1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
from unittest import TestCase, main
import numpy as np
import numpy.testing as npt
from skbio import TreeNode, DistanceMatrix
from skbio.diversity import beta_diversity, block_beta_diversity
from skbio.diversity._block import (_block_party, _generate_id_blocks,
_pairs_to_compute, _block_compute,
_block_kwargs, _map, _reduce)
class ParallelBetaDiversity(TestCase):
def setUp(self):
self.table1 = [[1, 5],
[2, 3],
[0, 1]]
self.sids1 = list('ABC')
self.tree1 = TreeNode.read([
'((O1:0.25, O2:0.50):0.25, O3:0.75)root;'])
self.oids1 = ['O1', 'O2']
def test_block_kwargs(self):
kws = {'ids': [1, 2, 3, 4, 5], 'foo': 'bar', 'k': 2}
exp = [{'row_ids': np.array((0, 1)),
'col_ids': np.array((0, 1)),
'id_pairs': [(0, 1)],
'ids': [1, 2, 3, 4, 5]},
{'row_ids': np.array((0, 1)),
'col_ids': np.array((2, 3)),
'id_pairs': [(0, 2), (0, 3), (1, 2), (1, 3)],
'ids': [1, 2, 3, 4, 5]},
{'row_ids': np.array((0, 1)),
'col_ids': np.array((4,)),
'id_pairs': [(0, 4), (1, 4)],
'ids': [1, 2, 3, 4, 5]},
{'row_ids': np.array((2, 3)),
'col_ids': np.array((2, 3)),
'id_pairs': [(2, 3), ],
'ids': [1, 2, 3, 4, 5]},
{'row_ids': np.array((2, 3)),
'col_ids': np.array((4,)),
'id_pairs': [(2, 4), (3, 4)],
'ids': [1, 2, 3, 4, 5]}]
obs = list(_block_kwargs(**kws))
npt.assert_equal(obs, exp)
def test_block_compute(self):
def mock_metric(u, v):
return (u + v).sum()
counts = np.array([[0, 1, 2, 3, 4, 5],
[1, 2, 3, 4, 5, 0],
[2, 3, 4, 5, 0, 1],
[10, 2, 3, 6, 8, 2],
[9, 9, 2, 2, 3, 4]])
kwargs = {'metric': mock_metric,
'counts': counts,
'row_ids': np.array((2, 3)),
'col_ids': np.array((4, )),
'id_pairs': [(2, 4), (3, 4)],
'ids': [1, 2, 3, 4, 5]}
exp = DistanceMatrix(np.array([[0, 0, 44],
[0, 0, 60],
[44, 60, 0]]), (2, 3, 4))
obs = _block_compute(**kwargs)
npt.assert_equal(obs.data, exp.data)
self.assertEqual(obs.ids, exp.ids)
def test_map(self):
def func(a, b, c=5):
return a + b + c
kwargs = [{'a': 0, 'b': 1, 'c': 0},
{'a': 2, 'b': 3}]
exp = [1, 10]
obs = list(_map(func, kwargs))
self.assertEqual(obs, exp)
def test_reduce(self):
dm1 = DistanceMatrix(np.array([[0, 0, 44],
[0, 0, 60],
[44, 60, 0]]), (2, 3, 4))
dm2 = DistanceMatrix(np.array([[0, 123],
[123, 0]]), (1, 5))
dm3 = DistanceMatrix(np.array([[0, 1, 2, 3],
[1, 0, 4, 5],
[2, 4, 0, 6],
[3, 5, 6, 0]]), (0, 3, 4, 5))
exp = DistanceMatrix(np.array([[0, 0, 0, 1, 2, 3],
[0, 0, 0, 0, 0, 123],
[0, 0, 0, 0, 44, 0],
[1, 0, 0, 0, 64, 5],
[2, 0, 44, 64, 0, 6],
[3, 123, 0, 5, 6, 0]]), list(range(6)))
obs = _reduce([dm1, dm2, dm3])
npt.assert_equal(obs.data, exp.data)
self.assertEqual(obs.ids, exp.ids)
def test_block_beta_diversity(self):
exp = beta_diversity('unweighted_unifrac', self.table1, self.sids1,
tree=self.tree1, taxa=self.oids1)
obs = block_beta_diversity('unweighted_unifrac', self.table1,
self.sids1, taxa=self.oids1,
tree=self.tree1, k=2)
npt.assert_equal(obs.data, exp.data)
self.assertEqual(obs.ids, exp.ids)
def test_generate_id_blocks(self):
ids = [1, 2, 3, 4, 5]
exp = [(np.array((0, 1)), np.array((0, 1))),
(np.array((0, 1)), np.array((2, 3))),
(np.array((0, 1)), np.array((4,))),
(np.array((2, 3)), np.array((2, 3))),
(np.array((2, 3)), np.array((4,))),
(np.array((4,)), np.array((4,)))]
obs = list(_generate_id_blocks(ids, 2))
npt.assert_equal(obs, exp)
def test_block_party_notree(self):
counts = np.arange(15).reshape(5, 3)
exp = [{'counts': np.array([[0, 1, 2], [3, 4, 5]]),
'ids': np.array([0, 1])},
{'counts': np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8],
[9, 10, 11]]),
'ids': np.array([0, 1, 2, 3])},
{'counts': np.array([[0, 1, 2], [3, 4, 5], [12, 13, 14]]),
'ids': np.array([0, 1, 4])},
{'counts': np.array([[6, 7, 8], [9, 10, 11]]),
'ids': np.array([2, 3])},
{'counts': np.array([[6, 7, 8], [9, 10, 11], [12, 13, 14]]),
'ids': np.array([2, 3, 4])},
{'counts': np.array([[12, 13, 14]]), 'ids': np.array([4])}]
obs = [_block_party(counts, rids, cids) for rids, cids in
_generate_id_blocks(list(range(5)), 2)]
npt.assert_equal(obs, exp)
def test_block_party_tree(self):
counts = np.array([[1, 1, 1],
[1, 0, 1],
[1, 0, 1],
[0, 0, 1],
[0, 1, 1]])
tree = TreeNode.read(['(a:1,b:2,c:3);'])
taxa = ['a', 'b', 'c']
kw = {'tree': tree, 'taxa': taxa}
kw_no_a = {'tree': tree.shear(['b', 'c']), 'taxa': ['b', 'c']}
kw_no_b = {'tree': tree.shear(['a', 'c']), 'taxa': ['a', 'c']}
# python >= 3.5 supports {foo: bar, **baz}
exp = [dict(counts=np.array([[1, 1, 1], [1, 0, 1]]), **kw),
dict(counts=np.array([[1, 1, 1], [1, 0, 1], [1, 0, 1],
[0, 0, 1]]), **kw),
dict(counts=np.array([[1, 1, 1], [1, 0, 1], [0, 1, 1]]), **kw),
dict(counts=np.array([[1, 1], [0, 1]]), **kw_no_b),
dict(counts=np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1]]), **kw),
dict(counts=np.array([[1, 1]]), **kw_no_a)]
obs = [_block_party(counts, rids, cids, **kw) for rids, cids in
_generate_id_blocks(list(range(5)), 2)]
for okw, ekw in zip(obs, exp):
npt.assert_equal(okw['counts'], ekw['counts'])
npt.assert_equal(okw['taxa'], ekw['taxa'])
self.assertEqual(str(okw['tree']), str(ekw['tree']))
def test_pairs_to_compute_rids_are_cids(self):
rids = np.array([0, 1, 2, 10])
cids = rids
exp = [(0, 1), (0, 2), (0, 10), (1, 2), (1, 10), (2, 10)]
self.assertEqual(_pairs_to_compute(rids, cids), exp)
def test_pairs_to_compute_rids_are_not_cids(self):
rids = np.array([0, 1, 2])
cids = np.array([3, 4, 5])
exp = [(0, 3), (0, 4), (0, 5), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4),
(2, 5)]
self.assertEqual(_pairs_to_compute(rids, cids), exp)
def test_pairs_to_compute_rids_overlap_cids(self):
rids = np.array([0, 1, 2])
cids = np.array([0, 10, 20])
with self.assertRaises(ValueError):
_pairs_to_compute(rids, cids)
if __name__ == "__main__":
main()
|