1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
import io
from unittest import TestCase, main
from skbio import DistanceMatrix, TreeNode, nj
from skbio.tree._nj import (
_compute_q, _compute_collapsed_dm, _lowest_index,
_pair_members_to_new_node, nni, _perform_swap,
_average_distance, _tip_or_root,
_average_distance_upper, _subtree_count,
_swap_length, _swap_heap, _average_subtree_distance,
_average_distance_matrix, _edge_estimation)
class NjTests(TestCase):
def setUp(self):
data1 = [[0, 5, 9, 9, 8],
[5, 0, 10, 10, 9],
[9, 10, 0, 8, 7],
[9, 10, 8, 0, 3],
[8, 9, 7, 3, 0]]
ids1 = list('abcde')
self.dm1 = DistanceMatrix(data1, ids1)
# this newick string was confirmed against http://www.trex.uqam.ca/
# which generated the following (isomorphic) newick string:
# (d:2.0000,e:1.0000,(c:4.0000,(a:2.0000,b:3.0000):3.0000):2.0000);
self.expected1_str = ("(d:2.000000, (c:4.000000, (b:3.000000,"
" a:2.000000):3.000000):2.000000, e:1.000000);")
self.expected1_TreeNode = TreeNode.read(
io.StringIO(self.expected1_str))
# For nni testing an arbitrary tree is given alongside the distance
# matrix. Tree topologies are equivalent to that of the unrooted tree
# of the above newick string.
self.pre1_nni_str = ("(((b,d),(e,c)))a;")
self.pre1_nni_TreeNode = TreeNode.read(
io.StringIO(self.pre1_nni_str))
self.post1_nni_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
self.post1_nni_TreeNode = TreeNode.read(
io.StringIO(self.post1_nni_str))
# this example was pulled from the Phylip manual
# http://evolution.genetics.washington.edu/phylip/doc/neighbor.html
data2 = [[0.0000, 1.6866, 1.7198, 1.6606, 1.5243, 1.6043, 1.5905],
[1.6866, 0.0000, 1.5232, 1.4841, 1.4465, 1.4389, 1.4629],
[1.7198, 1.5232, 0.0000, 0.7115, 0.5958, 0.6179, 0.5583],
[1.6606, 1.4841, 0.7115, 0.0000, 0.4631, 0.5061, 0.4710],
[1.5243, 1.4465, 0.5958, 0.4631, 0.0000, 0.3484, 0.3083],
[1.6043, 1.4389, 0.6179, 0.5061, 0.3484, 0.0000, 0.2692],
[1.5905, 1.4629, 0.5583, 0.4710, 0.3083, 0.2692, 0.0000]]
ids2 = ["Bovine", "Mouse", "Gibbon", "Orang", "Gorilla", "Chimp",
"Human"]
self.dm2 = DistanceMatrix(data2, ids2)
self.expected2_str = ("(Mouse:0.76891, (Gibbon:0.35793, (Orang:0.28469"
", (Gorilla:0.15393, (Chimp:0.15167, Human:0.117"
"53):0.03982):0.02696):0.04648):0.42027, Bovine:"
"0.91769);")
self.expected2_TreeNode = TreeNode.read(
io.StringIO(self.expected2_str))
self.pre2_nni_str = ("(((Mouse,Gorilla),(Gibbon,(Bovine,(Orang"
",Chimp)))))Human;")
self.pre2_nni_TreeNode = TreeNode.read(
io.StringIO(self.pre2_nni_str))
self.post2_nni_str = ("((((((Bovine:0.9117125,Mouse:0.7748875):0.42773"
"33,Gibbon:0.3504666):0.0408666,Orang:0.2809083)"
":0.0345694,Gorilla:0.1475249):0.0414812,Chimp:0"
".1470600):0.1221399)Human;")
self.post2_nni_TreeNode = TreeNode.read(
io.StringIO(self.post2_nni_str))
data3 = [[0, 5, 4, 7, 6, 8],
[5, 0, 7, 10, 9, 11],
[4, 7, 0, 7, 6, 8],
[7, 10, 7, 0, 5, 8],
[6, 9, 6, 5, 0, 8],
[8, 11, 8, 8, 8, 0]]
ids3 = map(str, range(6))
self.dm3 = DistanceMatrix(data3, ids3)
self.expected3_str = ("((((0:1.000000,1:4.000000):1.000000,2:2.000000"
"):1.250000,5:4.750000):0.750000,3:2.750000,4:2."
"250000);")
self.expected3_TreeNode = TreeNode.read(
io.StringIO(self.expected3_str))
self.pre3_nni_str = ("((1,(((5,2),4),3)))0;")
self.pre3_nni_TreeNode = TreeNode.read(
io.StringIO(self.pre3_nni_str))
self.post3_nni_str = ("((1:4.0,((5:4.75,(4:2.0,3:3.0):0.75):1.25"
",2:2.0):1.0):1.0)0;")
self.post3_nni_TreeNode = TreeNode.read(
io.StringIO(self.post3_nni_str))
# this dm can yield negative branch lengths for both nj and nni
data4 = [[0, 5, 9, 9, 800],
[5, 0, 10, 10, 9],
[9, 10, 0, 8, 7],
[9, 10, 8, 0, 3],
[800, 9, 7, 3, 0]]
ids4 = list('abcde')
self.dm4 = DistanceMatrix(data4, ids4)
def test_nj_dm1(self):
self.assertEqual(nj(self.dm1, result_constructor=str),
self.expected1_str)
# what is the correct way to compare TreeNode objects for equality?
actual_TreeNode = nj(self.dm1)
# precision error on ARM: 1.6653345369377348e-16 != 0.0
self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
self.expected1_TreeNode), 0.0, places=10)
def test_nj_dm2(self):
actual_TreeNode = nj(self.dm2)
self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
self.expected2_TreeNode), 0.0)
def test_nj_dm3(self):
actual_TreeNode = nj(self.dm3)
self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
self.expected3_TreeNode), 0.0)
def test_nj_zero_branch_length(self):
# no nodes have negative branch length when we disallow negative
# branch length. self is excluded as branch length is None
tree = nj(self.dm4)
for n in tree.postorder(include_self=False):
self.assertTrue(n.length >= 0)
# only tips associated with the large distance in the input
# have positive branch lengths when we allow negative branch
# length
tree = nj(self.dm4, False)
self.assertTrue(tree.find('a').length > 0)
self.assertTrue(tree.find('b').length < 0)
self.assertTrue(tree.find('c').length < 0)
self.assertTrue(tree.find('d').length < 0)
self.assertTrue(tree.find('e').length > 0)
def test_nj_trivial(self):
data = [[0, 3, 2],
[3, 0, 3],
[2, 3, 0]]
dm = DistanceMatrix(data, list('abc'))
expected_str = "(b:2.000000, a:1.000000, c:1.000000);"
self.assertEqual(nj(dm, result_constructor=str), expected_str)
def test_nj_error(self):
data = [[0, 3],
[3, 0]]
dm = DistanceMatrix(data, list('ab'))
self.assertRaises(ValueError, nj, dm)
def test_compute_q(self):
expected_data = [[0, -50, -38, -34, -34],
[-50, 0, -38, -34, -34],
[-38, -38, 0, -40, -40],
[-34, -34, -40, 0, -48],
[-34, -34, -40, -48, 0]]
expected_ids = list('abcde')
expected = DistanceMatrix(expected_data, expected_ids)
self.assertEqual(_compute_q(self.dm1), expected)
data = [[0, 3, 2],
[3, 0, 3],
[2, 3, 0]]
dm = DistanceMatrix(data, list('abc'))
# computed this manually
expected_data = [[0, -8, -8],
[-8, 0, -8],
[-8, -8, 0]]
expected = DistanceMatrix(expected_data, list('abc'))
self.assertEqual(_compute_q(dm), expected)
def test_compute_collapsed_dm(self):
expected_data = [[0, 7, 7, 6],
[7, 0, 8, 7],
[7, 8, 0, 3],
[6, 7, 3, 0]]
expected_ids = ['x', 'c', 'd', 'e']
expected1 = DistanceMatrix(expected_data, expected_ids)
self.assertEqual(_compute_collapsed_dm(self.dm1, 'a', 'b', True, 'x'),
expected1)
# computed manually
expected_data = [[0, 4, 3],
[4, 0, 3],
[3, 3, 0]]
expected_ids = ['yy', 'd', 'e']
expected2 = DistanceMatrix(expected_data, expected_ids)
self.assertEqual(
_compute_collapsed_dm(expected1, 'x', 'c', True, 'yy'), expected2)
def test_lowest_index(self):
self.assertEqual(_lowest_index(self.dm1), (4, 3))
self.assertEqual(_lowest_index(_compute_q(self.dm1)), (1, 0))
def test_pair_members_to_new_node(self):
self.assertEqual(_pair_members_to_new_node(self.dm1, 'a', 'b', True),
(2, 3))
self.assertEqual(_pair_members_to_new_node(self.dm1, 'a', 'c', True),
(4, 5))
self.assertEqual(_pair_members_to_new_node(self.dm1, 'd', 'e', True),
(2, 1))
def test_pair_members_to_new_node_zero_branch_length(self):
# the values in this example don't really make sense
# (I'm not sure how you end up with these distances between
# three sequences), but that doesn't really matter for the sake
# of this test
data = [[0, 4, 2],
[4, 0, 38],
[2, 38, 0]]
ids = ['a', 'b', 'c']
dm = DistanceMatrix(data, ids)
self.assertEqual(_pair_members_to_new_node(dm, 'a', 'b', True), (0, 4))
# this makes it clear why negative branch lengths don't make sense...
self.assertEqual(
_pair_members_to_new_node(dm, 'a', 'b', False), (-16, 20))
def test_nni_dm1(self):
self.assertEqual(nj(self.dm1, result_constructor=str),
self.expected1_str)
actual_TreeNode = nni(self.pre1_nni_TreeNode, self.dm1, inplace=False)
self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
self.post1_nni_TreeNode), 0.0, places=10)
def test_nni_dm2(self):
# Resulting tree topology is equivalent to result from nj, however,
# resulting edge lengths are almost equal to 2 places.
actual_TreeNode = nni(self.pre2_nni_TreeNode, self.dm2, inplace=False)
self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
self.post2_nni_TreeNode), 0.0)
def test_nni_dm3(self):
actual_TreeNode = nni(self.pre3_nni_TreeNode, self.dm3, inplace=False)
self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
self.post3_nni_TreeNode), 0.0)
def test_nni_trivial(self):
# No swaps are performed, but edge lengths are assigned.
data = [[0, 3, 2],
[3, 0, 3],
[2, 3, 0]]
dm = DistanceMatrix(data, list('abc'))
pre_str = "((c,b))a;"
pre_TreeNode = TreeNode.read(
io.StringIO(pre_str))
expected_str = "((c:1.0,b:2.0):1.0)a;"
expected_TreeNode = TreeNode.read(
io.StringIO(expected_str))
self.assertEqual(str(nni(pre_TreeNode, dm, inplace=False)),
str(expected_TreeNode))
def test_nni_binary_flag(self):
data = [[0, 3],
[3, 0]]
dm = DistanceMatrix(data, list('ab'))
pre_str = "((b))a;"
pre_TreeNode = TreeNode.read(io.StringIO(pre_str))
msg = "Could not perform NNI. Tree needs to be a binary tree."
with self.assertRaises(TypeError) as cm:
nni(pre_TreeNode, dm)
self.assertEqual(str(cm.exception), msg)
def test_nni_leaf_root_flag(self):
pre_str = "((b,d),(e,c))a;"
pre_TreeNode = TreeNode.read(io.StringIO(pre_str))
msg = "Could not perform NNI. Tree needs to be rooted at a leaf node."
with self.assertRaises(TypeError) as cm:
nni(pre_TreeNode, self.dm1)
self.assertEqual(str(cm.exception), msg)
def test_perform_swap(self):
# Swapping the leaf nodes a tree without edge lengths.
pre_str = "(((b,d),(e,c)))a;"
actual_TreeNode = TreeNode.read(
io.StringIO(pre_str))
node1 = actual_TreeNode.find('b')
node2 = actual_TreeNode.find('c')
expected_str = "(((d,c),(e,b)))a;"
expected_TreeNode = TreeNode.read(
io.StringIO(expected_str))
_perform_swap(node1, node2)
self.assertEqual(str(actual_TreeNode),
str(expected_TreeNode))
def test_average_distance(self):
expected_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
node1 = expected_TreeNode.find('b')
node2 = expected_TreeNode.find('d').parent
self.assertAlmostEqual(_average_distance(node1, node2, self.dm1),
9.5, places=10)
def test_tip_or_root(self):
expected_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
node_internal = expected_TreeNode.find('d').parent
node_leaf = expected_TreeNode.find('b')
root = expected_TreeNode.root()
self.assertEqual(len(_tip_or_root(node_internal)), 2)
self.assertEqual(str(_tip_or_root(node_leaf)[0]),
str(node_leaf.name))
self.assertEqual(str(_tip_or_root(root)[0]),
str(root.name))
def test_average_distance_upper(self):
# computed manually
data = [[0, 0.02, 0.18, 0.34, 0.55],
[0.02, 0, 0.19, 0.35, 0.55],
[0.18, 0.19, 0, 0.34, 0.54],
[0.34, 0.35, 0.34, 0, 0.62],
[0.55, 0.55, 0.54, 0.62, 0]]
ids = ['human','monkey','pig','rat','chicken']
dm = DistanceMatrix(data, ids)
expected_str = "((rat,(human,(pig,monkey))))chicken;"
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
node1 = expected_TreeNode.find('pig').parent
node2 = expected_TreeNode.find('human').parent.parent
self.assertAlmostEqual(_average_distance_upper(node1, node2, dm), 0.545, places=10)
def test_subtree_count(self):
expected_str = ("((((e:1.0,d:2.0):2.0,c:4.0):3.0,b:3.0):2.0)a;")
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
internal_node = expected_TreeNode.find('d').parent.parent
leaf = expected_TreeNode.find('d')
root = expected_TreeNode.root()
self.assertEqual(_subtree_count(internal_node), 3)
self.assertEqual(_subtree_count(leaf), 1)
self.assertEqual(_subtree_count(root), 1)
def test_swap_length(self):
# results in a positive integer
# computed manually
expected_str = ("(((b,d),(e,c)))a;")
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
adm = _average_distance_matrix(expected_TreeNode, self.dm1)
self.assertAlmostEqual(_swap_length(
2, 1, 1, 1, 6, 3, 0, 1, adm), 2.5, places=10)
def test_swap_heap(self):
# swap length is stored into the maxheap as a negative integer
expected_str = ("(((b,d),(e,c)))a;")
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
adm = _average_distance_matrix(expected_TreeNode, self.dm1)
self.assertAlmostEqual(_swap_heap(expected_TreeNode, adm)[0][0],
-2.0, places=10)
def test_average_subtree_distance(self):
# computed manually
expected_str = ("(((b,d),(e,c)))a;")
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
a = expected_TreeNode.find('e').parent
b = expected_TreeNode.find('b')
a1 = expected_TreeNode.find('e')
a2 = expected_TreeNode.find('c')
self.assertAlmostEqual(_average_subtree_distance(a, b, a1, a2, self.dm1),
9.5, places=10)
def test_average_distance_matrix_trivial(self):
# In this case, the average distance matrix is equivalent to
# the original distance matrix
data = [[0, 3, 2],
[3, 0, 3],
[2, 3, 0]]
ids = list('abc')
dm = DistanceMatrix(data, ids)
expected_str = "((c,b))a;"
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
index = [0, 1, 2]
actual_adm = _average_distance_matrix(expected_TreeNode, dm)
for i in index:
for j in index:
if j < i:
self.assertEqual(dm[i][j], actual_adm[i][j])
self.assertEqual(dm[j][i], actual_adm[j][i])
def test_average_distance_matrix(self):
# computed manually
expected_str = ("(((b,d),(e,c)))a;")
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
expected_adm = [[0.0, 10.0, 8.0, 9.0, 10.0, 9.5, 5.0],
[10.0, 0.0, 6.666666666666667, 3.0, 8.0, 5.5, 9.0],
[8.0, 6.666666666666667, 0.0, 6.0, 9.0, 7.5, 7.0],
[9.0, 3.0, 6.0, 0.0, 7.0, 6.666666666666667, 8.0],
[10.0, 8.0, 9.0, 7.0, 0.0, 9.0, 9.0],
[9.5, 5.5, 7.5, 6.666666666666667, 9.0, 0.0, 8.5],
[5.0, 9.0, 7.0, 8.0, 9.0, 8.5, 0.0]]
actual_adm = _average_distance_matrix(expected_TreeNode, self.dm1)
index = [0, 1, 2, 3, 4, 5, 6]
for i in index:
for j in index:
if j < 1:
self.assertAlmostEqual(expected_adm[i][j], actual_adm[i][j])
self.assertAlmostEqual(expected_adm[j][i], actual_adm[j][i])
def test_edge_estimation(self):
data = [[0, 3, 2],
[3, 0, 3],
[2, 3, 0]]
ids = list('abc')
dm = DistanceMatrix(data, ids)
pre_estimation_str = "((c,b))a;"
expected_str = "((c:1.0,b:2.0):1.0)a;"
actual_TreeNode = TreeNode.read(io.StringIO(pre_estimation_str))
_edge_estimation(actual_TreeNode, dm)
expected_TreeNode = TreeNode.read(io.StringIO(expected_str))
self.assertAlmostEqual(actual_TreeNode.compare_tip_distances(
expected_TreeNode), 1, places=10)
if __name__ == "__main__":
main()
|