1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
import hashlib
import inspect
from types import FunctionType
import numpy as np
def resolve_key(obj, key):
"""Resolve key given an object and key."""
if callable(key):
return key(obj)
elif hasattr(obj, "metadata"):
return obj.metadata[key]
raise TypeError(
"Could not resolve key %r. Key must be callable or %s must"
" have `metadata` attribute." % (key, obj.__class__.__name__)
)
def make_sentinel(name):
return type(
name,
(),
{"__repr__": lambda s: name, "__str__": lambda s: name, "__class__": None},
)()
def find_sentinels(function, sentinel):
params = inspect.signature(function).parameters
return [name for name, param in params.items() if param.default is sentinel]
class MiniRegistry(dict):
def __call__(self, name):
"""Act as a decorator to register functions with self."""
def decorator(func):
self[name] = func
return func
return decorator
def copy(self):
"""Use for inheritance."""
return self.__class__(super(MiniRegistry, self).copy())
def formatted_listing(self):
"""Produce an RST list with descriptions."""
if len(self) == 0:
return "\tNone"
else:
return "\n".join(
[
"\t%r\n\t %s" % (name, self[name].__doc__.split("\n")[0])
for name in sorted(self)
]
)
def interpolate(self, obj, name):
"""Inject the formatted listing in the second blank line of `name`."""
f = getattr(obj, name)
f2 = FunctionType(
f.__code__,
f.__globals__,
name=f.__name__,
argdefs=f.__defaults__,
closure=f.__closure__,
)
# Conveniently the original docstring is on f2, not the new ones if
# inheritance is happening. I have no idea why.
t = f2.__doc__.split("\n\n")
t.insert(2, self.formatted_listing())
f2.__doc__ = "\n\n".join(t)
setattr(obj, name, f2)
def chunk_str(s, n, char):
"""Insert `char` character every `n` characters in string `s`.
Canonically pronounced "chunkster".
"""
# Modified from http://stackoverflow.com/a/312464/3776794
if n < 1:
raise ValueError(
"Cannot split string into chunks with n=%d. n must be >= 1." % n
)
return char.join((s[i : i + n] for i in range(0, len(s), n)))
def cardinal_to_ordinal(n):
"""Return ordinal string version of cardinal int `n`.
Parameters
----------
n : int
Cardinal to convert to ordinal. Must be >= 0.
Returns
-------
str
Ordinal version of cardinal `n`.
Raises
------
ValueError
If `n` is less than 0.
Notes
-----
This function can be useful when writing human-readable error messages.
Examples
--------
>>> from skbio.util import cardinal_to_ordinal
>>> cardinal_to_ordinal(0)
'0th'
>>> cardinal_to_ordinal(1)
'1st'
>>> cardinal_to_ordinal(2)
'2nd'
>>> cardinal_to_ordinal(3)
'3rd'
"""
# Taken and modified from http://stackoverflow.com/a/20007730/3776794
# Originally from http://codegolf.stackexchange.com/a/4712 by Gareth
if n < 0:
raise ValueError("Cannot convert negative integer %d to ordinal " "string." % n)
return "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10 :: 4])
def safe_md5(open_file, block_size=2**20):
"""Compute an md5 sum without loading the file into memory.
Parameters
----------
open_file : file object
open file handle to the archive to compute the checksum. It
must be open as a binary file
block_size : int, optional
size of the block taken per iteration
Returns
-------
md5 : md5 object from the hashlib module
object with the loaded file
Notes
-----
This method is based on the answers given in:
http://stackoverflow.com/a/1131255/379593
Examples
--------
>>> from io import BytesIO
>>> from skbio.util import safe_md5
>>> fd = BytesIO(b"foo bar baz") # open file like object
>>> x = safe_md5(fd)
>>> x.hexdigest()
'ab07acbb1e496801937adfa772424bf7'
>>> fd.close()
"""
md5 = hashlib.md5()
data = True
while data:
data = open_file.read(block_size)
if data:
md5.update(data)
return md5
def find_duplicates(iterable):
"""Find duplicate elements in an iterable.
Parameters
----------
iterable : iterable
Iterable to be searched for duplicates (i.e., elements that are
repeated).
Returns
-------
set
Repeated elements in `iterable`.
"""
# modified from qiita.qiita_db.util.find_repeated
# https://github.com/biocore/qiita
# see licenses/qiita.txt
seen, repeated = set(), set()
for e in iterable:
if e in seen:
repeated.add(e)
else:
seen.add(e)
return repeated
def get_rng(seed=None):
"""Get a random generator.
Parameters
----------
seed : int or np.random.Generator, optional
A user-provided random seed or random generator instance.
Returns
-------
np.random.Generator
Random generator instance.
Notes
-----
NumPy's new random generator [1]_ was introduced in version 1.17. It is not
backward compatible with ``RandomState``, the legacy random generator [2]_.
See NEP 19 [3]_ for an introduction to this change.
References
----------
.. [1] https://numpy.org/devdocs/reference/random/generator.html
.. [2] https://numpy.org/doc/stable/reference/random/legacy.html
.. [3] https://numpy.org/neps/nep-0019-rng-policy.html
"""
try:
if seed is None or isinstance(seed, int):
return np.random.default_rng(seed)
if isinstance(seed, np.random.Generator):
return seed
raise ValueError(
"Invalid seed. It must be an integer or an "
"instance of np.random.Generator."
)
except AttributeError:
raise ValueError(
"The installed NumPy version does not support "
"random.Generator. Please use NumPy >= 1.17."
)
|