File: _base.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (1561 lines) | stat: -rw-r--r-- 41,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

from warnings import warn
import functools

import numpy as np
from scipy.special import gammaln
from scipy.optimize import fmin_powell, minimize_scalar

from skbio.stats import subsample_counts
from skbio.diversity._util import _validate_counts_vector
from skbio.util._decorator import aliased


def _validate_alpha(empty=None, cast_int=False):
    """Validate counts vector for an alpha diversity metric.

    Parameters
    ----------
    func : callable
        Function that calculates an alpha diversity metric.
    empty : any, optional
        Return this value if set instead of calling the function when an input
        community is empty (i.e., no taxon, or all taxa have zero counts).
    cast_int : bool, optional
        Whether cast values into integers, if not already. Default is False.

    Returns
    -------
    callable
        Decorated function.

    Notes
    -----
    This function serves as a decorator for individual functions that calculate
    alpha diversity metrics. The first positional argument of a decorated
    function must be a 1-D vector of counts/abundances of taxa in a community.
    Additional arguments may follow.

    """

    def decorator(func):
        @functools.wraps(func)
        def wrapper(counts, *args, **kwargs):
            counts = _validate_counts_vector(counts, cast_int)

            # drop zero values, as these represent taxa that are absent from
            # the community
            if not (nonzero := counts != 0).all():
                counts = counts[nonzero]

            # return a value if community is empty (after dropping zeros)
            if empty is not None and counts.size == 0:
                return empty

            # call function to calculate alpha diversity metric
            return func(counts, *args, **kwargs)

        return wrapper

    return decorator


@_validate_alpha(empty=np.nan)
def berger_parker_d(counts):
    r"""Calculate Berger-Parker dominance index.

    Berger-Parker dominance index :math:`d` is defined as the fraction of the
    sample that belongs to the most abundant taxon:

    .. math::

       d = \frac{n_{max}}{N}

    where :math:`n_{max}` is the number of individuals in the most abundant
    taxon (or any of the most abundant taxa in the case of ties), and :math:`N`
    is the total number of individuals in the sample.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Berger-Parker dominance index.

    Notes
    -----
    Berger-Parker dominance index was originally described in [1]_.

    References
    ----------
    .. [1] Berger, W. H., & Parker, F. L. (1970). Diversity of planktonic
       foraminifera in deep-sea sediments. Science, 168(3937), 1345-1347.

    """
    return counts.max() / counts.sum()


@_validate_alpha(empty=np.nan)
def brillouin_d(counts):
    r"""Calculate Brillouin's diversity index.

    Brillouin's diversity index (:math:`H_B`) is defined as:

    .. math::

       H_B = \frac{\ln N!-\sum_{i=1}^S{\ln n_i!}}{N}

    where :math:`N` is the total number of individuals in the sample, :math:`S`
    is the number of taxa, and :math:`n_i` is the number of individuals in the
    :math:`i^{\text{th}}` taxon.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Brillouin's diversity index.

    Notes
    -----
    Brillouin's diversity index was originally described in [1]_.

    References
    ----------
    .. [1] Brillouin, L. (1956). Science and Information Theory. Academic
       Press. New York.

    """
    return (gammaln((N := counts.sum()) + 1) - gammaln(counts + 1).sum()) / N


@_validate_alpha(empty=np.nan)
def dominance(counts, finite=False):
    r"""Calculate Simpson's dominance index.

    Simpson's dominance index, a.k.a. Simpson's :math:`D`, measures the degree
    of concentration of taxon composition of a sample. It is defined as:

    .. math::

       D = \sum_{i=1}^S{p_i^2}

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion
    of the sample represented by taxon :math:`i`.

    Simpson's :math:`D` ranges from 0 (infinite diversity; no dominance) and 1
    (complete dominance, no diversity).

    Simpson's :math:`D` can be interpreted as the probability that two randomly
    selected individuals belong to the same taxon.

    Simpson's :math:`D` may be corrected for finite samples to account for the
    effect of sampling without replacement. This more accurately represents the
    above probability when the sample is small. It is calculated as:

    .. math::

       D = \frac{\sum_{i=1}^s{n_i(n_i - 1))}}{N(N - 1)}

    where :math:`n_i` is the number of individuals in the :math:`i^{\text{th}}`
    taxon and :math:`N` is the total number of individuals in the sample.

    Simpson's :math:`D` is sometimes referred to as "Simpson's index". It
    should be noted that :math:`D` is not a measure of community diversity. It
    is also important to distinguish :math:`D` from Simpson's diversity index
    (:math:`1 - D`) and inverse Simpson index (:math:`1 / D`), both of which
    are measures of community diversity.

    Discrepancy exists among literature in using the term "Simpson index" and
    the denotion :math:`D`. It is therefore important to distinguish these
    metrics according to their mathematic definition.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    finite : bool, optional
        If True, correct for finite sampling.

    Returns
    -------
    float
        Simpson's dominance index.

    See Also
    --------
    simpson

    Notes
    -----
    Simpson's dominance index was originally described in [1]_.

    References
    ----------
    .. [1] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148),
       688-688.

    """
    if finite:
        D = (counts * (counts - 1)).sum() / ((N := counts.sum()) * (N - 1))
    else:
        D = ((counts / counts.sum()) ** 2).sum()
    return D


@_validate_alpha()
def doubles(counts):
    """Calculate number of double-occurrence taxa (doubletons).

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    int
        Doubleton count.

    """
    return (counts == 2).sum()


def enspie(counts, finite=False):
    r"""Calculate ENS_pie alpha diversity measure.

    The effective number of species (ENS) derived from Hurlbert's probability
    of interspecific encounter (PIE) ([1]_, [2]_) is defined as:

    .. math::

       ENS_{pie} = \frac{1}{\sum_{i=1}^S{p_i^2}}

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion of
    the sample represented by taxon :math:`i`.

    Therefore, :math:`ENS_{pie}` is equivalent to the inverse Simpson index
    (``1 / D``).

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    finite : bool, optional
        If True, correct for finite sampling.

    Returns
    -------
    float
        ENS_pie alpha diversity measure.

    See Also
    --------
    inv_simpson
    dominance

    Notes
    -----
    ``enspie`` is an alias for ``inv_simpson``.

    References
    ----------
    .. [1] Chase, J. M., & Knight, T. M. (2013). Scale-dependent effect sizes
       of ecological drivers on biodiversity: why standardised sampling is not
       enough. Ecology letters, 16, 17-26.

    .. [2] Hurlbert, S. H. (1971). The nonconcept of species diversity: a
       critique and alternative parameters. Ecology, 52(4), 577-586.

    """
    return inv_simpson(counts, finite=finite)


@_validate_alpha(empty=np.nan)
def esty_ci(counts):
    r"""Calculate Esty's confidence interval of Good's coverage estimator.

    Esty's confidence interval is defined as:

    .. math::

       F_1/N \pm z\sqrt{W}

    where :math:`F_1` is the number of singleton taxa, :math:`N` is the
    total number of individuals, and :math:`z` is a constant that depends on
    the targeted confidence and based on the normal distribution.

    :math:`W` is defined as:

    .. math::

       \frac{F_1(N-F_1)+2NF_2}{N^3}

    where :math:`F_2` is the number of doubleton taxa.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    tuple
        Esty's confidence interval as ``(lower_bound, upper_bound)``.

    See Also
    --------
    goods_coverage

    Notes
    -----
    Esty's confidence interval was originally described in [1]_.

    :math:`z` is hardcoded for a 95% confidence interval.

    References
    ----------
    .. [1] Esty, W. W. (1983). "A normal limit law for a nonparametric
       estimator of the coverage of a random sample". Ann Statist 11: 905-912.

    """
    N = counts.sum()
    f1 = (counts == 1).sum()
    f2 = (counts == 2).sum()
    z = 1.959963985
    W = (f1 * (N - f1) + 2 * N * f2) / (N**3)
    return f1 / N - z * np.sqrt(W), f1 / N + z * np.sqrt(W)


@_validate_alpha(empty=np.nan)
def fisher_alpha(counts):
    r"""Calculate Fisher's alpha, a metric of diversity.

    Fisher's alpha is estimated by solving the following equation for
    :math:`\alpha`:

    .. math::

       S=\alpha\ln(1+\frac{N}{\alpha})

    where :math:`S` is the number of taxa and :math:`N` is the total number
    of individuals in the sample.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Fisher's alpha.

    Raises
    ------
    RuntimeError
        If the optimizer fails to solve for Fisher's alpha.

    Notes
    -----
    Fisher's alpha is defined in [1]_.

    There is no analytical solution to Fisher's alpha. However, one can use
    optimization techniques to obtain a numeric solution. This function calls
    SciPy's ``minimize_scalar`` to find alpha. It is deterministic. The result
    should be reasonably close to the true alpha.

    Alpha can become large when most taxa are singletons. Alpha = +inf when
    all taxa are singletons.

    When the sample is empty (i.e., all counts are zero), alpha = 0.

    References
    ----------
    .. [1] Fisher, R.A., Corbet, A.S. and Williams, C.B., 1943. The relation
       between the number of taxa and the number of individuals in a random
       sample of an animal population. The Journal of Animal Ecology, pp.42-58.

    """
    # alpha = +inf when all taxa are singletons
    if (N := counts.sum()) == (S := counts.size):
        return np.inf

    # objective function to minimize:
    # S = alpha * ln (1 + N / alpha), where alpha > 0
    def f(x):
        return (x * np.log(1 + (N / x)) - S) ** 2 if x > 0 else np.inf

    # minimize the function using the default method (Brent's algorithm)
    with np.errstate(invalid="ignore"):
        res = minimize_scalar(f)

    # there is a chance optimization could fail
    if res.success is False:
        raise RuntimeError("Optimizer failed to solve for Fisher's alpha.")

    return res.x


@_validate_alpha(empty=np.nan)
def goods_coverage(counts):
    r"""Calculate Good's coverage estimator.

    Good's coverage estimator :math:`C`, a.k.a. Turing estimator or Good-
    Turing (GT) estimator, is an estimation of the proportion of the
    population represented in the sample. It is defined as:

    .. math::

       C = 1 - \frac{F_1}{N}

    where :math:`F_1` is the number of taxa observed only once (i.e.,
    singletons) and :math:`N` is the total number of individuals.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Good's coverage estimator.

    See Also
    --------
    esty_ci
    robbins

    Notes
    -----
    Good's coverage estimator was originally described in [1]_.

    References
    ----------
    .. [1] Good, I. J. (1953). The population frequencies of species and the
       estimation of population parameters. Biometrika, 40(3-4), 237-264.

    """
    return 1 - ((counts == 1).sum() / counts.sum())


@_validate_alpha()
def heip_e(counts):
    r"""Calculate Heip's evenness measure.

    Heip's evenness is defined as:

    .. math::

       \frac{(e^H-1)}{(S-1)}

    where :math:`H` is Shannon's diversity index and :math:`S` is the number
    of taxa in the sample.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Heip's evenness measure.

    See Also
    --------
    shannon
    pielou_e

    Notes
    -----
    Heip's evenness measure was originally described in [1]_.

    When there is only one taxon, the return value is 1.0.

    References
    ----------
    .. [1] Heip, C. 1974. A new index measuring evenness. J. Mar. Biol. Ass.
       UK., 54, 555-557.

    """
    if (S := counts.size) == 0:
        return np.nan
    elif S == 1:
        return 1.0
    return (shannon(counts, exp=True) - 1) / (S - 1)


@_validate_alpha(empty=np.nan)
def hill(counts, order=2):
    r"""Calculate Hill number.

    Hill number (:math:`^qD`) is a generalized measure of the effective number
    of species. It is defined as:

    .. math::

       ^qD = (\sum_{i=1}^S p_i^q)^{\frac{1}{1-q}}

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion
    of the sample represented by taxon :math:`i`.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    order : int or float, optional
        Order (:math:`q`). Ranges between 0 and infinity. Default is 2.

    Returns
    -------
    float
        Hill number.

    See Also
    --------
    inv_simpson
    renyi
    shannon
    sobs

    Notes
    -----
    Hill number was originally defined in [1]_. It is a measurement of "true
    diversity", or the effective number of species (ENS) ([2]_), which is
    defined as the number of equally abundant taxa that would make the same
    diversity measurement given the observed total abundance of the community.

    Hill number is a generalization of multiple diversity metrics. Depending on
    the order :math:`q`, it is equivalent to:

    - :math:`q=0`: Observed species richness (:math:`S_{obs}`).
    - :math:`q \to 1`: The exponential of Shannon index (:math:`\exp{H'}`),
      i.e., perplexity.
    - :math:`q=2`: Inverse Simpson index (:math:`1 / D`).
    - :math:`q \to \infty`: :math:`1/\max{p}`, i.e., the inverse of
      Berger-Parker dominance index.

    The order :math:`q` determines the influence of taxon abundance on the
    metric. A larger (or smaller) :math:`q` puts more weight on the abundant
    (or rare) taxa.

    Hill number is equivalent to the exponential of Renyi entropy.

    References
    ----------
    .. [1] Hill, M. O. (1973). Diversity and evenness: a unifying notation and
       its consequences. Ecology, 54(2), 427-432.

    .. [2] Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375.

    """
    probs = counts / counts.sum()
    if order == 1:
        return _perplexity(probs)
    elif np.isposinf(order):
        return 1 / probs.max()
    else:
        return (probs**order).sum() ** (1 / (1 - order))


@_validate_alpha(empty=np.nan)
def kempton_taylor_q(counts, lower_quantile=0.25, upper_quantile=0.75):
    r"""Calculate Kempton-Taylor Q index of alpha diversity.

    Kempton-Taylor Q index measures diversity based on the middle-ranking taxa
    in the abundance distribution. Specifically, it estimates the slope of the
    cumulative abundance curve in the interquantile range. It is defined as:

    .. math::

       Q = \frac{S_{lower..upper}}{\ln n_{lower} - \ln n_{upper}}

    where "lower" and "upper" are the taxa at the lower and upper quantiles of
    the abundance distribution, :math:`S` is the number of taxa, and :math:`n`
    is the number of individuals.

    By default, the lower and upper quartiles are used. Therefore:

    .. math::

       Q = \frac{S}{2(\ln n_{0.25} - \ln n_{0.75})}

    The quantiles are rounded inwards in this implementation.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    lower_quantile : float, optional
        Lower bound of the interquantile range. Defaults to lower quartile.
    upper_quantile : float, optional
        Upper bound of the interquantile range. Defaults to upper quartile.

    Returns
    -------
    float
        Kempton-Taylor Q index of alpha diversity.

    Notes
    -----
    The index is defined in [1]_. The implementation here is based on the
    description given in the SDR-IV online manual [2]_.

    The implementation provided here differs slightly from the results given in
    Magurran 1998. Specifically, we have 14 in the numerator rather than 15.
    Magurran recommends counting half of the taxa with the same # counts as the
    point where the UQ falls and the point where the LQ falls, but the
    justification for this is unclear (e.g. if there were a very large # taxa
    that just overlapped one of the quantiles, the results would be
    considerably off). Leaving the calculation as-is for now, but consider
    changing.

    References
    ----------
    .. [1] Kempton, R. A. and Taylor, L. R. (1976) Models and statistics for
       species diversity. Nature, 262, 818-820.
    .. [2] http://www.pisces-conservation.com/sdrhelp/index.html

    """
    S = counts.size
    lower = int(np.ceil(S * lower_quantile))
    upper = int(S * upper_quantile)
    sorted_counts = np.sort(counts)
    return (upper - lower) / np.log(sorted_counts[upper] / sorted_counts[lower])


def inv_simpson(counts, finite=False):
    r"""Calculate inverse Simpson index.

    The inverse Simpson index (:math:`1 / D`), a.k.a., Simpson's reciprocal
    index, is defined as:

    .. math::

       1 / D = \frac{1}{\sum_{i=1}^S{p_i^2}}

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion
    of the sample represented by taxon :math:`i`.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    finite : bool, optional
        If True, correct for finite sampling when calculating :math:`D`.

    Returns
    -------
    float
        Inverse Simpson index.

    See Also
    --------
    dominance

    Notes
    -----
    :math:`1 / D` is a measurement of the effective number of species (ENS).
    It is equivalent to Hill number with order 2 (:math:`^2D`).

    Inverse Simpson index was originally described in [1]_.

    References
    ----------
    .. [1] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148),
       688-688.

    """
    return 1 / dominance(counts, finite=finite)


@_validate_alpha(empty=np.nan)
def margalef(counts):
    r"""Calculate Margalef's richness index.

    Margalef's richness index :math:`D` is defined as:

    .. math::

       D = \frac{(S - 1)}{\ln N}

    where :math:`S` is the number of taxa and :math:`N` is the total number
    of individuals in the sample.

    Margalef's richness index assumes log accumulation.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Margalef's richness index.

    See Also
    --------
    menhinick

    Notes
    -----
    Margalef's richness index was originally described in [1]_.

    References
    ----------
    .. [1] Margalef, R. (1958) Information Theory in Ecology. General Systems,
       3, 36-71.

    """
    if (N := counts.sum()) == 1:
        return np.nan
    return (counts.size - 1) / np.log(N)


@_validate_alpha(empty=np.nan)
def mcintosh_d(counts):
    r"""Calculate McIntosh dominance index.

    McIntosh dominance index :math:`D` is defined as:

    .. math::

       D = \frac{N - U}{N - \sqrt{N}}

    where :math:`N` is the total number of individuals in the sample and
    :math:`U` is defined as:

    .. math::

       U = \sqrt{\sum{{n_i}^2}}

    where :math:`n_i` is the number of individuals in the :math:`i^{\text{th}}`
    taxon.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        McIntosh dominance index.

    See Also
    --------
    mcintosh_e

    Notes
    -----
    McIntosh dominance index was originally described in [1]_.

    References
    ----------
    .. [1] McIntosh, R. P. 1967 An index of diversity and the relation of
       certain concepts to diversity. Ecology 48, 1115-1126.

    """
    if (N := counts.sum()) == 1:
        return np.nan
    u = np.sqrt((counts**2).sum())
    return (N - u) / (N - np.sqrt(N))


@_validate_alpha(empty=np.nan)
def mcintosh_e(counts):
    r"""Calculate McIntosh's evenness measure.

    McIntosh's evenness measure :math:`E` is defined as:

    .. math::

       E = \frac{\sqrt{\sum{n_i^2}}}{\sqrt{((N-S+1)^2 + S -1}}

    where :math:`n_i` is the number of individuals in the :math:`i^{\text{th}}`
    taxon, :math:`N` is the total number of individuals, and :math:`S` is the
    number of taxa in the sample.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        McIntosh evenness measure.

    See Also
    --------
    mcintosh_d

    Notes
    -----
    McIntosh's evenness measure was originally described in [1]_.

    References
    ----------
    .. [1] Heip & Engels (1974) Comparing Species Diversity and Evenness
       Indices. p 560.

    """
    S = counts.size
    N = counts.sum()
    numerator = np.sqrt((counts * counts).sum())
    denominator = np.sqrt((N - S + 1) ** 2 + S - 1)
    return numerator / denominator


@_validate_alpha(empty=np.nan)
def menhinick(counts):
    r"""Calculate Menhinick's richness index.

    Menhinick's richness index is defined as:

    .. math::

       D_{Mn} = \frac{S}{\sqrt{N}}

    where :math:`S` is the number of taxa and :math:`N` is the total number
    of individuals in the sample.

    Menhinick's richness index assumes square-root accumulation.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Menhinick's richness index.

    See Also
    --------
    margalef

    Notes
    -----
    Based on the description in [1]_.

    References
    ----------
    .. [1] Magurran, A E 2004. Measuring biological diversity. Blackwell. pp.
       76-77.

    """
    return counts.size / np.sqrt(counts.sum())


@_validate_alpha(empty=np.nan)
def michaelis_menten_fit(counts, num_repeats=1, params_guess=None):
    r"""Calculate Michaelis-Menten fit to rarefaction curve of observed taxa.

    The Michaelis-Menten equation estimates the asymptote of the rarefaction
    curve. It is an estimator of the true richness of a community given the
    observation. It is defined as:

    .. math::

       S = \frac{nS_{max}}{n+B}

    where :math:`n` is the number of individuals and :math:`S` is the number of
    taxa. This function estimates the :math:`S_{max}` parameter.

    The fit is made to datapoints for :math:`n=1,2,...,N`, where :math:`N` is
    the total number of individuals (sum of abundances for all taxa).
    :math:`S` is the number of taxa represented in a random sample of
    :math:`n` individuals.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    num_repeats : int, optional
        The number of times to perform rarefaction (subsampling without
        replacement) at each value of :math:`n`.
    params_guess : tuple, optional
        Initial guess of :math:`S_{max}` and :math:`B`. If ``None``, default
        guess for :math:`S_{max}` is :math:`S` (as :math:`S_{max}` should
        be >= :math:`S`) and default guess for :math:`B` is ``round(N / 2)``.

    Returns
    -------
    float
        Estimate of the :math:`S_{max}` parameter in the Michaelis-Menten
        equation.

    See Also
    --------
    skbio.stats.subsample_counts

    Notes
    -----
    There is some controversy about how to do the fitting. The ML model given
    in [1]_ is based on the assumption that error is roughly proportional to
    magnitude of observation, reasonable for enzyme kinetics but not reasonable
    for rarefaction data. Here we just do a nonlinear curve fit for the
    parameters using least-squares.

    References
    ----------
    .. [1] Raaijmakers, J. G. W. 1987 Statistical analysis of the
       Michaelis-Menten equation. Biometrics 43, 793-803.

    """
    n_indiv = counts.sum()
    if params_guess is None:
        S_max_guess = sobs(counts)
        B_guess = int(round(n_indiv / 2))
        params_guess = (S_max_guess, B_guess)

    # observed # of taxa vs # of individuals sampled, S vs n
    xvals = np.arange(1, n_indiv + 1)
    ymtx = np.empty((num_repeats, len(xvals)), dtype=int)
    for i in range(num_repeats):
        ymtx[i] = np.asarray(
            [sobs(subsample_counts(counts, n)) for n in xvals], dtype=int
        )
    yvals = ymtx.mean(0)

    # Vectors of actual vals y and number of individuals n.
    def errfn(p, n, y):
        return (((p[0] * n / (p[1] + n)) - y) ** 2).sum()

    # Return S_max.
    return fmin_powell(errfn, params_guess, ftol=1e-5, args=(xvals, yvals), disp=False)[
        0
    ]


def observed_features(counts):
    """Calculate the number of distinct features.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    int
        Distinct feature count.

    See Also
    --------
    sobs

    Notes
    -----
    ``observed_features`` is an alias for ``sobs``.

    """
    return sobs(counts)


@_validate_alpha()
def osd(counts):
    """Calculate observed taxa, singletons, and doubletons.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    osd : tuple
        Numbers of observed taxa, singletons, and doubletons.

    See Also
    --------
    sobs
    singles
    doubles

    Notes
    -----
    This is a convenience function used by many of the other measures that rely
    on these three measures.

    """
    return counts.size, (counts == 1).sum(), (counts == 2).sum()


@_validate_alpha()
def pielou_e(counts, base=None):
    r"""Calculate Pielou's evenness index.

    Pielou's evenness index (:math:`J'`), a.k.a., Shannon's equitability index
    (:math:`E_H`), is defined as:

    .. math::

       J' = \frac{(H)}{\log(S)}

    where :math:`H` is the Shannon index of the sample and :math:`S` is the
    number of taxa in the sample.

    That is, :math:`J'` is the ratio of the actual Shannon index of the sample
    versus the maximum-possible Shannon index when all taxa have the same
    number of individuals. :math:`J'` ranges between 0 and 1.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    base : int or float, optional
        Logarithm base to use in the calculation. Default is ``e``.

    Returns
    -------
    float
        Pielou's evenness index.

    See Also
    --------
    shannon
    heip_e

    Notes
    -----
    Pielou's evenness index was originally described in [1]_.

    When there is only one taxon, the return value is 1.0.

    References
    ----------
    .. [1] Pielou, E. C., 1966. The measurement of diversity in different types
       of biological collections. Journal of Theoretical Biology, 13, 131-44.

    """
    if (S := counts.size) == 0:
        return np.nan
    elif S == 1:
        return 1.0
    H = shannon(counts, base=base)
    H_max = np.log(S)
    if base is not None:
        H_max /= np.log(base)
    return H / H_max


@_validate_alpha()
def renyi(counts, order=2, base=None):
    r"""Calculate Renyi entropy.

    Renyi entropy (:math:`^qH`) is a generalization of Shannon index, with an
    exponent (order) :math:`q` instead of 1. It is defined as:

    .. math::

       ^qH = \frac{1}{1-q}\log_b{(\sum_{i=1}^S p_i^q)}

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion
    of the sample represented by taxon :math:`i`.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    order : int or float, optional
        Order (:math:`q`). Ranges between 0 and infinity. Default is 2.
    base : int or float, optional
        Logarithm base to use in the calculation. Default is ``e``.

    Returns
    -------
    float
        Renyi entropy.

    See Also
    --------
    hill
    inv_simpson
    shannon
    tsallis

    Notes
    -----
    Renyi entropy was originally defined in [1]_. It is a generalization of
    multiple entropy notions, as determined by the order (:math:`q`). Special
    cases of Renyi entropy include:

    - :math:`q=0`: Max-entropy (:math:`\log{S}`).
    - :math:`q \to 1`: Shannon entropy (index).
    - :math:`q=2`: Collision entropy, a.k.a, Renyi's quadratic entropy, or
      "Renyi entropy". Equivalent to the logarithm of inverse Simpson index.
    - :math:`q \to \infty`: Min-entropy (:math:`-\log{\max{p}}`).

    Renyi entropy is equivalent to the logarithm of Hill number.

    References
    ----------
    .. [1] Rényi, A. (1961, January). On measures of entropy and information.
       In Proceedings of the fourth Berkeley symposium on mathematical
       statistics and probability, volume 1: contributions to the theory of
       statistics (Vol. 4, pp. 547-562). University of California Press.

    """
    if (S := counts.size) == 0:
        return np.nan
    elif S == 1:
        return 0.0

    probs = counts / counts.sum()

    # max-entropy
    if order == 0:
        qH = np.log(S)
    # Shannon entropy
    elif order == 1:
        qH = _entropy(probs)
    # min-entropy
    elif np.isposinf(order):
        qH = -np.log(probs.max())
    else:
        qH = np.log((probs**order).sum()) / (1 - order)

    if base is not None:
        qH /= np.log(base)
    return qH


@_validate_alpha(empty=np.nan)
def robbins(counts):
    r"""Calculate Robbins' estimator for probability of unobserved outcomes.

    Robbins' estimator is defined as:

    .. math::

       \frac{F_1}{N}

    where :math:`F_1` is the number of singleton taxa and and :math:`N` is the
    total number of individuals in the sample.

    The result can be interpreted as the probability of discovering a new taxon
    at the :math:`N`-th individual given the current :math:`N - 1` individuals.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Robbins' estimator.

    See Also
    --------
    goods_coverage

    Notes
    -----
    Robbins' estimator is defined in [1]_.

    References
    ----------
    .. [1] Robbins, H. E. (1968). Estimating the total probability of the
       unobserved outcomes of an experiment. Ann. Math. Statist., 39(6),
       256-257.

    """
    return (counts == 1).sum() / counts.sum()


def _entropy(probs):
    """Calculate entropy."""
    return (-probs * np.log(probs)).sum()


def _perplexity(probs):
    """Calculate perplexity."""
    return (probs**-probs).prod()


@_validate_alpha(empty=np.nan)
def shannon(counts, base=None, exp=False):
    r"""Calculate Shannon's diversity index.

    Shannon's diversity index, :math:`H'`, a.k.a., Shannon index, or Shannon-
    Wiener index, is equivalent to entropy in information theory. It is defined
    as:

    .. math::

       H' = -\sum_{i=1}^S\left(p_i\log_b(p_i)\right)

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion
    of the sample represented by taxon :math:`i`.

    The logarithm base :math:`b` defaults to ``e``, but may be 2, 10 or other
    custom values.

    The exponential of Shannon index, :math:`exp(H')`, measures the effective
    number of species (a.k.a., true diversity). It is equivalent to perplexity
    in information theory, or Hill number with order 1 (:math:`^1D`). The value
    is independent from the base:

    .. math::

       exp(H') = b ^ {-\sum_{i=1}^S\left(p_i\log_b(p_i)\right)} = \prod_{i=1}
       ^{S}p_i^{-p_i}

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    base : int or float, optional
        Logarithm base to use in the calculation. Default is ``e``.

        .. versionchanged:: 0.6.1

            The default logarithm base was changed from 2 to :math:`e` for
            consistency with the majority of literature.

    exp : bool, optional
        If True, return the exponential of Shannon index.

    Returns
    -------
    float
        Shannon's diversity index.

    Notes
    -----
    Shannon index (i.e., entropy) was originally proposed in [1]_. The
    exponential of Shannon index (i.e., perplexity) was discussed in [2]_ in
    the context of community diversity.

    References
    ----------
    .. [1] Shannon, C. E. (1948). A mathematical theory of communication. The
       Bell system technical journal, 27(3), 379-423.

    .. [2] Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375.

    """
    probs = counts / counts.sum()

    # perplexity
    if exp is True:
        return _perplexity(probs)

    # entropy
    else:
        H = _entropy(probs)
        if base is not None:
            H /= np.log(base)
        return H


def simpson(counts, finite=False):
    r"""Calculate Simpson's diversity index.

    Simpson's diversity index, a.k.a., Gini-Simpson index, or Gini impurity,
    is defined as:

    .. math::

       1 - \sum_{i=1}^S{p_i^2}

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion
    of the sample represented by taxon :math:`i`.

    Therefore, Simpson's diversity index is also denoted as :math:`1 - D`, in
    which :math:`D` is the Simpson's dominance index.

    Simpson's diversity index can be interpreted as the probability that two
    randomly selected individuals belong to different taxa. It is also known
    as Hurlbert's probability of interspecific encounter (PIE).

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    finite : bool, optional
        If True, correct for finite sampling when calculating :math:`D`.

    Returns
    -------
    float
        Simpson's diversity index.

    See Also
    --------
    dominance

    Notes
    -----
    Simpson's diversity index was originally described in [1]_.

    Hurlbert's probability of interspecific encounter was described in [2]_.

    References
    ----------
    .. [1] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148),
       688-688.

    .. [2] Hurlbert, S. H. (1971). The nonconcept of species diversity: a
       critique and alternative parameters. Ecology, 52(4), 577-586.

    """
    return 1 - dominance(counts, finite=finite)


def simpson_d(counts, finite=False):
    """Calculate Simpson's dominance index, a.k.a. Simpson's D.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    finite : bool, optional
        If True, correct for finite sampling.

    Returns
    -------
    int
        Simpson's dominance index.

    See Also
    --------
    dominance
    simpson
    simpson_e

    Notes
    -----
    ``simpson_d`` is an alias for ``dominance``.

    """
    return dominance(counts, finite=finite)


@_validate_alpha(empty=np.nan)
def simpson_e(counts):
    r"""Calculate Simpson's evenness index.

    Simpson's evenness (a.k.a., equitability) index :math:`E_D` is defined as:

    .. math::

       E_D = \frac{1}{D \times S}

    where :math:`D` is the Simpson's dominance index and :math:`S` is the
    number of taxa in the sample.

    That is, :math:`E_D` is the ratio of the minimum-possible Simpson's
    dominance index when all taxa have the same number of individuals:
    :math:`D_{min} = 1 / S`, versus the actual Simpson's dominance index of the
    sample.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Simpson's evenness index.

    See Also
    --------
    dominance
    simpson

    Notes
    -----
    The implementation here is based on the description given in [1]_ and [2]_.

    References
    ----------
    .. [1] Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148),
       688-688.

    .. [2] Pielou, E. C. (1966). The measurement of diversity in different
       types of biological collections. Journal of theoretical biology, 13,
       131-144.

    """
    # Note: the finite version of simpson_e might be: 1 / (D(S + 1)), because
    # S + 1 is the maximum possible finite D given S. Otherwise, the result can
    # be greater than 1 for small samples. However, I didn't find literature
    # stating this. Therefore, the `finite` parameter is not used here.
    return 1 / (counts.size * dominance(counts))


@_validate_alpha()
def singles(counts):
    """Calculate number of single-occurrence taxa (singletons).

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    int
        Singleton count.

    """
    return (counts == 1).sum()


@aliased("observed_otus", "0.6.0", True)
@_validate_alpha()
def sobs(counts):
    """Calculate the observed species richness of a sample.

    Observed species richness, usually denoted as :math:`S_{obs}` or simply
    :math:`S`, is the number of distinct species (i.e., taxa), or any discrete
    groups of biological entities found in a sample.

    It should be noted that observed species richness is smaller than or equal
    to the true species richness of a population from which the sample is
    collected.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    int
        Observed species richness.

    See Also
    --------
    observed_features

    """
    return counts.size


@_validate_alpha(empty=np.nan)
def strong(counts):
    r"""Calculate Strong's dominance index.

    Strong's dominance index (:math:`D_w`) is defined as

    .. math::

       D_w = max_i[(\frac{b_i}{N})-\frac{i}{S}]

    where :math:`b_i` is the sequential cumulative totaling of the
    :math:`i^{\text{th}}` taxon abundance values ranked from largest to
    smallest, :math:`N` is the total number of individuals in the sample, and
    :math:`S` is the number of taxa in the sample. The expression in
    brackets is computed for all taxa, and :math:`max_i` denotes the maximum
    value in brackets for any taxa.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.

    Returns
    -------
    float
        Strong's dominance index.

    Notes
    -----
    Strong's dominance index is defined in [1]_.

    References
    ----------
    .. [1] Strong, W. L., 2002 Assessing species abundance unevenness within
       and between plant communities. Community Ecology, 3, 237-246.

    """
    S = counts.size
    sorted_sum = np.sort(counts)[::-1].cumsum()
    i = np.arange(1, S + 1)
    return (sorted_sum / counts.sum() - (i / S)).max()


@_validate_alpha()
def tsallis(counts, order=2):
    r"""Calculate Tsallis entropy.

    Tsallis entropy (:math:`^qH`), a.k.a. HCDT entropy, is a generalization of
    Boltzmann-Gibbs entropy with an exponent (order) :math:`q`. It is defined
    as:

    .. math::

       ^qH = \frac{1}{q - 1}(1 - \sum_{i=1}^S p_i^q)

    where :math:`S` is the number of taxa and :math:`p_i` is the proportion
    of the sample represented by taxon :math:`i`.

    Parameters
    ----------
    counts : 1-D array_like, int
        Vector of counts.
    order : int or float, optional
        Order (:math:`q`). Ranges between 0 and infinity. Default is 2.

    Returns
    -------
    float
        Tsallis entropy.

    See Also
    --------
    renyi
    shannon
    simpson
    sobs

    Notes
    -----
    Tsallis entropy was originally defined in [1]_. Special cases of Tsallis
    entropy given order :math:`q` include:

    - :math:`q=0`: Observed species richness (:math:`S_{obs}`) minus 1.
    - :math:`q \to 1`: Shannon index :math:`H'`.
    - :math:`q=2`: Simpson diversity index (:math:`1 - D`).
    - :math:`q \to \infty`: 0.

    References
    ----------
    .. [1] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs
       statistics. Journal of statistical physics, 52, 479-487.

    """
    if (S := counts.size) == 0:
        return np.nan
    elif S == 1:
        return 0.0
    probs = counts / counts.sum()
    if order == 1:
        return _entropy(probs)
    elif np.isposinf(order):
        return 0.0
    else:
        return (1 - (probs**order).sum()) / (order - 1)