File: test_nj.py

package info (click to toggle)
python-skbio 0.6.2-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 9,312 kB
  • sloc: python: 60,482; ansic: 672; makefile: 224
file content (417 lines) | stat: -rw-r--r-- 18,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io
from unittest import TestCase, main

from skbio import DistanceMatrix, TreeNode, nj
from skbio.tree._nj import (
    _compute_q, _compute_collapsed_dm, _lowest_index,
    _pair_members_to_new_node, nni, _perform_swap,
    _average_distance, _tip_or_root,
    _average_distance_upper, _subtree_count,
    _swap_length, _swap_heap, _average_subtree_distance,
    _average_distance_matrix, _edge_estimation)


class NjTests(TestCase):

    def setUp(self):
        data1 = [[0,  5,  9,  9,  8],
                 [5,  0, 10, 10,  9],
                 [9, 10,  0,  8,  7],
                 [9, 10,  8,  0,  3],
                 [8,  9,  7,  3,  0]]
        ids1 = list('abcde')
        self.dm1 = DistanceMatrix(data1, ids1)
        # this newick string was confirmed against http://www.trex.uqam.ca/
        # which generated the following (isomorphic) newick string:
        # (d:2.0000,e:1.0000,(c:4.0000,(a:2.0000,b:3.0000):3.0000):2.0000);
        self.expected1_str = ("(d:2.000000, (c:4.000000, (b:3.000000,"
                              " a:2.000000):3.000000):2.000000, e:1.000000);")
        self.expected1_TreeNode = TreeNode.read(
                io.StringIO(self.expected1_str))
        # For nni testing an arbitrary tree is given alongside the distance
        # matrix. Tree topologies are equivalent to that of the unrooted tree
        # of the above newick string.
        self.pre1_nni_str = ("(((b,d),(e,c)))a;")
        self.pre1_nni_TreeNode = TreeNode.read(
                io.StringIO(self.pre1_nni_str))
        self.post1_nni_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
        self.post1_nni_TreeNode = TreeNode.read(
                io.StringIO(self.post1_nni_str))

        # this example was pulled from the Phylip manual
        # http://evolution.genetics.washington.edu/phylip/doc/neighbor.html
        data2 = [[0.0000, 1.6866, 1.7198, 1.6606, 1.5243, 1.6043, 1.5905],
                 [1.6866, 0.0000, 1.5232, 1.4841, 1.4465, 1.4389, 1.4629],
                 [1.7198, 1.5232, 0.0000, 0.7115, 0.5958, 0.6179, 0.5583],
                 [1.6606, 1.4841, 0.7115, 0.0000, 0.4631, 0.5061, 0.4710],
                 [1.5243, 1.4465, 0.5958, 0.4631, 0.0000, 0.3484, 0.3083],
                 [1.6043, 1.4389, 0.6179, 0.5061, 0.3484, 0.0000, 0.2692],
                 [1.5905, 1.4629, 0.5583, 0.4710, 0.3083, 0.2692, 0.0000]]
        ids2 = ["Bovine", "Mouse", "Gibbon", "Orang", "Gorilla", "Chimp",
                "Human"]
        self.dm2 = DistanceMatrix(data2, ids2)
        self.expected2_str = ("(Mouse:0.76891, (Gibbon:0.35793, (Orang:0.28469"
                              ", (Gorilla:0.15393, (Chimp:0.15167, Human:0.117"
                              "53):0.03982):0.02696):0.04648):0.42027, Bovine:"
                              "0.91769);")
        self.expected2_TreeNode = TreeNode.read(
                io.StringIO(self.expected2_str))
        self.pre2_nni_str = ("(((Mouse,Gorilla),(Gibbon,(Bovine,(Orang"
                             ",Chimp)))))Human;")
        self.pre2_nni_TreeNode = TreeNode.read(
                io.StringIO(self.pre2_nni_str))
        self.post2_nni_str = ("((((((Bovine:0.9117125,Mouse:0.7748875):0.42773"
                              "33,Gibbon:0.3504666):0.0408666,Orang:0.2809083)"
                              ":0.0345694,Gorilla:0.1475249):0.0414812,Chimp:0"
                              ".1470600):0.1221399)Human;")
        self.post2_nni_TreeNode = TreeNode.read(
                io.StringIO(self.post2_nni_str))

        data3 = [[0, 5, 4, 7, 6, 8],
                 [5, 0, 7, 10, 9, 11],
                 [4, 7, 0, 7, 6, 8],
                 [7, 10, 7, 0, 5, 8],
                 [6, 9, 6, 5, 0, 8],
                 [8, 11, 8, 8, 8, 0]]
        ids3 = map(str, range(6))
        self.dm3 = DistanceMatrix(data3, ids3)
        self.expected3_str = ("((((0:1.000000,1:4.000000):1.000000,2:2.000000"
                              "):1.250000,5:4.750000):0.750000,3:2.750000,4:2."
                              "250000);")
        self.expected3_TreeNode = TreeNode.read(
                io.StringIO(self.expected3_str))
        self.pre3_nni_str = ("((1,(((5,2),4),3)))0;")
        self.pre3_nni_TreeNode = TreeNode.read(
                io.StringIO(self.pre3_nni_str))
        self.post3_nni_str = ("((1:4.0,((5:4.75,(4:2.0,3:3.0):0.75):1.25"
                              ",2:2.0):1.0):1.0)0;")
        self.post3_nni_TreeNode = TreeNode.read(
                io.StringIO(self.post3_nni_str))

        # this dm can yield negative branch lengths for both nj and nni
        data4 = [[0,  5,  9,  9,  800],
                 [5,  0, 10, 10,  9],
                 [9, 10,  0,  8,  7],
                 [9, 10,  8,  0,  3],
                 [800,  9,  7,  3,  0]]
        ids4 = list('abcde')
        self.dm4 = DistanceMatrix(data4, ids4)

    def test_nj_dm1(self):
        self.assertEqual(nj(self.dm1, result_constructor=str),
                         self.expected1_str)
        # what is the correct way to compare TreeNode objects for equality?
        actual_TreeNode = nj(self.dm1)
        # precision error on ARM: 1.6653345369377348e-16 != 0.0
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.expected1_TreeNode), 0.0, places=10)

    def test_nj_dm2(self):
        actual_TreeNode = nj(self.dm2)
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.expected2_TreeNode), 0.0)

    def test_nj_dm3(self):
        actual_TreeNode = nj(self.dm3)
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.expected3_TreeNode), 0.0)

    def test_nj_zero_branch_length(self):
        # no nodes have negative branch length when we disallow negative
        # branch length. self is excluded as branch length is None
        tree = nj(self.dm4)
        for n in tree.postorder(include_self=False):
            self.assertTrue(n.length >= 0)
        # only tips associated with the large distance in the input
        # have positive branch lengths when we allow negative branch
        # length
        tree = nj(self.dm4, False)
        self.assertTrue(tree.find('a').length > 0)
        self.assertTrue(tree.find('b').length < 0)
        self.assertTrue(tree.find('c').length < 0)
        self.assertTrue(tree.find('d').length < 0)
        self.assertTrue(tree.find('e').length > 0)

    def test_nj_trivial(self):
        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        dm = DistanceMatrix(data, list('abc'))
        expected_str = "(b:2.000000, a:1.000000, c:1.000000);"
        self.assertEqual(nj(dm, result_constructor=str), expected_str)

    def test_nj_error(self):
        data = [[0, 3],
                [3, 0]]
        dm = DistanceMatrix(data, list('ab'))
        self.assertRaises(ValueError, nj, dm)

    def test_compute_q(self):
        expected_data = [[0, -50, -38, -34, -34],
                         [-50,   0, -38, -34, -34],
                         [-38, -38,   0, -40, -40],
                         [-34, -34, -40,   0, -48],
                         [-34, -34, -40, -48,   0]]
        expected_ids = list('abcde')
        expected = DistanceMatrix(expected_data, expected_ids)
        self.assertEqual(_compute_q(self.dm1), expected)

        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        dm = DistanceMatrix(data, list('abc'))
        # computed this manually
        expected_data = [[0, -8, -8],
                         [-8,  0, -8],
                         [-8, -8,  0]]
        expected = DistanceMatrix(expected_data, list('abc'))
        self.assertEqual(_compute_q(dm), expected)

    def test_compute_collapsed_dm(self):
        expected_data = [[0,  7,  7,  6],
                         [7,  0,  8,  7],
                         [7,  8,  0,  3],
                         [6,  7,  3,  0]]
        expected_ids = ['x', 'c', 'd', 'e']
        expected1 = DistanceMatrix(expected_data, expected_ids)
        self.assertEqual(_compute_collapsed_dm(self.dm1, 'a', 'b', True, 'x'),
                         expected1)

        # computed manually
        expected_data = [[0, 4, 3],
                         [4, 0, 3],
                         [3, 3, 0]]
        expected_ids = ['yy', 'd', 'e']
        expected2 = DistanceMatrix(expected_data, expected_ids)
        self.assertEqual(
            _compute_collapsed_dm(expected1, 'x', 'c', True, 'yy'), expected2)

    def test_lowest_index(self):
        self.assertEqual(_lowest_index(self.dm1), (4, 3))
        self.assertEqual(_lowest_index(_compute_q(self.dm1)), (1, 0))

    def test_pair_members_to_new_node(self):
        self.assertEqual(_pair_members_to_new_node(self.dm1, 'a', 'b', True),
                         (2, 3))
        self.assertEqual(_pair_members_to_new_node(self.dm1, 'a', 'c', True),
                         (4, 5))
        self.assertEqual(_pair_members_to_new_node(self.dm1, 'd', 'e', True),
                         (2, 1))

    def test_pair_members_to_new_node_zero_branch_length(self):
        # the values in this example don't really make sense
        # (I'm not sure how you end up with these distances between
        # three sequences), but that doesn't really matter for the sake
        # of this test
        data = [[0, 4, 2],
                [4, 0, 38],
                [2, 38, 0]]
        ids = ['a', 'b', 'c']
        dm = DistanceMatrix(data, ids)
        self.assertEqual(_pair_members_to_new_node(dm, 'a', 'b', True), (0, 4))
        # this makes it clear why negative branch lengths don't make sense...
        self.assertEqual(
            _pair_members_to_new_node(dm, 'a', 'b', False), (-16, 20))

    def test_nni_dm1(self):
        self.assertEqual(nj(self.dm1, result_constructor=str),
                         self.expected1_str)
        actual_TreeNode = nni(self.pre1_nni_TreeNode, self.dm1, inplace=False)
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.post1_nni_TreeNode), 0.0, places=10)

    def test_nni_dm2(self):
        # Resulting tree topology is equivalent to result from nj, however,
        # resulting edge lengths are almost equal to 2 places.
        actual_TreeNode = nni(self.pre2_nni_TreeNode, self.dm2, inplace=False)
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.post2_nni_TreeNode), 0.0)

    def test_nni_dm3(self):
        actual_TreeNode = nni(self.pre3_nni_TreeNode, self.dm3, inplace=False)
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            self.post3_nni_TreeNode), 0.0)
        
    def test_nni_trivial(self):
        # No swaps are performed, but edge lengths are assigned.
        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        dm = DistanceMatrix(data, list('abc'))
        pre_str = "((c,b))a;"
        pre_TreeNode = TreeNode.read(
                io.StringIO(pre_str))
        expected_str = "((c:1.0,b:2.0):1.0)a;"
        expected_TreeNode = TreeNode.read(
                io.StringIO(expected_str))
        self.assertEqual(str(nni(pre_TreeNode, dm, inplace=False)),
                         str(expected_TreeNode))

    def test_nni_binary_flag(self):
        data = [[0, 3],
                [3, 0]]
        dm = DistanceMatrix(data, list('ab'))
        pre_str = "((b))a;"
        pre_TreeNode = TreeNode.read(io.StringIO(pre_str))
        msg = "Could not perform NNI. Tree needs to be a binary tree."
        with self.assertRaises(TypeError) as cm:
            nni(pre_TreeNode, dm)
        self.assertEqual(str(cm.exception), msg)

    def test_nni_leaf_root_flag(self):
        pre_str = "((b,d),(e,c))a;"
        pre_TreeNode = TreeNode.read(io.StringIO(pre_str))
        msg = "Could not perform NNI. Tree needs to be rooted at a leaf node."
        with self.assertRaises(TypeError) as cm:
            nni(pre_TreeNode, self.dm1)
        self.assertEqual(str(cm.exception), msg)

    def test_perform_swap(self):
        # Swapping the leaf nodes a tree without edge lengths.
        pre_str = "(((b,d),(e,c)))a;"
        actual_TreeNode = TreeNode.read(
            io.StringIO(pre_str))
        node1 = actual_TreeNode.find('b')
        node2 = actual_TreeNode.find('c')
        expected_str = "(((d,c),(e,b)))a;"
        expected_TreeNode = TreeNode.read(
            io.StringIO(expected_str))
        _perform_swap(node1, node2)
        self.assertEqual(str(actual_TreeNode),
                         str(expected_TreeNode))

    def test_average_distance(self):
        expected_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        node1 = expected_TreeNode.find('b')
        node2 = expected_TreeNode.find('d').parent
        self.assertAlmostEqual(_average_distance(node1, node2, self.dm1),
                               9.5, places=10)

    def test_tip_or_root(self):
        expected_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        node_internal = expected_TreeNode.find('d').parent
        node_leaf = expected_TreeNode.find('b')
        root = expected_TreeNode.root()
        self.assertEqual(len(_tip_or_root(node_internal)), 2)
        self.assertEqual(str(_tip_or_root(node_leaf)[0]),
                             str(node_leaf.name))
        self.assertEqual(str(_tip_or_root(root)[0]),
                             str(root.name))

    def test_average_distance_upper(self):
        # computed manually
        data = [[0, 0.02, 0.18, 0.34, 0.55],
                [0.02, 0, 0.19, 0.35, 0.55],
                [0.18, 0.19, 0, 0.34, 0.54],
                [0.34, 0.35, 0.34, 0, 0.62],
                [0.55, 0.55, 0.54, 0.62, 0]]
        ids = ['human','monkey','pig','rat','chicken']
        dm = DistanceMatrix(data, ids)
        expected_str = "((rat,(human,(pig,monkey))))chicken;"
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        node1 = expected_TreeNode.find('pig').parent
        node2 = expected_TreeNode.find('human').parent.parent
        self.assertAlmostEqual(_average_distance_upper(node1, node2, dm), 0.545, places=10)

    def test_subtree_count(self):
        expected_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        internal_node = expected_TreeNode.find('d').parent.parent
        leaf = expected_TreeNode.find('d')
        root = expected_TreeNode.root()
        self.assertEqual(_subtree_count(internal_node), 3)
        self.assertEqual(_subtree_count(leaf), 1)
        self.assertEqual(_subtree_count(root), 1)

    def test_swap_length(self):
        # results in a positive integer
        # computed manually
        expected_str = ("(((b,d),(e,c)))a;")
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        adm = _average_distance_matrix(expected_TreeNode, self.dm1)
        self.assertAlmostEqual(_swap_length(
            2, 1, 1, 1, 6, 3, 0, 1, adm), 2.5, places=10)

    def test_swap_heap(self):
        # swap length is stored into the maxheap as a negative integer
        expected_str = ("(((b,d),(e,c)))a;")
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        adm = _average_distance_matrix(expected_TreeNode, self.dm1)
        self.assertAlmostEqual(_swap_heap(expected_TreeNode, adm)[0][0],
                               -2.0, places=10)

    def test_average_subtree_distance(self):
        # computed manually
        expected_str = ("(((b,d),(e,c)))a;")
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        a = expected_TreeNode.find('e').parent
        b = expected_TreeNode.find('b')
        a1 = expected_TreeNode.find('e')
        a2 = expected_TreeNode.find('c')
        self.assertAlmostEqual(_average_subtree_distance(a, b, a1, a2, self.dm1),
                               9.5, places=10)

    def test_average_distance_matrix_trivial(self):
        # In this case, the average distance matrix is equivalent to
        # the original distance matrix
        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        ids = list('abc')
        dm = DistanceMatrix(data, ids)
        expected_str = "((c,b))a;"
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        index = [0, 1, 2]
        actual_adm = _average_distance_matrix(expected_TreeNode, dm)
        for i in index:
            for j in index:
                if j < i:
                    self.assertEqual(dm[i][j], actual_adm[i][j])
                    self.assertEqual(dm[j][i], actual_adm[j][i])

    def test_average_distance_matrix(self):
        # computed manually
        expected_str = ("(((b,d),(e,c)))a;")
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        expected_adm = [[0.0, 10.0, 8.0, 9.0, 10.0, 9.5, 5.0],
                        [10.0, 0.0, 6.666666666666667, 3.0, 8.0, 5.5, 9.0],
                        [8.0, 6.666666666666667, 0.0, 6.0, 9.0, 7.5, 7.0],
                        [9.0, 3.0, 6.0, 0.0, 7.0, 6.666666666666667, 8.0],
                        [10.0, 8.0, 9.0, 7.0, 0.0, 9.0, 9.0],
                        [9.5, 5.5, 7.5, 6.666666666666667, 9.0, 0.0, 8.5],
                        [5.0, 9.0, 7.0, 8.0, 9.0, 8.5, 0.0]]
        actual_adm = _average_distance_matrix(expected_TreeNode, self.dm1)
        index = [0, 1, 2, 3, 4, 5, 6]
        for i in index:
            for j in index:
                if j < 1:
                    self.assertAlmostEqual(expected_adm[i][j], actual_adm[i][j])
                    self.assertAlmostEqual(expected_adm[j][i], actual_adm[j][i])

    def test_edge_estimation(self):
        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        ids = list('abc')
        dm = DistanceMatrix(data, ids)
        pre_estimation_str = "((c,b))a;"
        expected_str = "((c:1.0,b:2.0):1.0)a;"
        actual_TreeNode = TreeNode.read(io.StringIO(pre_estimation_str))
        _edge_estimation(actual_TreeNode, dm)
        expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
        self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
            expected_TreeNode), 1, places=10)


if __name__ == "__main__":
    main()