1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
from warnings import warn, simplefilter
from operator import or_, itemgetter
from copy import copy, deepcopy
from itertools import combinations
from functools import reduce
from collections import defaultdict
import numpy as np
import pandas as pd
from scipy.spatial.distance import correlation
from skbio._base import SkbioObject
from skbio.stats.distance import DistanceMatrix
from skbio.tree._exception import (
NoLengthError,
DuplicateNodeError,
NoParentError,
MissingNodeError,
TreeError,
)
from skbio.util import RepresentationWarning
from skbio.util._decorator import classonlymethod
from skbio.util._warning import _warn_deprecated
def distance_from_r(m1, m2):
r"""Estimate distance as (1-r)/2: neg correl = max distance.
Parameters
----------
m1 : DistanceMatrix
a distance matrix to compare
m2 : DistanceMatrix
a distance matrix to compare
Returns
-------
float
The distance between m1 and m2
"""
return correlation(m1.data.flat, m2.data.flat) / 2
class TreeNode(SkbioObject):
r"""Representation of a node within a tree.
A `TreeNode` instance stores links to its parent and optional children
nodes. In addition, the `TreeNode` can represent a `length` (e.g., a
branch length) between itself and its parent. Within this object, the use
of "children" and "descendants" is frequent in the documentation. A child
is a direct descendant of a node, while descendants are all nodes that are
below a given node (e.g., grand-children, etc).
Parameters
----------
name : str or None
A node can have a name. It is common for tips in particular to have
names, for instance, in a phylogenetic tree where the tips correspond
to species.
length : float, int, or None
Length of the branch connecting this node to its parent. Can represent
ellapsed time, amount of mutations, or other measures of evolutionary
distance.
support : float, int, or None
Support value of the branch connecting this node to its parent. Can be
bootstrap value, posterior probability, or other metrics measuring the
confidence or frequency of this branch.
parent : TreeNode or None
Connect this node to a parent
children : list of TreeNode or None
Connect this node to existing children
"""
default_write_format = "newick"
_exclude_from_copy = set(["parent", "children", "_tip_cache", "_non_tip_cache"])
def __init__(
self, name=None, length=None, support=None, parent=None, children=None
):
self.name = name
self.length = length
self.support = support
self.parent = parent
self.children = []
self.id = None
if children is not None:
self.extend(children)
def __repr__(self):
r"""Return summary of the tree.
Returns
-------
str
A summary of this node and all descendants
Notes
-----
This method returns the name of the node and a count of tips and the
number of internal nodes in the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c, d)root;"])
>>> repr(tree)
'<TreeNode, name: root, internal node count: 1, tips count: 3>'
"""
nodes = [n for n in self.traverse(include_self=False)]
n_tips = sum([n.is_tip() for n in nodes])
n_nontips = len(nodes) - n_tips
classname = self.__class__.__name__
name = self.name if self.name is not None else "unnamed"
return "<%s, name: %s, internal node count: %d, tips count: %d>" % (
classname,
name,
n_nontips,
n_tips,
)
def __str__(self):
r"""Return string version of self, with names and distances.
Returns
-------
str
Returns a Newick representation of the tree
See Also
--------
read
write
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> str(tree)
'((a,b)c);\n'
"""
return str("".join(self.write([])))
def __iter__(self):
r"""Node iter iterates over the `children`."""
return iter(self.children)
def __len__(self):
return len(self.children)
def __getitem__(self, i):
r"""Node delegates slicing to `children`."""
return self.children[i]
def _adopt(self, node):
r"""Update `parent` references but does NOT update `children`."""
if node.parent is not None:
node.parent.remove(node)
node.parent = self
return node
def append(self, node):
r"""Add a node to self's children.
Parameters
----------
node : TreeNode
Node to add as a child.
See Also
--------
extend
Notes
-----
``append`` will invalidate any node lookup caches, remove the node's
parent if it exists, set the parent of node to self, and add the node
to self's children.
Examples
--------
>>> from skbio import TreeNode
>>> root = TreeNode(name="root")
>>> child1 = TreeNode(name="child1")
>>> child2 = TreeNode(name="child2")
>>> root.append(child1)
>>> root.append(child2)
>>> print(root)
(child1,child2)root;
<BLANKLINE>
"""
self.invalidate_caches()
self.children.append(self._adopt(node))
def extend(self, nodes):
r"""Add a list of nodes to self's children.
Parameters
----------
nodes : list of TreeNode
Nodes to add as children.
See Also
--------
append
Notes
-----
``extend`` will invalidate any node lookup caches, remove existing
parents of the nodes if they have any, set their parents to self
and add the nodes to the children of self.
Examples
--------
>>> from skbio import TreeNode
>>> root = TreeNode(name="root")
>>> root.extend([TreeNode(name="child1"), TreeNode(name="child2")])
>>> print(root)
(child1,child2)root;
<BLANKLINE>
"""
self.invalidate_caches()
self.children.extend([self._adopt(n) for n in nodes[:]])
def insert(self, node, distance=None, branch_attrs=[]):
r"""Insert a node into the branch connecting self and its parent.
.. versionadded:: 0.6.2
Parameters
----------
node : TreeNode
Node to insert.
distance : float, int or None, optional
Distance between self and the insertion point. Must not exceed
``self.length``. If ``None`` whereas ``self.length`` is not
``None``, will insert at the midpoint of the branch.
branch_attrs : iterable of str, optional
Attributes of self that should be transferred to the inserted node
as they are considered as attributes of the branch. ``support``
will be automatically included as it is always a branch attribute.
Raises
------
NoParentError
If self has no parent.
ValueError
If distance is specified but branch has no length.
ValueError
If distance exceeds branch length.
See Also
--------
append
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:4,d:5)e;"])
>>> print(tree.ascii_art())
/-a
/c-------|
-e-------| \-b
|
\-d
>>> tree.find("c").insert(TreeNode("x"))
>>> print(tree.ascii_art())
/-a
/x------- /c-------|
-e-------| \-b
|
\-d
>>> tree.find("c").length
2.0
>>> tree.find("x").length
2.0
"""
if (parent := self.parent) is None:
raise NoParentError("Self has no parent.")
# detach node from original tree if applicable
if node.parent is not None:
node.parent.remove(node)
# See also `_adopt`. The current code replaces the node at the same
# position in the parent's list of children, instead of appending to
# the end. Additionally, the current code performs cache invalidation
# only once.
self.invalidate_caches()
# replace self with node in the parent's list of children
node.parent = parent
for i, curr_node in enumerate(parent.children):
if curr_node is self:
parent.children[i] = node
# add self to the beginning of the node's list of children
self.parent = node
node.children.insert(0, self)
# transfer branch attributes to new node
branch_attrs = set(branch_attrs)
branch_attrs.add("support")
branch_attrs.discard("length")
for attr in branch_attrs:
setattr(node, attr, getattr(self, attr, None))
# determine insertion point
if distance is None:
if self.length is None:
node.length = None
else:
self.length *= 0.5
node.length = self.length
else:
if self.length is None:
raise ValueError("Distance is provided but branch has no length.")
elif distance > self.length:
raise ValueError("Distance cannot exceed branch length.")
node.length = self.length - distance
self.length = distance
def pop(self, index=-1):
r"""Remove and return a child node by its index position from self.
Parameters
----------
index : int
The index position in ``children`` to pop.
Returns
-------
TreeNode
The popped child node.
See Also
--------
remove
remove_deleted
Notes
-----
All node lookup caches are invalidated, and the parent reference for
the popped node will be set to ``None``.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> print(tree.pop(0))
a;
<BLANKLINE>
"""
return self._remove_node(index)
def _remove_node(self, idx):
r"""Perform node removal.
The actual (and only) method that performs node removal.
"""
self.invalidate_caches()
node = self.children.pop(idx)
node.parent = None
return node
def remove(self, node):
r"""Remove a node from self.
Remove a `node` from `self` by identity of the node.
Parameters
----------
node : TreeNode
The node to remove from self's children
Returns
-------
bool
`True` if the node was removed, `False` otherwise
See Also
--------
pop
remove_deleted
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> tree.remove(tree.children[0])
True
"""
for i, curr_node in enumerate(self.children):
if curr_node is node:
self._remove_node(i)
return True
return False
def remove_deleted(self, func):
r"""Delete nodes in which `func(node)` evaluates `True`.
Remove all descendants from `self` that evaluate `True` from `func`.
This has the potential to drop clades.
Parameters
----------
func : a function
A function that evaluates `True` when a node should be deleted
See Also
--------
pop
remove
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> tree.remove_deleted(lambda x: x.name == 'b')
>>> print(tree)
(a)c;
<BLANKLINE>
"""
for node in self.traverse(include_self=False):
if func(node):
node.parent.remove(node)
def prune(self):
r"""Reconstruct correct topology after nodes have been removed.
Internal nodes with only one child will be removed and new connections
will be made to reflect change. This method is useful to call
following node removals as it will clean up nodes with singular
children.
Names and properties of singular children will override the names and
properties of their parents following the prune.
Node lookup caches are invalidated.
See Also
--------
shear
remove
pop
remove_deleted
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> to_delete = tree.find('b')
>>> tree.remove_deleted(lambda x: x == to_delete)
>>> print(tree)
((a)c,(d,e)f)root;
<BLANKLINE>
>>> tree.prune()
>>> print(tree)
((d,e)f,a)root;
<BLANKLINE>
"""
# build up the list of nodes to remove so the topology is not altered
# while traversing
nodes_to_remove = []
for node in self.traverse(include_self=False):
if len(node.children) == 1:
nodes_to_remove.append(node)
# clean up the single children nodes
for node in nodes_to_remove:
child = node.children[0]
if child.length is None or node.length is None:
child.length = child.length or node.length
else:
child.length += node.length
if node.parent is None:
continue
node.parent.append(child)
node.parent.remove(node)
# if a single descendent from the root, the root adopts the childs
# properties. we can't "delete" the root as that would be deleting
# self.
if len(self.children) == 1:
node_to_copy = self.children[0]
efc = self._exclude_from_copy
for key in node_to_copy.__dict__:
if key not in efc:
self.__dict__[key] = deepcopy(node_to_copy.__dict__[key])
self.remove(node_to_copy)
self.extend(node_to_copy.children)
def shear(self, names):
"""Remove tips until the tree just has the desired tip names.
Parameters
----------
names : Iterable of str
The tip names on the tree to keep
Returns
-------
TreeNode
The resulting tree
Raises
------
ValueError
If the names do not exist in the tree
See Also
--------
prune
remove
pop
remove_deleted
Examples
--------
>>> from skbio import TreeNode
>>> t = TreeNode.read(['((H:1,G:1):2,(R:0.5,M:0.7):3);'])
>>> sheared = t.shear(['G', 'M'])
>>> print(sheared)
(G:3.0,M:3.7);
<BLANKLINE>
"""
tcopy = self.copy()
all_tips = {n.name for n in tcopy.tips()}
ids = set(names)
if not ids.issubset(all_tips):
raise ValueError("ids are not a subset of the tree.")
marked = set()
for tip in tcopy.tips():
if tip.name in ids:
marked.add(tip)
for anc in tip.ancestors():
if anc in marked:
break
else:
marked.add(anc)
for node in list(tcopy.traverse()):
if node not in marked:
node.parent.remove(node)
tcopy.prune()
return tcopy
def _copy(self, deep, memo):
"""Return a copy of self."""
_copy = deepcopy if deep else copy
_args = [memo] if deep else []
def __copy_node(node_to_copy):
"""Copy a node."""
# this is _possibly_ dangerous, we're assuming the node to copy is
# of the same class as self, and has the same exclusion criteria.
# however, it is potentially dangerous to mix TreeNode subclasses
# within a tree, so...
result = self.__class__()
efc = self._exclude_from_copy
for key in node_to_copy.__dict__:
if key not in efc:
result.__dict__[key] = _copy(node_to_copy.__dict__[key], *_args)
return result
root = __copy_node(self)
nodes_stack = [[root, self, len(self.children)]]
while nodes_stack:
# check the top node, any children left unvisited?
top = nodes_stack[-1]
new_top_node, old_top_node, unvisited_children = top
if unvisited_children:
top[2] -= 1
old_child = old_top_node.children[-unvisited_children]
new_child = __copy_node(old_child)
new_top_node.append(new_child)
nodes_stack.append([new_child, old_child, len(old_child.children)])
else: # no unvisited children
nodes_stack.pop()
return root
def __copy__(self):
"""Return a shallow copy."""
return self._copy(False, {})
def __deepcopy__(self, memo):
"""Return a deep copy."""
return self._copy(True, memo)
def copy(self, deep=True):
r"""Return a copy of self using an iterative approach.
Parameters
----------
deep : bool, optional
Whether perform a deep (``True``, default) or shallow (``False``)
copy of node attributes.
.. versionadded:: 0.6.2
.. note:: The default value will be changed to ``False`` in 0.7.0.
Returns
-------
TreeNode
A new copy of self.
See Also
--------
unrooted_copy
Notes
-----
This method iteratively copies the current node and its descendants.
That is, if the current node is not the root of the tree, only the
subtree below the node, instead of the entire tree, will be copied.
All nodes and their attributes will be copied. The copies are new
objects rather than references to the original objects. The distinction
between deep and shallow copies only applies to each node attribute.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> tree_copy = tree.copy()
>>> tree_nodes = set([id(n) for n in tree.traverse()])
>>> tree_copy_nodes = set([id(n) for n in tree_copy.traverse()])
>>> print(len(tree_nodes.intersection(tree_copy_nodes)))
0
"""
return self._copy(deep, {})
def deepcopy(self):
r"""Return a deep copy of self using an iterative approach.
Returns
-------
TreeNode
A new deep copy of self.
See Also
--------
copy
Notes
-----
``deepcopy`` is equivalent to ``copy`` with ``deep=True``, which is
currently the default behavior of the latter.
Warnings
--------
``deepcopy`` is deprecated as of ``0.6.2``. Use ``copy`` instead.
"""
msg = "Use copy instead."
_warn_deprecated(self.__class__.deepcopy, "0.6.2", msg)
return self._copy(True, {})
def unrooted_copy(
self,
parent=None,
branch_attrs={"name", "length", "support"},
root_name="root",
deep=False,
):
r"""Walk the tree unrooted-style and return a copy.
Parameters
----------
parent : TreeNode or None
Direction of walking (from parent to self). If specified, walking
to the parent will be prohibited.
branch_attrs : set of str, optional
Attributes of ``TreeNode`` objects that should be considered as
branch attributes during the operation.
.. versionadded:: 0.6.2
.. note:: ``name`` will be removed from the default in 0.7.0, as
it is usually considered as an attribute of the node instead of
the branch.
root_name : str or None, optional
Name for the new root node, if it doesn't have one.
.. versionadded:: 0.6.2
.. note:: This parameter will be removed in 0.7.0, and the root
node will not be renamed.
deep : bool, optional
Whether perform a shallow (``False``, default) or deep (``True``)
copy of node attributes.
.. versionadded:: 0.6.2
Returns
-------
TreeNode
A new copy of the tree rooted at the given node.
.. versionchanged:: 0.6.2
Node attributes other than name and length will also be copied.
Warnings
--------
The default behavior of ``unrooted_copy`` is subject to change in
0.7.0. The new default behavior can be achieved by specifying
``branch_attrs={"length", "support"}, root_name=None``.
See Also
--------
copy
unrooted_move
Notes
-----
This method recursively walks a tree from a given node in an unrooted
style (i.e., directions of branches are not assumed), and copies each
node it visits, such that the copy of the given node becomes the root
node of a new tree and the copies of all other nodes are re-positioned
accordingly, whereas the topology of the new tree will be identical to
the existing one.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> new_tree = tree.find('d').unrooted_copy()
>>> print(new_tree)
(b,c,(a,((f,g)h)e)d)root;
<BLANKLINE>
"""
# future warning
if branch_attrs == {"name", "length", "support"} and root_name == "root":
func = self.__class__.unrooted_copy
if not hasattr(func, "warned"):
simplefilter("once", FutureWarning)
warn(
"The default behavior of `unrooted_copy` is subject to change in "
"0.7.0. The new default behavior can be achieved by specifying "
'`branch_attrs={"length", "support"}, root_name=None`.',
FutureWarning,
)
func.warned = True
_copy = deepcopy if deep else copy
# identify neighbors (adjacent nodes) of self, excluding the incoming node
neighbors = self.neighbors(ignore=parent)
# recursively copy each neighbor; they will become outgoing nodes (children)
children = [
c.unrooted_copy(
parent=self, branch_attrs=branch_attrs, root_name=root_name, deep=deep
)
for c in neighbors
]
# identify node from which branch attributes should be transferred
# 1. starting point (becomes root)
if parent is None:
other = None
# 2. walk up (parent becomes child)
elif parent.parent is self:
other = parent
# 3. walk down (retain the same order)
else:
other = self
# create a new node and attach children to it
result = self.__class__(children=children)
# transfer attributes to the new node
efc = self._exclude_from_copy
for key in self.__dict__:
if key not in efc:
source = other if key in branch_attrs else self
if source is not None and key in source.__dict__:
result.__dict__[key] = _copy(source.__dict__[key])
# name the new root
if root_name and parent is None and result.name is None:
result.name = root_name
return result
def unrooted_deepcopy(self, parent=None):
r"""Walk the tree unrooted-style and returns a new deepcopy.
Parameters
----------
parent : TreeNode or None
Direction of walking (from parent to self). If specified, walking
to the parent will be prohibited.
Returns
-------
TreeNode
A new copy of the tree rooted at the given node.
Warnings
--------
``unrooted_deepcopy`` is deprecated as of ``0.6.2``, as it generates a
redundant copy of the tree. Use ``unrooted_copy`` instead.
See Also
--------
copy
unrooted_copy
root_at
Notes
-----
Perform a deepcopy of self and return a new copy of the tree as an
unrooted copy. This is useful for defining a new root of the tree.
This method calls ``unrooted_copy`` which is recursive.
"""
msg = "Use unrooted_copy instead."
_warn_deprecated(self.__class__.unrooted_deepcopy, "0.6.2", msg)
root = self.root()
root.assign_ids()
new_tree = root.copy()
new_tree.assign_ids()
new_tree_self = new_tree.find_by_id(self.id)
return new_tree_self.unrooted_copy(parent, deep=True)
def unrooted_move(
self,
parent=None,
branch_attrs={"length", "support"},
):
r"""Walk the tree unrooted-style and rearrange it.
.. versionadded:: 0.6.2
Parameters
----------
parent : TreeNode or None
Direction of walking (from parent to self). If specified, walking
to the parent will be prohibited.
branch_attrs : set of str, optional
Attributes of ``TreeNode`` objects that should be considered as
branch attributes during the operation.
See Also
--------
root_at
unrooted_copy
Notes
-----
This method recursively walks a tree from a given node in an unrooted
style (i.e., directions of branches are not assumed). It rerranges the
tree such that the given node becomes the root node and all other nodes
are re-positioned accordingly, whereas the topology remains the same.
This method manipulates the tree in place. There is no return value.
The new tree should be referred to by the node where the operation
started, as it has become the new root node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> new_root = tree.find('d')
>>> new_root.unrooted_move()
>>> print(new_root)
(b,c,(a,((f,g)h)i)e)d;
<BLANKLINE>
"""
# recursively add parent to children
children = self.children
if (old_parent := self.parent) is not None:
children.append(old_parent)
old_parent.unrooted_move(parent=self)
# 1. starting point (becomes root)
if parent is None:
self.parent = None
for attr in branch_attrs:
setattr(self, attr, None)
# 2. walk up (parent becomes child)
else:
for i, child in enumerate(children):
if child is parent:
children.pop(i)
break
self.parent = parent
for attr in branch_attrs:
setattr(self, attr, getattr(parent, attr, None))
def count(self, tips=False):
r"""Get the count of nodes in the tree.
Parameters
----------
tips : bool
If ``True``, only return the count of tips.
Returns
-------
int
The number of nodes.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> print(tree.count())
9
>>> print(tree.count(tips=True))
5
"""
if tips:
return len(list(self.tips()))
else:
return len(list(self.traverse(include_self=True)))
def observed_node_counts(self, tip_counts):
"""Return counts of node observations from counts of tip observations.
Parameters
----------
tip_counts : dict of ints
Counts of observations of tips. Keys correspond to tip names in
``self``, and counts are unsigned ints.
Returns
-------
dict
Counts of observations of nodes. Keys correspond to node names
(internal nodes or tips), and counts are unsigned ints.
Raises
------
ValueError
If a count less than one is observed.
MissingNodeError
If a count is provided for a tip not in the tree, or for an
internal node.
"""
result = defaultdict(int)
for tip_name, count in tip_counts.items():
if count < 1:
raise ValueError("All tip counts must be greater than zero.")
else:
t = self.find(tip_name)
if not t.is_tip():
raise MissingNodeError(
"Counts can only be for tips in the tree. %s is an "
"internal node." % t.name
)
result[t] += count
for internal_node in t.ancestors():
result[internal_node] += count
return result
def subtree(self, tip_list=None):
r"""Make a copy of the subtree."""
raise NotImplementedError()
def subset(self):
r"""Return set of names that descend from specified node.
Get the set of `name` on tips that descend from this node.
Returns
-------
frozenset
The set of names at the tips of the clade that descends from self
See Also
--------
subsets
compare_subsets
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> sorted(tree.subset())
['a', 'b', 'c', 'f', 'g']
"""
return frozenset({i.name for i in self.tips()})
def subsets(self):
r"""Return all sets of names that come from self and its descendants.
Compute all subsets of tip names over `self`, or, represent a tree as a
set of nested sets.
Returns
-------
frozenset
A frozenset of frozensets of str
See Also
--------
subset
compare_subsets
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,b)c,(d,e)f)h)root;"])
>>> subsets = tree.subsets()
>>> len(subsets)
3
"""
sets = []
for i in self.postorder(include_self=False):
if not i.children:
i.__leaf_set = frozenset([i.name])
else:
leaf_set = reduce(or_, [c.__leaf_set for c in i.children])
if len(leaf_set) > 1:
sets.append(leaf_set)
i.__leaf_set = leaf_set
return frozenset(sets)
def unroot(self, side=None):
r"""Convert a rooted tree into unrooted.
.. versionadded:: 0.6.2
Parameters
----------
side : int, optional
Which basal node (i.e., children of root) will be elevated to root.
Must be 0 or 1. If not provided, will elevate the first basal node
that is not a tip.
See Also
--------
root
root_at
Notes
-----
In scikit-bio, every tree has a root node. A tree is considered as
"rooted" if its root node has exactly two children. In contrast, an
"unrooted" tree may have three (the most common case), one, or more
than three children attached to its root node. This method will not
modify the tree if it is already unrooted.
This method unroots a tree by trifucating its root. Specifically, it
removes one of the two basal nodes of the tree (i.e., children of the
root), transfers the name of the removed node to the root, and
re-attaches the removed node's children to the root. Additionally, the
removed node's branch length, if available, will be added to the other
basal node's branch. The outcome appears as if the root is removed
and the two basal nodes are directly connected.
The choice of the basal node to be elevated affects the positioning of
the resulting tree, but does not affect its topology from a
phylogenetic perspective, as it is considered as unrooted.
This method manipulates the tree in place. There is no return value.
.. note:: In the case where the basal node has just one child, the
resulting tree will still appear rooted as it has two basal nodes.
To avoid this scenario, call ``prune`` to remove all one-child
internal nodes.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['(((a,b)c,(d,e)f)g,(h,i)j)k;'])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
/g-------|
| | /-d
| \f-------|
-k-------| \-e
|
| /-h
\j-------|
\-i
>>> tree.unroot()
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
|
| /-d
-g-------|-f-------|
| \-e
|
| /-h
\j-------|
\-i
"""
# return original tree if already unrooted
root = self.root()
if len(bases := root.children) != 2:
return root
# choose a basal node to elevate
if side is None:
side = 1 if (bases[0].is_tip() and not bases[1].is_tip()) else 0
chosen, other = bases[side], bases[1 - side]
# remove chosen node and re-attach its children to root
root.invalidate_caches()
chosen.parent = None
for child in chosen.children:
child.parent = root
if side:
root.children = [other] + chosen.children
else:
root.children = chosen.children + [other]
# transfer basal node's name to root
root.name = chosen.name
# TODO: also transfer other custom node attributes
# add branch length to the other basal node
if (L := chosen.length) is not None:
if other.length is not None:
other.length += L
else:
other.length = L
def _insert_above(self, above, branch_attrs=[]):
"""Insert a node into the branch connecting a node to its parent."""
if above is False:
return self
node = self.__class__()
if above is True:
self.insert(node, None, branch_attrs)
else:
self.insert(node, above, branch_attrs)
return node
def root_at(
self,
node=None,
above=False,
reset=False,
branch_attrs=["name"],
root_name="root",
):
r"""Reroot the tree at the provided node.
This is useful for positioning a tree with an orientation that reflects
knowledge of the true root location.
Parameters
----------
node : TreeNode or str, optional
The node to root at. Can either be a node object or the name of the
node. If not provided, will root at self. If a root node provided,
will return the original tree.
.. versionchanged:: 0.6.2
Becomes optional.
above : bool, float, or int, optional
Whether and where to insert a new root node. If ``False``
(default), the target node will serve as the root node. If
``True``, a new root node will be created and inserted at the
midpoint of the branch connecting the target node and its parent.
If a number, the new root will be inserted at this distance from
the target node. The number ranges between 0 and branch length.
.. versionadded:: 0.6.2
reset : bool, optional
Whether remove the original root of a rooted tree before performing
the rerooting operation. Default is ``False``.
.. versionadded:: 0.6.2
.. note:: The default value will be set as ``True`` in 0.7.0.
branch_attrs : iterable of str, optional
Attributes of each node that should be considered as attributes of
the branch connecting the node to its parent. This is important for
the correct rerooting operation. "length" and "support" will be
automatically included as they are always branch attributes.
.. versionadded:: 0.6.2
.. note:: ``name`` will be removed from the default in 0.7.0, as
it is usually considered as an attribute of the node instead of
the branch.
root_name : str or None, optional
Name for the root node, if it doesn't already have one.
.. versionadded:: 0.6.2
.. note:: The default value will be set as ``None`` in 0.7.0.
Returns
-------
TreeNode
A new copy of the tree rooted at the give node.
Warnings
--------
The default behavior of ``root_at`` is subject to change in 0.7.0. The
new default behavior can be achieved by specifying ``reset=True,
branch_attrs=[], root_name=None``.
See Also
--------
root_at_midpoint
unrooted_copy
unroot
Notes
-----
The specified node will be come the root of the new tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,b)c,(d,e)f)g,h)i;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
/g-------|
| | /-d
-i-------| \f-------|
| \-e
|
\-h
Use the given node as the root node. This will typically create an
unrooted tree (i.e., root node has three children).
>>> t1 = tree.root_at("c", branch_attrs=[])
>>> print(t1)
(a,b,((d,e)f,(h)i)g)c;
<BLANKLINE>
>>> print(t1.ascii_art())
/-a
|
|--b
-c-------|
| /-d
| /f-------|
\g-------| \-e
|
\i------- /-h
Insert a new root node into the branch above the given node. This will
create a rooted tree (i.e., root node has two children).
>>> t2 = tree.root_at("c", above=True, branch_attrs=[])
>>> print(t2)
((a,b)c,((d,e)f,(h)i)g)root;
<BLANKLINE>
>>> print(t2.ascii_art())
/-a
/c-------|
| \-b
-root----|
| /-d
| /f-------|
\g-------| \-e
|
\i------- /-h
"""
# future warning
if reset is False and branch_attrs == ["name"] and root_name == "root":
func = self.__class__.root_at
if not hasattr(func, "warned"):
simplefilter("once", FutureWarning)
warn(
"The default behavior of `root_at` is subject to change in 0.7.0. "
"The new default behavior can be achieved by specifying "
"`reset=True, branch_attrs=[], root_name=None`.",
FutureWarning,
)
func.warned = True
tree = self.root()
if node is None:
node = self
elif isinstance(node, str):
node = tree.find(node)
if node.is_root():
return node.copy()
if reset and len(tree.children) != 2:
reset = False
# copy the tree if it needs to be manipulated prior to walking
if reset or above is not False:
tree.assign_ids()
new_tree = tree.copy()
new_tree.assign_ids()
node = new_tree.find_by_id(node.id)
tree = new_tree
# remove original root; we need to make sure the node itself is not the
# basal node that gets removed
if reset:
side = None
for i, base in enumerate(tree.children):
if node is base:
side = 1 - i
break
tree.unroot(side)
# insert a new root node into the branch above
node = node._insert_above(above, branch_attrs)
branch_attrs = set(branch_attrs)
branch_attrs.update(["length", "support"])
return node.unrooted_copy(branch_attrs=branch_attrs, root_name=root_name)
def root_at_midpoint(self, reset=False, branch_attrs=["name"], root_name="root"):
r"""Reroot the tree at the midpoint of the two tips farthest apart.
Parameters
----------
reset : bool, optional
Whether remove the original root of a rooted tree before performing
the rerooting operation. Default is ``False``.
.. versionadded:: 0.6.2
.. note:: The default value will be set as ``True`` in 0.7.0.
branch_attrs : iterable of str, optional
Attributes of each node that should be considered as attributes of
the branch connecting the node to its parent. This is important for
the correct rerooting operation. "length" and "support" will be
automatically included as they are always branch attributes.
.. versionadded:: 0.6.2
.. note:: ``name`` will be removed from the default in 0.7.0, as
it is usually considered as an attribute of the node instead of
the branch.
root_name : str or None, optional
Name for the new root node, if it doesn't have one.
.. versionadded:: 0.6.2
.. note:: The default value will be set as ``None`` in 0.7.0.
Returns
-------
TreeNode
A tree rooted at its midpoint.
Raises
------
TreeError
If a tip ends up being the mid point.
LengthError
Midpoint rooting requires `length` and will raise (indirectly) if
evaluated nodes don't have length.
Warnings
--------
The default behavior of ``root_at_midpoint`` is subject to change in
0.7.0. The new default behavior can be achieved by specifying
``reset=True, branch_attrs=[], root_name=None``.
See Also
--------
root_at
unrooted_copy
Notes
-----
The midpoint rooting (MPR) method was originally described in [1]_.
References
----------
.. [1] Farris, J. S. (1972). Estimating phylogenetic trees from
distance matrices. The American Naturalist, 106(951), 645-668.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:1)c:2,(d:3,e:4)f:5,g:1)h;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
|
-h-------| /-d
|-f-------|
| \-e
|
\-g
>>> t = tree.root_at_midpoint(branch_attrs=[])
>>> print(t)
((d:3.0,e:4.0)f:2.0,((a:1.0,b:1.0)c:2.0,g:1.0)h:3.0)root;
<BLANKLINE>
>>> print(t.ascii_art())
/-d
/f-------|
| \-e
-root----|
| /-a
| /c-------|
\h-------| \-b
|
\-g
"""
# future warning
if reset is False and branch_attrs == ["name"] and root_name == "root":
func = self.__class__.root_at_midpoint
if not hasattr(func, "warned"):
simplefilter("once", FutureWarning)
warn(
"The default behavior of `root_at_midpoint` is subject to change "
"in 0.7.0. The new default behavior can be achieved by specifying "
"`reset=True, branch_attrs=[], root_name=None`.",
FutureWarning,
)
func.warned = True
tree = self.copy()
if reset:
tree.unroot()
max_dist, tips = tree.get_max_distance()
half_max_dist = max_dist / 2.0
if max_dist == 0.0:
return tree
tip1 = tree.find(tips[0])
tip2 = tree.find(tips[1])
lca = tree.lowest_common_ancestor([tip1, tip2])
if tip1.accumulate_to_ancestor(lca) > half_max_dist:
climb_node = tip1
else:
climb_node = tip2
dist_climbed = 0.0
while dist_climbed + climb_node.length < half_max_dist:
dist_climbed += climb_node.length
climb_node = climb_node.parent
# case 1: midpoint is at the climb node's parent
# make the parent node as the new root
if dist_climbed + climb_node.length == half_max_dist:
new_root = climb_node.parent
# case 2: midpoint is on the climb node's branch to its parent
# insert a new root node into the branch
else:
new_root = tree.__class__()
climb_node.insert(new_root, half_max_dist - dist_climbed)
# TODO: Here, `branch_attrs` should be added to `insert`. However, this
# will cause a backward-incompatible behavior. This change will be made
# in version 0.7.0, along with the removal of `name` from the default of
# `branch_attrs`.
branch_attrs = set(branch_attrs)
branch_attrs.update(["length", "support"])
return new_root.unrooted_copy(branch_attrs=branch_attrs, root_name=root_name)
def root_by_outgroup(
self, outgroup, above=True, reset=True, branch_attrs=[], root_name=None
):
r"""Reroot the tree with a given set of taxa as outgroup.
.. versionadded:: 0.6.2
Parameters
----------
outgroup : iterable of str
Taxon set to serve as outgroup. Must be a proper subset of taxa in
the tree. The tree will be rooted at the lowest common ancestor
(LCA) of the outgroup.
above : bool, float, or int, optional
Whether and where to insert a new root node. If ``False``, the
LCA will serve as the root node. If ``True`` (default), a new root
node will be created and inserted at the midpoint of the branch
connecting the LCA and its parent (i.e., the midpoint between
outgroup and ingroup). If a number between 0 and branch length, the
new root will be inserted at this distance from the LCA.
reset : bool, optional
Whether remove the original root of a rooted tree before performing
the rerooting operation. Default is ``True``.
branch_attrs : iterable of str, optional
Attributes of each node that should be considered as attributes of
the branch connecting the node to its parent. This is important for
the correct rerooting operation. "length" and "support" will be
automatically included as they are always branch attributes.
root_name : str or None, optional
Name for the root node, if it doesn't already have one.
Returns
-------
TreeNode
A tree rooted by the outgroup.
Raises
------
TreeError
Outgroup is not a proper subset of taxa in the tree.
TreeError
Outgroup is not monophyletic in the tree.
Notes
-----
An outgroup is a subset of taxa that are usually distantly related from
the remaining taxa (ingroup). The outgroup helps with locating the root
of the ingroup, which are of interest in the study.
This method reroots the tree at the lowest common ancestor (LCA) of the
outgroup. By default, a new root will be placed at the midpoint between
the LCA of outgroup and that of ingroup. But this behavior can be
customized.
This method requires the outgroup to be monophyletic, i.e., it forms a
single clade in the tree. If the outgroup spans across the root of the
tree, the method will reroot the tree within the ingroup such that the
outgroup can form a clade in the rerooted tree, prior to rooting by
outgroup.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['((((a,b),(c,d)),(e,f)),g);'])
>>> print(tree.ascii_art())
/-a
/--------|
| \-b
/--------|
| | /-c
| \--------|
/--------| \-d
| |
| | /-e
---------| \--------|
| \-f
|
\-g
>>> rooted = tree.root_by_outgroup(['a', 'b'])
>>> print(rooted.ascii_art())
/-a
/--------|
| \-b
|
---------| /-c
| /--------|
| | \-d
\--------|
| /-e
| /--------|
\--------| \-f
|
\-g
>>> rooted = tree.root_by_outgroup(['e', 'f', 'g'])
>>> print(rooted.ascii_art())
/-e
/--------|
/--------| \-f
| |
| \-g
---------|
| /-c
| /--------|
| | \-d
\--------|
| /-b
\--------|
\-a
"""
outgroup = set(outgroup)
if not outgroup < self.subset():
raise TreeError("Outgroup is not a proper subset of taxa in the tree.")
# locate the lowest common ancestor (LCA) of outgroup in the tree
lca = self.lca(outgroup)
# if LCA is root (i.e., outgroup is split across basal clades), root
# the tree at a tip within the ingroup and locate LCA again
if lca is self:
for tip in self.tips():
if tip.name not in outgroup:
tree = self.root_at(tip, reset=reset, branch_attrs=branch_attrs)
break
lca = tree.lca(outgroup)
else:
tree = self
# test if outgroup is monophyletic
if lca.count(tips=True) > len(outgroup):
raise TreeError("Outgroup is not monophyletic in the tree.")
# reroot the tree at LCA
return tree.root_at(
lca,
above=above,
reset=reset,
branch_attrs=branch_attrs,
root_name=root_name,
)
def is_tip(self):
r"""Return `True` if the current node has no `children`.
Returns
-------
bool
`True` if the node is a tip
See Also
--------
is_root
has_children
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.is_tip())
False
>>> print(tree.find('a').is_tip())
True
"""
return not self.children
def is_root(self):
r"""Return `True` if the current is a root, i.e. has no `parent`.
Returns
-------
bool
`True` if the node is the root
See Also
--------
is_tip
has_children
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.is_root())
True
>>> print(tree.find('a').is_root())
False
"""
return self.parent is None
def has_children(self):
r"""Return `True` if the node has `children`.
Returns
-------
bool
`True` if the node has children.
See Also
--------
is_tip
is_root
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.has_children())
True
>>> print(tree.find('a').has_children())
False
"""
return not self.is_tip()
def traverse(self, self_before=True, self_after=False, include_self=True):
r"""Return iterator over descendants.
This is a depth-first traversal. Since the trees are not binary,
preorder and postorder traversals are possible, but inorder traversals
would depend on the data in the tree and are not handled here.
Parameters
----------
self_before : bool
includes each node before its descendants if True
self_after : bool
includes each node after its descendants if True
include_self : bool
include the initial node if True
`self_before` and `self_after` are independent. If neither is `True`,
only terminal nodes will be returned.
Note that if self is terminal, it will only be included once even if
`self_before` and `self_after` are both `True`.
Yields
------
TreeNode
Traversed node.
See Also
--------
preorder
postorder
pre_and_postorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.traverse():
... print(node.name)
None
c
a
b
"""
if self_before:
if self_after:
return self.pre_and_postorder(include_self=include_self)
else:
return self.preorder(include_self=include_self)
else:
if self_after:
return self.postorder(include_self=include_self)
else:
return self.tips(include_self=include_self)
def preorder(self, include_self=True):
r"""Perform preorder iteration over tree.
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
pre_and_postorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.preorder():
... print(node.name)
None
c
a
b
"""
stack = [self]
while stack:
curr = stack.pop()
if include_self or (curr is not self):
yield curr
if curr.children:
stack.extend(curr.children[::-1])
def postorder(self, include_self=True):
r"""Perform postorder iteration over tree.
This is somewhat inelegant compared to saving the node and its index
on the stack, but is 30% faster in the average case and 3x faster in
the worst case (for a comb tree).
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
preorder
pre_and_postorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.postorder():
... print(node.name)
a
b
c
None
"""
child_index_stack = [0]
curr = self
curr_children = self.children
curr_children_len = len(curr_children)
while 1:
curr_index = child_index_stack[-1]
# if there are children left, process them
if curr_index < curr_children_len:
curr_child = curr_children[curr_index]
# if the current child has children, go there
if curr_child.children:
child_index_stack.append(0)
curr = curr_child
curr_children = curr.children
curr_children_len = len(curr_children)
curr_index = 0
# otherwise, yield that child
else:
yield curr_child
child_index_stack[-1] += 1
# if there are no children left, return self, and move to
# self's parent
else:
if include_self or (curr is not self):
yield curr
if curr is self:
break
curr = curr.parent
curr_children = curr.children
curr_children_len = len(curr_children)
child_index_stack.pop()
child_index_stack[-1] += 1
def pre_and_postorder(self, include_self=True):
r"""Perform iteration over tree, visiting node before and after.
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
levelorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> for node in tree.pre_and_postorder():
... print(node.name)
None
c
a
b
c
None
"""
# handle simple case first
if not self.children:
if include_self:
yield self
return
child_index_stack = [0]
curr = self
curr_children = self.children
while 1:
curr_index = child_index_stack[-1]
if not curr_index:
if include_self or (curr is not self):
yield curr
# if there are children left, process them
if curr_index < len(curr_children):
curr_child = curr_children[curr_index]
# if the current child has children, go there
if curr_child.children:
child_index_stack.append(0)
curr = curr_child
curr_children = curr.children
curr_index = 0
# otherwise, yield that child
else:
yield curr_child
child_index_stack[-1] += 1
# if there are no children left, return self, and move to
# self's parent
else:
if include_self or (curr is not self):
yield curr
if curr is self:
break
curr = curr.parent
curr_children = curr.children
child_index_stack.pop()
child_index_stack[-1] += 1
def levelorder(self, include_self=True):
r"""Perform levelorder iteration over tree.
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
pre_and_postorder
tips
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> for node in tree.levelorder():
... print(node.name)
None
c
f
a
b
d
e
"""
queue = [self]
while queue:
curr = queue.pop(0)
if include_self or (curr is not self):
yield curr
if curr.children:
queue.extend(curr.children)
def tips(self, include_self=False):
r"""Iterate over tips descended from `self`.
Node order is consistent between calls and is ordered by a
postorder traversal of the tree.
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
pre_and_postorder
levelorder
non_tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> for node in tree.tips():
... print(node.name)
a
b
d
e
"""
for n in self.postorder(include_self=include_self):
if n.is_tip():
yield n
def non_tips(self, include_self=False):
r"""Iterate over nontips descended from self.
`include_self`, if `True` (default is False), will return the current
node as part of non_tips if it is a non_tip. Node order is consistent
between calls and is ordered by a postorder traversal of the tree.
Parameters
----------
include_self : bool
include the initial node if True
Yields
------
TreeNode
Traversed node.
See Also
--------
traverse
postorder
preorder
pre_and_postorder
levelorder
tips
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> for node in tree.non_tips():
... print(node.name)
c
f
"""
for n in self.postorder(include_self):
if not n.is_tip():
yield n
def invalidate_caches(self, attr=True):
r"""Delete lookup and attribute caches.
Parameters
----------
attr : bool, optional
If ``True``, invalidate attribute caches created by
`TreeNode.cache_attr`.
See Also
--------
create_caches
cache_attr
find
"""
if not self.is_root():
self.root().invalidate_caches()
else:
if hasattr(self, "_tip_cache"):
delattr(self, "_tip_cache")
if hasattr(self, "_non_tip_cache"):
delattr(self, "_non_tip_cache")
if hasattr(self, "_registered_caches") and attr:
for node in self.traverse():
for cache in self._registered_caches:
if hasattr(node, cache):
delattr(node, cache)
def create_caches(self):
r"""Construct an internal lookup table to facilitate searching by name.
Raises
------
DuplicateNodeError
The tip cache requires that names are unique (with the exception of
names that are ``None``).
See Also
--------
invalidate_caches
cache_attr
find
Notes
-----
This method will not cache nodes whose name is ``None``. This method
will raise ``DuplicateNodeError`` if a name conflict in the tips
is discovered, but will not raise if on internal nodes. This is
because, in practice, the tips of a tree are required to be unique
while no such requirement holds for internal nodes.
"""
if not self.is_root():
self.root().create_caches()
else:
if hasattr(self, "_tip_cache") and hasattr(self, "_non_tip_cache"):
return
self.invalidate_caches(attr=False)
tip_cache = {}
non_tip_cache = defaultdict(list)
for node in self.postorder():
name = node.name
if name is None:
continue
if node.is_tip():
if name in tip_cache:
raise DuplicateNodeError(
f"Tip with name '{name}' already exists."
)
tip_cache[name] = node
else:
non_tip_cache[name].append(node)
self._tip_cache = tip_cache
self._non_tip_cache = non_tip_cache
def find_all(self, name):
r"""Find all nodes that match `name`.
The first call to `find_all` will cache all nodes in the tree on the
assumption that additional calls to `find_all` will be made.
Parameters
----------
name : TreeNode or str
The name or node to find. If `name` is `TreeNode` then all other
nodes with the same name will be returned.
Raises
------
MissingNodeError
Raises if the node to be searched for is not found
Returns
-------
list of TreeNode
The nodes found
See Also
--------
find
find_by_id
find_by_func
Examples
--------
>>> from skbio.tree import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)d,(f,g)c);"])
>>> for node in tree.find_all('c'):
... print(node.name, node.children[0].name, node.children[1].name)
c a b
c f g
>>> for node in tree.find_all('d'):
... print(node.name, str(node))
d (d,e)d;
<BLANKLINE>
d d;
<BLANKLINE>
"""
root = self.root()
# if what is being passed in looks like a node, just return it
if isinstance(name, root.__class__):
return [name]
root.create_caches()
tip = root._tip_cache.get(name, None)
nodes = root._non_tip_cache.get(name, [])
nodes.append(tip) if tip is not None else None
if not nodes:
raise MissingNodeError(f"Node '{name}' is not in self.")
else:
return nodes
def find(self, name):
r"""Find a node by name.
Parameters
----------
name : TreeNode or str
The name of the node to find. If a ``TreeNode`` object is provided,
then it is simply returned.
Raises
------
MissingNodeError
Raises if the node to be searched for is not found.
Returns
-------
TreeNode
The found node.
See Also
--------
find_all
find_by_id
find_by_func
Notes
-----
The first call to ``find`` will cache all nodes in the tree on the
assumption that additional calls to ``find`` will be made.
``find`` will first attempt to find the node in the tips. If it cannot
find a corresponding tip, then it will search through the internal
nodes of the tree. In practice, phylogenetic trees and other common
trees in biology do not have unique internal node names. As a result,
this find method will only return the first occurrence of an internal
node encountered on a postorder traversal of the tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> print(tree.find('c').name)
c
"""
root = self.root()
# if what is being passed in looks like a node, just return it
if isinstance(name, root.__class__):
return name
root.create_caches()
node = root._tip_cache.get(name, None)
if node is None:
node = root._non_tip_cache.get(name, [None])[0]
if node is None:
raise MissingNodeError("Node %s is not in self" % name)
else:
return node
def find_by_id(self, node_id):
r"""Find a node by `id`.
This search method is based from the root.
Parameters
----------
node_id : int
The `id` of a node in the tree
Returns
-------
TreeNode
The tree node with the matching id
Notes
-----
This method does not cache id associations. A full traversal of the
tree is performed to find a node by an id on every call.
Raises
------
MissingNodeError
This method will raise if the `id` cannot be found
See Also
--------
find
find_all
find_by_func
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> print(tree.find_by_id(2).name)
d
"""
# if this method gets used frequently, then we should cache by ID
# as well
root = self.root()
root.assign_ids()
node = None
for n in self.traverse(include_self=True):
if n.id == node_id:
node = n
break
if node is None:
raise MissingNodeError("ID %d is not in self" % node_id)
else:
return node
def find_by_func(self, func):
r"""Find all nodes given a function.
This search method is based on the current subtree, not the root.
Parameters
----------
func : a function
A function that accepts a TreeNode and returns `True` or `False`,
where `True` indicates the node is to be yielded
Yields
------
TreeNode
Node found by `func`.
See Also
--------
find
find_all
find_by_id
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> func = lambda x: x.parent == tree.find('c')
>>> [n.name for n in tree.find_by_func(func)]
['a', 'b']
"""
for node in self.traverse(include_self=True):
if func(node):
yield node
def ancestors(self):
r"""Return all ancestors back to the root.
This call will return all nodes in the path back to root, but does not
include the node instance that the call was made from.
Returns
-------
list of TreeNode
The path, toward the root, from self
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> [node.name for node in tree.find('a').ancestors()]
['c', 'root']
"""
result = []
curr = self
while not curr.is_root():
result.append(curr.parent)
curr = curr.parent
return result
def root(self):
r"""Return root of the tree which contains `self`.
Returns
-------
TreeNode
The root of the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> tip_a = tree.find('a')
>>> root = tip_a.root()
>>> root == tree
True
"""
curr = self
while not curr.is_root():
curr = curr.parent
return curr
def siblings(self):
r"""Return all nodes that are `children` of `self` `parent`.
This call excludes `self` from the list.
Returns
-------
list of TreeNode
The list of sibling nodes relative to self
See Also
--------
neighbors
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e,f)g)root;"])
>>> tip_e = tree.find('e')
>>> [n.name for n in tip_e.siblings()]
['d', 'f']
"""
if self.is_root():
return []
result = self.parent.children[:]
result.remove(self)
return result
def neighbors(self, ignore=None):
r"""Return all nodes that are connected to self.
This call does not include `self` in the result
Parameters
----------
ignore : TreeNode
A node to ignore
Returns
-------
list of TreeNode
The list of all nodes that are connected to self
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> node_c = tree.find('c')
>>> [n.name for n in node_c.neighbors()]
['a', 'b', 'root']
"""
nodes = [n for n in self.children + [self.parent] if n is not None]
if ignore is None:
return nodes
else:
return [n for n in nodes if n is not ignore]
def lowest_common_ancestor(self, tipnames):
r"""Find lowest common ancestor for a list of tips.
Parameters
----------
tipnames : iterable of TreeNode or str
The nodes of interest
Returns
-------
TreeNode
The lowest common ancestor of the passed in nodes
Raises
------
ValueError
If no tips could be found in the tree, or if not all tips were
found.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> nodes = [tree.find('a'), tree.find('b')]
>>> lca = tree.lowest_common_ancestor(nodes)
>>> print(lca.name)
c
>>> nodes = [tree.find('a'), tree.find('e')]
>>> lca = tree.lca(nodes) # lca is an alias for convience
>>> print(lca.name)
root
"""
if len(tipnames) == 1:
return self.find(next(iter(tipnames)))
tips = [self.find(name) for name in tipnames]
if len(tips) == 0:
raise ValueError("No tips found.")
nodes_to_scrub = []
for t in tips:
if t.is_root():
# has to be the LCA...
return t
prev = t
curr = t.parent
while curr and not hasattr(curr, "black"):
setattr(curr, "black", [prev])
nodes_to_scrub.append(curr)
prev = curr
curr = curr.parent
# increase black count, multiple children lead to here
if curr:
curr.black.append(prev)
curr = self
while len(curr.black) == 1:
curr = curr.black[0]
# clean up tree
for n in nodes_to_scrub:
delattr(n, "black")
return curr
lca = lowest_common_ancestor # for convenience
@classonlymethod
def from_taxonomy(cls, lineage_map):
r"""Construct a tree from a taxonomy.
Parameters
----------
lineage_map : dict, iterable of tuples, or pd.DataFrame
Mapping of taxon IDs to lineages (iterables of taxonomic units
from high to low in ranking).
Returns
-------
TreeNode
The constructed taxonomy.
See Also
--------
from_taxdump
Examples
--------
>>> from skbio.tree import TreeNode
>>> lineages = [
... ('1', ['Bacteria', 'Firmicutes', 'Clostridia']),
... ('2', ['Bacteria', 'Firmicutes', 'Bacilli']),
... ('3', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
... ('4', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
... ('5', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
... ('6', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
... ('7', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
... ('8', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
... ('9', ['Bacteria', 'Bacteroidetes', 'Cytophagia'])]
>>> tree = TreeNode.from_taxonomy(lineages)
>>> print(tree.ascii_art())
/Clostridia-1
/Firmicutes
| \Bacilli- /-2
/Bacteria|
| | /-3
| | /Sphingobacteria
| \Bacteroidetes \-8
| |
---------| \Cytophagia-9
|
| /-4
| /Thermoplasmata
| | \-5
\Archaea- /Euryarchaeota
| /-6
\Halobacteria
\-7
"""
root = cls(name=None)
root._lookup = {}
if isinstance(lineage_map, dict):
lineage_map = lineage_map.items()
elif isinstance(lineage_map, pd.DataFrame):
lineage_map = ((idx, row.tolist()) for idx, row in lineage_map.iterrows())
for id_, lineage in lineage_map:
cur_node = root
# for each name, see if we've seen it, if not, add that puppy on
for name in lineage:
if name in cur_node._lookup:
cur_node = cur_node._lookup[name]
else:
new_node = cls(name=name)
new_node._lookup = {}
cur_node._lookup[name] = new_node
cur_node.append(new_node)
cur_node = new_node
cur_node.append(cls(name=id_))
# scrub the lookups
for node in root.non_tips(include_self=True):
del node._lookup
return root
def _balanced_distance_to_tip(self):
"""Return the distance to tip from this node.
The distance to every tip from this node must be equal for this to
return a correct result.
Returns
-------
int
The distance to tip of a length-balanced tree
"""
node = self
distance = 0
while node.has_children():
distance += node.children[0].length
node = node.children[0]
return distance
@classonlymethod
def from_linkage_matrix(cls, linkage_matrix, id_list):
"""Return tree from SciPy linkage matrix.
Parameters
----------
linkage_matrix : ndarray
A SciPy linkage matrix as returned by
`scipy.cluster.hierarchy.linkage`
id_list : list
The indices of the `id_list` will be used in the linkage_matrix
Returns
-------
TreeNode
An unrooted bifurcated tree
See Also
--------
scipy.cluster.hierarchy.linkage
"""
tip_width = len(id_list)
cluster_count = len(linkage_matrix)
lookup_len = cluster_count + tip_width
node_lookup = np.empty(lookup_len, dtype=cls)
for i, name in enumerate(id_list):
node_lookup[i] = cls(name=name)
for i in range(tip_width, lookup_len):
node_lookup[i] = cls()
newest_cluster_index = cluster_count + 1
for link in linkage_matrix:
child_a = node_lookup[int(link[0])]
child_b = node_lookup[int(link[1])]
path_length = link[2] / 2
child_a.length = path_length - child_a._balanced_distance_to_tip()
child_b.length = path_length - child_b._balanced_distance_to_tip()
new_cluster = node_lookup[newest_cluster_index]
new_cluster.append(child_a)
new_cluster.append(child_b)
newest_cluster_index += 1
return node_lookup[-1]
def to_taxonomy(self, allow_empty=False, filter_f=None):
"""Return a taxonomy representation of self.
Parameters
----------
allow_empty : bool, optional
Allow gaps the taxonomy (e.g., internal nodes without names).
filter_f : function, optional
Specify a filtering function that returns True if the lineage is
to be returned. This function must accept a ``TreeNode`` as its
first parameter, and a ``list`` that represents the lineage as the
second parameter.
Yields
------
tuple
``(tip, [lineage])`` where ``tip`` corresponds to a tip in the tree
and ``[lineage]`` is the expanded names from root to tip. ``None``
and empty strings are omitted from the lineage.
Notes
-----
If ``allow_empty`` is ``True`` and the root node does not have a name,
then that name will not be included. This is because it is common to
have multiple domains represented in the taxonomy, which would result
in a root node that does not have a name and does not make sense to
represent in the output.
Examples
--------
>>> from skbio.tree import TreeNode
>>> lineages = {'1': ['Bacteria', 'Firmicutes', 'Clostridia'],
... '2': ['Bacteria', 'Firmicutes', 'Bacilli'],
... '3': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
... '4': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
... '5': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
... '6': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
... '7': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
... '8': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
... '9': ['Bacteria', 'Bacteroidetes', 'Cytophagia']}
>>> tree = TreeNode.from_taxonomy(lineages.items())
>>> lineages = sorted([(n.name, l) for n, l in tree.to_taxonomy()])
>>> for name, lineage in lineages:
... print(name, '; '.join(lineage))
1 Bacteria; Firmicutes; Clostridia
2 Bacteria; Firmicutes; Bacilli
3 Bacteria; Bacteroidetes; Sphingobacteria
4 Archaea; Euryarchaeota; Thermoplasmata
5 Archaea; Euryarchaeota; Thermoplasmata
6 Archaea; Euryarchaeota; Halobacteria
7 Archaea; Euryarchaeota; Halobacteria
8 Bacteria; Bacteroidetes; Sphingobacteria
9 Bacteria; Bacteroidetes; Cytophagia
"""
if filter_f is None:
def filter_f(a, b):
return True
self.assign_ids()
seen = set()
lineage = []
# visit internal nodes while traversing out to the tips, and on the
# way back up
for node in self.traverse(self_before=True, self_after=True):
if node.is_tip():
if filter_f(node, lineage):
yield (node, lineage[:])
else:
if allow_empty:
if node.is_root() and not node.name:
continue
else:
if not node.name:
continue
if node.id in seen:
lineage.pop(-1)
else:
lineage.append(node.name)
seen.add(node.id)
def to_array(self, attrs=None, nan_length_value=None):
"""Return an array representation of self.
Parameters
----------
attrs : list of tuple or None
The attributes and types to return. The expected form is
[(attribute_name, type)]. If `None`, then `name`, `length`, and
`id` are returned.
nan_length_value : float, optional
If provided, replaces any `nan` in the branch length vector
(i.e., ``result['length']``) with this value. `nan` branch lengths
can arise from an edge not having a length (common for the root
node parent edge), which can making summing problematic.
Returns
-------
dict of array
{id_index: {id: TreeNode},
child_index: ((node_id, left_child_id, right_child_id)),
attr_1: array(...),
...
attr_N: array(...)}
Notes
-----
Attribute arrays are in index order such that TreeNode.id can be used
as a lookup into the array.
Examples
--------
>>> from skbio import TreeNode
>>> t = TreeNode.read(['(((a:1,b:2,c:3)x:4,(d:5)y:6)z:7);'])
>>> res = t.to_array()
>>> sorted(res.keys())
['child_index', 'id', 'id_index', 'length', 'name']
>>> res['child_index'] # doctest: +ELLIPSIS
array([[4, 0, 2],
[5, 3, 3],
[6, 4, 5],
[7, 6, 6]]...
>>> for k, v in res['id_index'].items():
... print(k, v)
...
0 a:1.0;
<BLANKLINE>
1 b:2.0;
<BLANKLINE>
2 c:3.0;
<BLANKLINE>
3 d:5.0;
<BLANKLINE>
4 (a:1.0,b:2.0,c:3.0)x:4.0;
<BLANKLINE>
5 (d:5.0)y:6.0;
<BLANKLINE>
6 ((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0;
<BLANKLINE>
7 (((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0);
<BLANKLINE>
>>> res['id']
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> res['name']
array(['a', 'b', 'c', 'd', 'x', 'y', 'z', None], dtype=object)
"""
if attrs is None:
attrs = [("name", object), ("length", float), ("id", int)]
else:
for attr, dtype in attrs:
if not hasattr(self, attr):
raise AttributeError("Invalid attribute '%s'." % attr)
id_index, child_index = self.index_tree()
n = self.id + 1 # assign_ids starts at 0
tmp = [np.zeros(n, dtype=dtype) for attr, dtype in attrs]
for node in self.traverse(include_self=True):
n_id = node.id
for idx, (attr, dtype) in enumerate(attrs):
tmp[idx][n_id] = getattr(node, attr)
results = {"id_index": id_index, "child_index": child_index}
results.update({attr: arr for (attr, dtype), arr in zip(attrs, tmp)})
if nan_length_value is not None:
length_v = results["length"]
length_v[np.isnan(length_v)] = nan_length_value
return results
def _ascii_art(self, char1="-", show_internal=True, compact=False):
LEN = 10
PAD = " " * LEN
PA = " " * (LEN - 1)
namestr = self._node_label()
if self.children:
mids = []
result = []
for c in self.children:
if c is self.children[0]:
char2 = "/"
elif c is self.children[-1]:
char2 = "\\"
else:
char2 = "-"
(clines, mid) = c._ascii_art(char2, show_internal, compact)
mids.append(mid + len(result))
result.extend(clines)
if not compact:
result.append("")
if not compact:
result.pop()
(lo, hi, end) = (mids[0], mids[-1], len(result))
prefixes = (
[PAD] * (lo + 1) + [PA + "|"] * (hi - lo - 1) + [PAD] * (end - hi)
)
mid = int(np.trunc((lo + hi) / 2))
prefixes[mid] = char1 + "-" * (LEN - 2) + prefixes[mid][-1]
result = [p + L for (p, L) in zip(prefixes, result)]
if show_internal:
stem = result[mid]
result[mid] = stem[0] + namestr + stem[len(namestr) + 1 :]
return (result, mid)
else:
return ([char1 + "-" + namestr], 0)
def ascii_art(self, show_internal=True, compact=False):
r"""Return a string containing an ascii drawing of the tree.
Note, this method calls a private recursive function and is not safe
for large trees.
Parameters
----------
show_internal : bool
includes internal edge names
compact : bool
use exactly one line per tip
Returns
-------
str
an ASCII formatted version of the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-root----|
| /-d
\f-------|
\-e
"""
(lines, mid) = self._ascii_art(show_internal=show_internal, compact=compact)
return "\n".join(lines)
def accumulate_to_ancestor(self, ancestor):
r"""Return the sum of the distance between self and ancestor.
Parameters
----------
ancestor : TreeNode
The node of the ancestor to accumulate distance too
Returns
-------
float
The sum of lengths between self and ancestor
Raises
------
NoParentError
A NoParentError is raised if the ancestor is not an ancestor of
self
NoLengthError
A NoLengthError is raised if one of the nodes between self and
ancestor (including self) lacks a `length` attribute
See Also
--------
distance
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> root = tree
>>> tree.find('a').accumulate_to_ancestor(root)
4.0
"""
accum = 0.0
curr = self
while curr is not ancestor:
if curr.is_root():
raise NoParentError("Provided ancestor is not in the path")
if curr.length is None:
raise NoLengthError(
"No length on node %s found." % curr.name or "unnamed"
)
accum += curr.length
curr = curr.parent
return accum
def distance(self, other):
"""Return the distance between self and other.
This method can be used to compute the distances between two tips,
however, it is not optimized for computing pairwise tip distances.
Parameters
----------
other : TreeNode
The node to compute a distance to
Returns
-------
float
The distance between two nodes
Raises
------
NoLengthError
A NoLengthError will be raised if a node without `length` is
encountered
See Also
--------
tip_tip_distances
accumulate_to_ancestor
compare_tip_distances
get_max_distance
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> tip_a = tree.find('a')
>>> tip_d = tree.find('d')
>>> tip_a.distance(tip_d)
14.0
"""
if self is other:
return 0.0
self_ancestors = [self] + list(self.ancestors())
other_ancestors = [other] + list(other.ancestors())
if self in other_ancestors:
return other.accumulate_to_ancestor(self)
elif other in self_ancestors:
return self.accumulate_to_ancestor(other)
else:
root = self.root()
lca = root.lowest_common_ancestor([self, other])
accum = self.accumulate_to_ancestor(lca)
accum += other.accumulate_to_ancestor(lca)
return accum
def _set_max_distance(self):
"""Propagate tip distance information up the tree.
This method was originally implemented by Julia Goodrich with the
intent of being able to determine max tip to tip distances between
nodes on large trees efficiently. The code has been modified to track
the specific tips the distance is between
"""
maxkey = itemgetter(0)
for n in self.postorder():
if n.is_tip():
n.MaxDistTips = ((0.0, n), (0.0, n))
else:
if len(n.children) == 1:
raise TreeError("No support for single descedent nodes")
else:
tip_info = [(max(c.MaxDistTips, key=maxkey), c) for c in n.children]
dists = [i[0][0] for i in tip_info]
best_idx = np.argsort(dists)[-2:]
(tip_a_d, tip_a), child_a = tip_info[best_idx[0]]
(tip_b_d, tip_b), child_b = tip_info[best_idx[1]]
tip_a_d += child_a.length or 0.0
tip_b_d += child_b.length or 0.0
n.MaxDistTips = ((tip_a_d, tip_a), (tip_b_d, tip_b))
def _get_max_distance_singledesc(self):
"""Return the max distance between any pair of tips.
Also returns the tip names that it is between as a tuple
"""
distmtx = self.tip_tip_distances()
idx_max = divmod(distmtx.data.argmax(), distmtx.shape[1])
max_pair = (distmtx.ids[idx_max[0]], distmtx.ids[idx_max[1]])
return distmtx[idx_max], max_pair
def get_max_distance(self):
"""Return the max tip tip distance between any pair of tips.
Returns
-------
float
The distance between the two most distant tips in the tree
tuple of TreeNode
The two most distant tips in the tree
Raises
------
NoLengthError
A NoLengthError will be thrown if a node without length is
encountered
See Also
--------
distance
tip_tip_distances
compare_tip_distances
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> dist, tips = tree.get_max_distance()
>>> dist
16.0
>>> [n.name for n in tips]
['b', 'e']
"""
# _set_max_distance will throw a TreeError if a node with a single
# child is encountered
try:
self._set_max_distance()
except TreeError: #
return self._get_max_distance_singledesc()
longest = 0.0
tips = [None, None]
for n in self.non_tips(include_self=True):
tip_a, tip_b = n.MaxDistTips
dist = tip_a[0] + tip_b[0]
if dist > longest:
longest = dist
tips = [tip_a[1], tip_b[1]]
# The MaxDistTips attribute causes problems during deep copy because it
# contains references to other nodes. This patch removes the attribute.
for n in self.traverse():
del n.MaxDistTips
return longest, tips
def tip_tip_distances(self, endpoints=None):
"""Return distance matrix between pairs of tips, and a tip order.
By default, all pairwise distances are calculated in the tree. If
`endpoints` are specified, then only the distances between those tips
are computed.
Parameters
----------
endpoints : list of TreeNode or str, or None
A list of TreeNode objects or names of TreeNode objects
Returns
-------
DistanceMatrix
The distance matrix
Raises
------
ValueError
If any of the specified `endpoints` are not tips
See Also
--------
distance
compare_tip_distances
Notes
-----
If a node does not have an associated length, 0.0 will be used and a
``RepresentationWarning`` will be raised.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> mat = tree.tip_tip_distances()
>>> print(mat)
4x4 distance matrix
IDs:
'a', 'b', 'd', 'e'
Data:
[[ 0. 3. 14. 15.]
[ 3. 0. 15. 16.]
[ 14. 15. 0. 9.]
[ 15. 16. 9. 0.]]
"""
all_tips = list(self.tips())
if endpoints is None:
tip_order = all_tips
else:
tip_order = [self.find(n) for n in endpoints]
for n in tip_order:
if not n.is_tip():
raise ValueError("Node with name '%s' is not a tip." % n.name)
# linearize all tips in postorder
# .__start, .__stop compose the slice in tip_order.
for i, node in enumerate(all_tips):
node.__start, node.__stop = i, i + 1
# the result map provides index in the result matrix
result_map = {n.__start: i for i, n in enumerate(tip_order)}
num_all_tips = len(all_tips) # total number of tips
num_tips = len(tip_order) # total number of tips in result
result = np.zeros((num_tips, num_tips), float) # tip by tip matrix
distances = np.zeros((num_all_tips), float) # dist from tip to tip
def update_result():
# set tip_tip distance between tips of different child
for child1, child2 in combinations(node.children, 2):
for tip1 in range(child1.__start, child1.__stop):
if tip1 not in result_map:
continue
t1idx = result_map[tip1]
for tip2 in range(child2.__start, child2.__stop):
if tip2 not in result_map:
continue
t2idx = result_map[tip2]
result[t1idx, t2idx] = distances[tip1] + distances[tip2]
for node in self.postorder():
if not node.children:
continue
# subtree with solved child wedges
# can possibly use np.zeros
starts, stops = [], [] # to calc ._start and ._stop for curr node
for child in node.children:
length = child.length
if length is None:
warn(
"`TreeNode.tip_tip_distances`: Node with name %r does "
"not have an associated length, so a length of 0.0 "
"will be used." % child.name,
RepresentationWarning,
)
length = 0.0
distances[child.__start : child.__stop] += length
starts.append(child.__start)
stops.append(child.__stop)
node.__start, node.__stop = min(starts), max(stops)
if len(node.children) > 1:
update_result()
return DistanceMatrix(result + result.T, [n.name for n in tip_order])
def compare_rfd(self, other, proportion=False):
"""Calculate the Robinson and Foulds symmetric difference.
Parameters
----------
other : TreeNode
A tree to compare against
proportion : bool
Return a proportional difference
Returns
-------
float
The distance between the trees
Notes
-----
Implementation based off of code by Julia Goodrich. The original
description of the algorithm can be found in [1]_.
Raises
------
ValueError
If the tip names between `self` and `other` are equal.
See Also
--------
compare_subsets
compare_tip_distances
References
----------
.. [1] Comparison of phylogenetic trees. Robinson and Foulds.
Mathematical Biosciences. 1981. 53:131-141
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a,b),(c,d));"])
>>> tree2 = TreeNode.read(["(((a,b),c),d);"])
>>> tree1.compare_rfd(tree2)
2.0
"""
t1names = {n.name for n in self.tips()}
t2names = {n.name for n in other.tips()}
if t1names != t2names:
if t1names < t2names:
tree1 = self
tree2 = other.shear(t1names)
else:
tree1 = self.shear(t2names)
tree2 = other
else:
tree1 = self
tree2 = other
tree1_sets = tree1.subsets()
tree2_sets = tree2.subsets()
not_in_both = tree1_sets.symmetric_difference(tree2_sets)
dist = float(len(not_in_both))
if proportion:
total_subsets = len(tree1_sets) + len(tree2_sets)
dist /= total_subsets
return dist
def compare_subsets(self, other, exclude_absent_taxa=False):
"""Return fraction of overlapping subsets where self and other differ.
Names present in only one of the two trees will count as mismatches,
if you don't want this behavior, strip out the non-matching tips first.
Parameters
----------
other : TreeNode
The tree to compare
exclude_absent_taxa : bool
Strip out names that don't occur in both trees
Returns
-------
float
The fraction of overlapping subsets that differ between the trees
See Also
--------
compare_rfd
compare_tip_distances
subsets
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a,b),(c,d));"])
>>> tree2 = TreeNode.read(["(((a,b),c),d);"])
>>> tree1.compare_subsets(tree2)
0.5
"""
self_sets, other_sets = self.subsets(), other.subsets()
if exclude_absent_taxa:
in_both = self.subset() & other.subset()
self_sets = (i & in_both for i in self_sets)
self_sets = frozenset({i for i in self_sets if len(i) > 1})
other_sets = (i & in_both for i in other_sets)
other_sets = frozenset({i for i in other_sets if len(i) > 1})
total_subsets = len(self_sets) + len(other_sets)
intersection_length = len(self_sets & other_sets)
if not total_subsets: # no common subsets after filtering, so max dist
return 1
return 1 - (2 * intersection_length / float(total_subsets))
def compare_tip_distances(
self, other, sample=None, dist_f=distance_from_r, shuffle_f=np.random.shuffle
):
"""Compare self to other using tip-to-tip distance matrices.
Value returned is `dist_f(m1, m2)` for the two matrices. Default is
to use the Pearson correlation coefficient, with +1 giving a distance
of 0 and -1 giving a distance of +1 (the maximum possible value).
Depending on the application, you might instead want to use
distance_from_r_squared, which counts correlations of both +1 and -1
as identical (0 distance).
Note: automatically strips out the names that don't match (this is
necessary for this method because the distance between non-matching
names and matching names is undefined in the tree where they don't
match, and because we need to reorder the names in the two trees to
match up the distance matrices).
Parameters
----------
other : TreeNode
The tree to compare
sample : int or None
Randomly subsample the tips in common between the trees to
compare. This is useful when comparing very large trees.
dist_f : function
The distance function used to compare two the tip-tip distance
matrices
shuffle_f : function
The shuffling function used if `sample` is not None
Returns
-------
float
The distance between the trees
Raises
------
ValueError
A ValueError is raised if there does not exist common tips
between the trees
See Also
--------
compare_subsets
compare_rfd
Examples
--------
>>> from skbio import TreeNode
>>> # note, only three common taxa between the trees
>>> tree1 = TreeNode.read(["((a:1,b:1):2,(c:0.5,X:0.7):3);"])
>>> tree2 = TreeNode.read(["(((a:1,b:1,Y:1):2,c:3):1,Z:4);"])
>>> dist = tree1.compare_tip_distances(tree2)
>>> print("%.9f" % dist)
0.000133446
"""
self_names = {i.name: i for i in self.tips()}
other_names = {i.name: i for i in other.tips()}
common_names = frozenset(self_names) & frozenset(other_names)
common_names = list(common_names)
if not common_names:
raise ValueError("No tip names in common between the two trees.")
if len(common_names) <= 2:
return 1 # the two trees must match by definition in this case
if sample is not None:
shuffle_f(common_names)
common_names = common_names[:sample]
self_nodes = [self_names[k] for k in common_names]
other_nodes = [other_names[k] for k in common_names]
self_matrix = self.tip_tip_distances(endpoints=self_nodes)
other_matrix = other.tip_tip_distances(endpoints=other_nodes)
return dist_f(self_matrix, other_matrix)
def bifurcate(self, insert_length=None):
r"""Reorder the tree into a bifurcating tree.
All nodes that have more than two children will have additional
intermediate nodes inserted to ensure that every node has only two
children.
Parameters
----------
insert_length : int, optional
The branch length assigned to all inserted nodes.
See Also
--------
prune
Notes
-----
Any nodes that have a single child can be collapsed using the
prune method to create strictly bifurcating trees.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b,g,h)c,(d,e)f)root;"])
>>> print(tree.ascii_art())
/-a
|
|--b
/c-------|
| |--g
| |
-root----| \-h
|
| /-d
\f-------|
\-e
>>> tree.bifurcate()
>>> print(tree.ascii_art())
/-h
/c-------|
| | /-g
| \--------|
| | /-a
-root----| \--------|
| \-b
|
| /-d
\f-------|
\-e
"""
for n in self.traverse(include_self=True):
if len(n.children) > 2:
stack = n.children
while len(stack) > 2:
ind = stack.pop()
intermediate = self.__class__()
intermediate.length = insert_length
intermediate.extend(stack)
n.append(intermediate)
for k in stack:
n.remove(k)
n.extend([ind, intermediate])
def index_tree(self):
"""Index a tree for rapid lookups within a tree array.
Indexes nodes in-place as `n._leaf_index`.
Returns
-------
dict
A mapping {node_id: TreeNode}
np.array of ints
This arrays describes the IDs of every internal node, and the ID
range of the immediate descendents. The first column in the array
corresponds to node_id. The second column is the left most
descendent's ID. The third column is the right most descendent's
ID.
"""
self.assign_ids()
id_index = {}
child_index = []
for n in self.postorder():
for c in n.children:
id_index[c.id] = c
if c:
# c has children itself, so need to add to result
child_index.append((c.id, c.children[0].id, c.children[-1].id))
# handle root, which should be t itself
id_index[self.id] = self
# only want to add to the child_index if self has children...
if self.children:
child_index.append((self.id, self.children[0].id, self.children[-1].id))
child_index = np.asarray(child_index, dtype=np.int64)
child_index = np.atleast_2d(child_index)
return id_index, child_index
def assign_ids(self):
"""Assign topologically stable unique ids to self.
Following the call, all nodes in the tree will have their id
attribute set.
"""
curr_index = 0
for n in self.postorder():
for c in n.children:
c.id = curr_index
curr_index += 1
self.id = curr_index
def descending_branch_length(self, tip_subset=None):
"""Find total descending branch length from self or subset of self tips.
Parameters
----------
tip_subset : Iterable, or None
If None, the total descending branch length for all tips in the
tree will be returned. If a list of tips is provided then only the
total descending branch length associated with those tips will be
returned.
Returns
-------
float
The total descending branch length for the specified set of tips.
Raises
------
ValueError
A ValueError is raised if the list of tips supplied to tip_subset
contains internal nodes or non-tips.
Notes
-----
This function replicates cogent's totalDescendingBranch Length method
and extends that method to allow the calculation of total descending
branch length of a subset of the tips if requested. The postorder
guarantees that the function will always be able to add the descending
branch length if the node is not a tip.
Nodes with no length will have their length set to 0. The root length
(if it exists) is ignored.
Examples
--------
>>> from skbio import TreeNode
>>> tr = TreeNode.read(["(((A:.1,B:1.2)C:.6,(D:.9,E:.6)F:.9)G:2.4,"
... "(H:.4,I:.5)J:1.3)K;"])
>>> tdbl = tr.descending_branch_length()
>>> sdbl = tr.descending_branch_length(['A','E'])
>>> print(round(tdbl, 1), round(sdbl, 1))
8.9 2.2
"""
self.assign_ids()
if tip_subset is not None:
all_tips = self.subset()
if not set(tip_subset).issubset(all_tips):
raise ValueError("tip_subset contains ids that aren't tip " "names.")
lca = self.lowest_common_ancestor(tip_subset)
ancestors = {}
for tip in tip_subset:
curr = self.find(tip)
while curr is not lca:
ancestors[curr.id] = curr.length if curr.length is not None else 0.0
curr = curr.parent
return sum(ancestors.values())
else:
return sum(
n.length
for n in self.postorder(include_self=False)
if n.length is not None
)
def cache_attr(self, func, cache_attrname, cache_type=list):
"""Cache attributes on internal nodes of the tree.
Parameters
----------
func : function
func will be provided the node currently being evaluated and must
return a list of item (or items) to cache from that node or an
empty list.
cache_attrname : str
Name of the attribute to decorate on containing the cached values
cache_type : {set, frozenset, list}
The type of the cache
Notes
-----
This method is particularly useful if you need to frequently look up
attributes that would normally require a traversal of the tree.
WARNING: any cache created by this method will be invalidated if the
topology of the tree changes (e.g., if `TreeNode.invalidate_caches` is
called).
Raises
------
TypeError
If an cache_type that is not a `set` or a `list` is specified.
Examples
--------
Cache the tip names of the tree on its internal nodes
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b,(c,d)e)f,(g,h)i)root;"])
>>> f = lambda n: [n.name] if n.is_tip() else []
>>> tree.cache_attr(f, 'tip_names')
>>> for n in tree.traverse(include_self=True):
... print("Node name: %s, cache: %r" % (n.name, n.tip_names))
Node name: root, cache: ['a', 'b', 'c', 'd', 'g', 'h']
Node name: f, cache: ['a', 'b', 'c', 'd']
Node name: a, cache: ['a']
Node name: b, cache: ['b']
Node name: e, cache: ['c', 'd']
Node name: c, cache: ['c']
Node name: d, cache: ['d']
Node name: i, cache: ['g', 'h']
Node name: g, cache: ['g']
Node name: h, cache: ['h']
"""
if cache_type in (set, frozenset):
def reduce_f(a, b):
return a | b
elif cache_type is list:
def reduce_f(a, b):
return a + b
else:
raise TypeError("Only list, set and frozenset are supported.")
for node in self.postorder(include_self=True):
if not hasattr(node, "_registered_caches"):
node._registered_caches = set()
node._registered_caches.add(cache_attrname)
cached = [getattr(c, cache_attrname) for c in node.children]
cached.append(cache_type(func(node)))
setattr(node, cache_attrname, reduce(reduce_f, cached))
def shuffle(self, k=None, names=None, shuffle_f=np.random.shuffle, n=1):
"""Yield trees with shuffled tip names.
Parameters
----------
k : int, optional
The number of tips to shuffle. If k is not `None`, k tips are
randomly selected, and only those names will be shuffled.
names : list, optional
The specific tip names to shuffle. k and names cannot be specified
at the same time.
shuffle_f : func
Shuffle method, this function must accept a list and modify
inplace.
n : int, optional
The number of iterations to perform. Value must be > 0 and `np.inf`
can be specified for an infinite number of iterations.
Notes
-----
Tip names are shuffled inplace. If neither `k` nor `names` are
provided, all tips are shuffled.
Yields
------
TreeNode
Tree with shuffled tip names.
Raises
------
ValueError
If `k` is < 2
If `n` is < 1
ValueError
If both `k` and `names` are specified
MissingNodeError
If `names` is specified but one of the names cannot be found
Examples
--------
Alternate the names on two of the tips, 'a', and 'b', and do this 5
times.
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b),(c,d));"])
>>> rev = lambda items: items.reverse()
>>> shuffler = tree.shuffle(names=['a', 'b'], shuffle_f=rev, n=5)
>>> for shuffled_tree in shuffler:
... print(shuffled_tree)
((b,a),(c,d));
<BLANKLINE>
((a,b),(c,d));
<BLANKLINE>
((b,a),(c,d));
<BLANKLINE>
((a,b),(c,d));
<BLANKLINE>
((b,a),(c,d));
<BLANKLINE>
"""
if k is not None and k < 2:
raise ValueError("k must be None or >= 2")
if k is not None and names is not None:
raise ValueError("n and names cannot be specified at the sametime")
if n < 1:
raise ValueError("n must be > 0")
self.assign_ids()
if names is None:
all_tips = list(self.tips())
if n is None:
n = len(all_tips)
shuffle_f(all_tips)
names = [tip.name for tip in all_tips[:k]]
nodes = [self.find(name) for name in names]
# Since the names are being shuffled, the association between ID and
# name is no longer reliable
self.invalidate_caches()
counter = 0
while counter < n:
shuffle_f(names)
for node, name in zip(nodes, names):
node.name = name
yield self
counter += 1
def _extract_support(self):
"""Extract the support value from a node label, if available.
Returns
-------
tuple of
int, float or None
The support value extracted from the node label
str or None
The node label with the support value stripped
"""
support, label = None, None
if self.name:
# separate support value from node name by the first colon
left, _, right = self.name.partition(":")
try:
support = int(left)
except ValueError:
try:
support = float(left)
except ValueError:
pass
# strip support value from node name
label = right or None if support is not None else self.name
return support, label
def _node_label(self):
"""Generate a node label.
The label will be in the format of "support:name" if both exist,
or "support" or "name" if either exists.
Returns
-------
str
Generated node label
"""
lblst = []
if self.support is not None: # prevents support of NoneType
lblst.append(str(self.support))
if self.name: # prevents name of NoneType
lblst.append(self.name)
return ":".join(lblst)
def assign_supports(self):
"""Extract support values from internal node labels of a tree.
Notes
-----
A "support value" measures the confidence or frequency of the incoming
branch (the branch from parent to self) of an internal node in a tree.
Roots and tips do not have support values. To extract a support value
from a node label, this method reads from left and stops at the first
":" (if any), and attempts to convert it to a number.
For examples: "(a,b)1.0", "(a,b)1.0:2.5", and "(a,b)'1.0:species_A'".
In these cases the support values are all 1.0.
For examples: "(a,b):1.0" and "(a,b)species_A". In these cases there
are no support values.
If a support value is successfully extracted, it will be stripped from
the node label and assigned to the `support` property.
IMPORTANT: mathematically, "support value" is a property of a branch,
not a node, although they are usually attached to nodes in tree file
formats [1]_.
References
----------
.. [1] Czech, Lucas, Jaime Huerta-Cepas, and Alexandros Stamatakis. "A
Critical Review on the Use of Support Values in Tree Viewers and
Bioinformatics Toolkits." Molecular biology and evolution 34.6
(2017): 1535-1542.
Examples
--------
>>> from skbio import TreeNode
>>> newick = "((a,b)95,(c,d):1.1,(e,f)'80:speciesA':1.0);"
>>> tree = TreeNode.read([newick])
>>> tree.assign_supports()
>>> tree.lca(['a', 'b']).support
95
>>> tree.lca(['c', 'd']).support is None
True
>>> tree.lca(['e', 'f']).support
80
>>> tree.lca(['e', 'f']).name
'speciesA'
"""
for node in self.traverse():
if node.is_root() or node.is_tip():
node.support = None
else:
node.support, node.name = node._extract_support()
def unpack(self):
"""Unpack an internal node in place.
Notes
-----
This method sequentially: 1) elongates child nodes by branch length
of self (omit if there is no branch length), 2) removes self from
parent node, and 3) grafts child nodes to parent node.
Raises
------
ValueError
If input node is root or tip.
See Also
--------
unpack_by_func
prune
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['((c:2.0,d:3.0)a:1.0,(e:2.0,f:1.0)b:2.0);'])
>>> tree.find('b').unpack()
>>> print(tree)
((c:2.0,d:3.0)a:1.0,e:4.0,f:3.0);
<BLANKLINE>
"""
if self.is_root():
raise TreeError("Cannot unpack root.")
if self.is_tip():
raise TreeError("Cannot unpack tip.")
parent = self.parent
blen = self.length or 0.0
for child in self.children:
clen = child.length or 0.0
child.length = clen + blen or None
parent.remove(self)
parent.extend(self.children)
def unpack_by_func(self, func):
"""Unpack internal nodes of a tree that meet certain criteria.
Parameters
----------
func : function
a function that accepts a TreeNode and returns `True` or `False`,
where `True` indicates the node is to be unpacked
See Also
--------
unpack
prune
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['((c:2,d:3)a:1,(e:1,f:2)b:2);'])
>>> tree.unpack_by_func(lambda x: x.length <= 1)
>>> print(tree)
((e:1.0,f:2.0)b:2.0,c:3.0,d:4.0);
<BLANKLINE>
>>> tree = TreeNode.read(['(((a,b)85,(c,d)78)75,(e,(f,g)64)80);'])
>>> tree.assign_supports()
>>> tree.unpack_by_func(lambda x: x.support < 75)
>>> print(tree)
(((a,b)85,(c,d)78)75,(e,f,g)80);
<BLANKLINE>
"""
nodes_to_unpack = []
for node in self.non_tips(include_self=False):
if func(node):
nodes_to_unpack.append(node)
for node in nodes_to_unpack:
node.unpack()
@classonlymethod
def from_taxdump(cls, nodes, names=None):
r"""Construct a tree from the NCBI taxonomy database.
Parameters
----------
nodes : pd.DataFrame
Taxon hierarchy
names : pd.DataFrame or dict, optional
Taxon names
Returns
-------
TreeNode
The constructed tree
Notes
-----
``nodes`` and ``names`` correspond to "nodes.dmp" and "names.dmp" of
the NCBI taxonomy database. The should be read into data frames using
``skbio.io.read`` prior to this operation. Alternatively, ``names``
may be provided as a dictionary. If ``names`` is omitted, taxonomy IDs
be used as taxon names.
Raises
------
ValueError
If there is no top-level node
ValueError
If there are more than one top-level node
See Also
--------
from_taxonomy
skbio.io.format.taxdump
Examples
--------
>>> import pandas as pd
>>> from skbio.tree import TreeNode
>>> nodes = pd.DataFrame([
... [1, 1, 'no rank'],
... [2, 1, 'domain'],
... [3, 1, 'domain'],
... [4, 2, 'phylum'],
... [5, 2, 'phylum']], columns=[
... 'tax_id', 'parent_tax_id', 'rank']).set_index('tax_id')
>>> names = {1: 'root', 2: 'Bacteria', 3: 'Archaea',
... 4: 'Firmicutes', 5: 'Bacteroidetes'}
>>> tree = TreeNode.from_taxdump(nodes, names)
>>> print(tree.ascii_art())
/-Firmicutes
/Bacteria|
-root----| \-Bacteroidetes
|
\-Archaea
"""
# identify top level of hierarchy
tops = nodes[nodes["parent_tax_id"] == nodes.index]
# validate root uniqueness
n_top = tops.shape[0]
if n_top == 0:
raise ValueError("There is no top-level node.")
elif n_top > 1:
raise ValueError("There are more than one top-level node.")
# get root taxid
root_id = tops.index[0]
# get parent-to-child(ren) map
to_children = {
p: g.index.tolist()
for p, g in nodes[nodes.index != root_id].groupby("parent_tax_id")
}
# get rank map
ranks = nodes["rank"].to_dict()
# get taxon-to-name map
# if not provided, use tax_id as name
if names is None:
names = {x: str(x) for x in nodes.index}
# use "scientific name" as name
elif isinstance(names, pd.DataFrame):
names = names[names["name_class"] == "scientific name"][
"name_txt"
].to_dict()
# initiate tree
tree = cls(names[root_id])
tree.id = root_id
tree.rank = ranks[root_id]
# helper for extending tree
def _extend_tree(node):
self_id = node.id
if self_id not in to_children:
return
children = []
for id_ in to_children[self_id]:
child = TreeNode(names[id_])
child.id = id_
child.rank = ranks[id_]
_extend_tree(child)
children.append(child)
node.extend(children)
# extend tree
_extend_tree(tree)
return tree
|