File: test_block.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (207 lines) | stat: -rw-r--r-- 8,331 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

from unittest import TestCase, main

import numpy as np
import numpy.testing as npt

from skbio import TreeNode, DistanceMatrix
from skbio.diversity import beta_diversity, block_beta_diversity
from skbio.diversity._block import (_block_party, _generate_id_blocks,
                                    _pairs_to_compute, _block_compute,
                                    _block_kwargs, _map, _reduce)


class ParallelBetaDiversity(TestCase):
    def setUp(self):
        self.table1 = [[1, 5],
                       [2, 3],
                       [0, 1]]
        self.sids1 = list('ABC')
        self.tree1 = TreeNode.read([
            '((O1:0.25, O2:0.50):0.25, O3:0.75)root;'])
        self.oids1 = ['O1', 'O2']

    def test_block_kwargs(self):
        kws = {'ids': [1, 2, 3, 4, 5], 'foo': 'bar', 'k': 2}
        exp = [{'row_ids': np.array((0, 1)),
                'col_ids': np.array((0, 1)),
                'id_pairs': [(0, 1)],
                'ids': [1, 2, 3, 4, 5]},

               {'row_ids': np.array((0, 1)),
                'col_ids': np.array((2, 3)),
                'id_pairs': [(0, 2), (0, 3), (1, 2), (1, 3)],
                'ids': [1, 2, 3, 4, 5]},

               {'row_ids': np.array((0, 1)),
                'col_ids': np.array((4,)),
                'id_pairs': [(0, 4), (1, 4)],
                'ids': [1, 2, 3, 4, 5]},

               {'row_ids': np.array((2, 3)),
                'col_ids': np.array((2, 3)),
                'id_pairs': [(2, 3), ],
                'ids': [1, 2, 3, 4, 5]},

               {'row_ids': np.array((2, 3)),
                'col_ids': np.array((4,)),
                'id_pairs': [(2, 4), (3, 4)],
                'ids': [1, 2, 3, 4, 5]}]

        obs = list(_block_kwargs(**kws))
        npt.assert_equal(obs, exp)

    def test_block_compute(self):
        def mock_metric(u, v):
            return (u + v).sum()

        counts = np.array([[0, 1, 2, 3, 4, 5],
                           [1, 2, 3, 4, 5, 0],
                           [2, 3, 4, 5, 0, 1],
                           [10, 2, 3, 6, 8, 2],
                           [9, 9, 2, 2, 3, 4]])

        kwargs = {'metric': mock_metric,
                  'counts': counts,
                  'row_ids': np.array((2, 3)),
                  'col_ids': np.array((4, )),
                  'id_pairs': [(2, 4), (3, 4)],
                  'ids': [1, 2, 3, 4, 5]}

        exp = DistanceMatrix(np.array([[0, 0, 44],
                                       [0, 0, 60],
                                       [44, 60, 0]]), (2, 3, 4))

        obs = _block_compute(**kwargs)
        npt.assert_equal(obs.data, exp.data)
        self.assertEqual(obs.ids, exp.ids)

    def test_map(self):
        def func(a, b, c=5):
            return a + b + c

        kwargs = [{'a': 0, 'b': 1, 'c': 0},
                  {'a': 2, 'b': 3}]
        exp = [1, 10]
        obs = list(_map(func, kwargs))
        self.assertEqual(obs, exp)

    def test_reduce(self):
        dm1 = DistanceMatrix(np.array([[0, 0, 44],
                                       [0, 0, 60],
                                       [44, 60, 0]]), (2, 3, 4))
        dm2 = DistanceMatrix(np.array([[0, 123],
                                       [123, 0]]), (1, 5))
        dm3 = DistanceMatrix(np.array([[0, 1, 2, 3],
                                       [1, 0, 4, 5],
                                       [2, 4, 0, 6],
                                       [3, 5, 6, 0]]), (0, 3, 4, 5))
        exp = DistanceMatrix(np.array([[0, 0, 0, 1, 2, 3],
                                       [0, 0, 0, 0, 0, 123],
                                       [0, 0, 0, 0, 44, 0],
                                       [1, 0, 0, 0, 64, 5],
                                       [2, 0, 44, 64, 0, 6],
                                       [3, 123, 0, 5, 6, 0]]), list(range(6)))

        obs = _reduce([dm1, dm2, dm3])
        npt.assert_equal(obs.data, exp.data)
        self.assertEqual(obs.ids, exp.ids)

    def test_block_beta_diversity(self):
        exp = beta_diversity('unweighted_unifrac', self.table1, self.sids1,
                             tree=self.tree1, taxa=self.oids1)
        obs = block_beta_diversity('unweighted_unifrac', self.table1,
                                   self.sids1, taxa=self.oids1,
                                   tree=self.tree1, k=2)
        npt.assert_equal(obs.data, exp.data)
        self.assertEqual(obs.ids, exp.ids)

    def test_generate_id_blocks(self):
        ids = [1, 2, 3, 4, 5]
        exp = [(np.array((0, 1)), np.array((0, 1))),
               (np.array((0, 1)), np.array((2, 3))),
               (np.array((0, 1)), np.array((4,))),
               (np.array((2, 3)), np.array((2, 3))),
               (np.array((2, 3)), np.array((4,))),
               (np.array((4,)),   np.array((4,)))]

        obs = list(_generate_id_blocks(ids, 2))
        npt.assert_equal(obs, exp)

    def test_block_party_notree(self):
        counts = np.arange(15).reshape(5, 3)
        exp = [{'counts': np.array([[0, 1, 2], [3, 4, 5]]),
                'ids': np.array([0, 1])},
               {'counts': np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8],
                                    [9, 10, 11]]),
                'ids': np.array([0, 1, 2, 3])},
               {'counts': np.array([[0, 1, 2], [3, 4, 5], [12, 13, 14]]),
                'ids': np.array([0, 1, 4])},
               {'counts': np.array([[6, 7, 8], [9, 10, 11]]),
                'ids': np.array([2, 3])},
               {'counts': np.array([[6, 7, 8], [9, 10, 11], [12, 13, 14]]),
                'ids': np.array([2, 3, 4])},
               {'counts': np.array([[12, 13, 14]]), 'ids': np.array([4])}]
        obs = [_block_party(counts, rids, cids) for rids, cids in
               _generate_id_blocks(list(range(5)), 2)]
        npt.assert_equal(obs, exp)

    def test_block_party_tree(self):
        counts = np.array([[1, 1, 1],
                           [1, 0, 1],
                           [1, 0, 1],
                           [0, 0, 1],
                           [0, 1, 1]])
        tree = TreeNode.read(['(a:1,b:2,c:3);'])
        taxa = ['a', 'b', 'c']

        kw = {'tree': tree, 'taxa': taxa}
        kw_no_a = {'tree': tree.shear(['b', 'c']), 'taxa': ['b', 'c']}
        kw_no_b = {'tree': tree.shear(['a', 'c']), 'taxa': ['a', 'c']}

        # python >= 3.5 supports {foo: bar, **baz}
        exp = [dict(counts=np.array([[1, 1, 1], [1, 0, 1]]), **kw),
               dict(counts=np.array([[1, 1, 1], [1, 0, 1], [1, 0, 1],
                                     [0, 0, 1]]), **kw),
               dict(counts=np.array([[1, 1, 1], [1, 0, 1], [0, 1, 1]]), **kw),
               dict(counts=np.array([[1, 1], [0, 1]]), **kw_no_b),
               dict(counts=np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1]]), **kw),
               dict(counts=np.array([[1, 1]]), **kw_no_a)]

        obs = [_block_party(counts, rids, cids, **kw) for rids, cids in
               _generate_id_blocks(list(range(5)), 2)]

        for okw, ekw in zip(obs, exp):
            npt.assert_equal(okw['counts'], ekw['counts'])
            npt.assert_equal(okw['taxa'], ekw['taxa'])
            self.assertEqual(str(okw['tree']), str(ekw['tree']))

    def test_pairs_to_compute_rids_are_cids(self):
        rids = np.array([0, 1, 2, 10])
        cids = rids
        exp = [(0, 1), (0, 2), (0, 10), (1, 2), (1, 10), (2, 10)]
        self.assertEqual(_pairs_to_compute(rids, cids), exp)

    def test_pairs_to_compute_rids_are_not_cids(self):
        rids = np.array([0, 1, 2])
        cids = np.array([3, 4, 5])
        exp = [(0, 3), (0, 4), (0, 5), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4),
               (2, 5)]
        self.assertEqual(_pairs_to_compute(rids, cids), exp)

    def test_pairs_to_compute_rids_overlap_cids(self):
        rids = np.array([0, 1, 2])
        cids = np.array([0, 10, 20])
        with self.assertRaises(ValueError):
            _pairs_to_compute(rids, cids)


if __name__ == "__main__":
    main()