root
elif parent.is_root():
for index, node in enumerate(ordered):
if node == edge_node:
i1 = index
a, b = edge_node.children
for index, node in enumerate(ordered):
if node == a:
i2 = index
elif node == b:
i3 = index
edge_node.length = 0.5 * (adm[i2][i1] + adm[i3][i1] - adm[i2][i3])
# calculate edge lengths for external edges
elif edge_node.is_tip():
a = parent.parent
if a.is_root():
for child in a.children:
a = child
for siblingnode in edge_node.siblings():
b = siblingnode
for index, node in enumerate(ordered):
if node == edge_node:
i1 = index
if node == a:
i2 = index
if node == b:
i3 = index
edge_node.length = 0.5 * (adm[i2][i1] + adm[i3][i1] - adm[i2][i3])
# calculate edge lengths for internal edges
else:
a = parent.parent
if a.is_root():
for child in a.children:
a = child
for index, node in enumerate(ordered):
if node == a:
i1 = index
c, d = edge_node.children
for sibling in edge_node.siblings():
b = sibling
for index, node in enumerate(ordered):
if node == b:
i2 = index
elif node == c:
i3 = index
elif node == d:
i4 = index
# count the tips of subtrees which are adjacent to the internal edge
sub_tips = []
for subtree in [b, c, d]:
sub_tips.append(1 if subtree.is_tip() else subtree.count(tips=True))
b_, c_, d_ = sub_tips
a_ = taxa_size - b_ - c_ - d_
# calculate the edge length
lambda1 = (a_ * d_ + b_ * c_) / ((a_ + b_) * (c_ + d_))
edge_node.length = 0.5 * (
(lambda1 * (adm[i1][i3] + adm[i2][i4]))
+ ((1 - lambda1) * (adm[i1][i4] + adm[i2][i3]))
- (adm[i1][i2] + adm[i3][i4])
)
|