File: test_driver.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (910 lines) | stat: -rw-r--r-- 41,226 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io
from unittest import TestCase, main

import pandas as pd
import numpy as np
import numpy.testing as npt

from skbio import DistanceMatrix, TreeNode
from skbio.table import Table, example_table
from skbio.util._testing import assert_series_almost_equal
from skbio.diversity import (alpha_diversity, beta_diversity,
                             partial_beta_diversity,
                             get_alpha_diversity_metrics,
                             get_beta_diversity_metrics)
from skbio.diversity.alpha import faith_pd, phydiv, sobs
from skbio.diversity.beta import unweighted_unifrac, weighted_unifrac
from skbio.tree import DuplicateNodeError, MissingNodeError
from skbio.diversity._driver import (_qualitative_beta_metrics,
                                     _valid_beta_metrics)


class AlphaDiversityTests(TestCase):
    def setUp(self):
        self.table1 = np.array([[1, 3, 0, 1, 0],
                                [0, 2, 0, 4, 4],
                                [0, 0, 6, 2, 1],
                                [0, 0, 1, 1, 1]])
        self.sids1 = list('ABCD')
        self.oids1 = ['OTU%d' % i for i in range(1, 6)]
        self.tree1 = TreeNode.read(io.StringIO(
            '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):'
            '0.0,(OTU4:0.75,OTU5:0.75):1.25):0.0)root;'))

        self.table2 = np.array([[1, 3],
                                [0, 2],
                                [0, 0]])
        self.sids2 = list('xyz')
        self.oids2 = ['OTU1', 'OTU5']
        self.tree2 = TreeNode.read(io.StringIO(
            '(((((OTU1:42.5,OTU2:0.5):0.5,OTU3:1.0):1.0):'
            '0.0,(OTU4:0.75,OTU5:0.0001):1.25):0.0)root;'))

    def test_invalid_input(self):
        # number of ids doesn't match the number of samples
        self.assertRaises(ValueError, alpha_diversity, 'sobs',
                          self.table1, list('ABC'))

        # unknown metric provided
        self.assertRaises(ValueError, alpha_diversity, 'not-a-metric',
                          self.table1)

        # 3-D list provided as input
        self.assertRaises(ValueError, alpha_diversity, 'sobs',
                          [[[43]]])

        # negative counts
        self.assertRaises(ValueError, alpha_diversity, 'sobs',
                          [0, 3, -12, 42])

        # additional kwargs
        self.assertRaises(TypeError, alpha_diversity, 'sobs',
                          [0, 1], not_a_real_kwarg=42.0)
        self.assertRaises(TypeError, alpha_diversity, 'faith_pd',
                          [0, 1], tree=self.tree1, taxa=['OTU1', 'OTU2'],
                          not_a_real_kwarg=42.0)
        self.assertRaises(TypeError, alpha_diversity, faith_pd,
                          [0, 1], tree=self.tree1, taxa=['OTU1', 'OTU2'],
                          not_a_real_kwarg=42.0)

        self.assertRaises(ValueError, alpha_diversity, 'sobs',
                          example_table, ids=['A', 'B', 'C'])

    def test_invalid_input_phylogenetic(self):
        # taxa not provided
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd', self.table1,
                          list('ABC'), tree=self.tree1)
        # tree not provided
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd', self.table1,
                          list('ABC'), taxa=self.oids1)

        # tree has duplicated tip ids
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU2:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(DuplicateNodeError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)

        # unrooted tree as input
        t = TreeNode.read(io.StringIO(
            '((OTU1:0.1, OTU2:0.2):0.3, OTU3:0.5,OTU4:0.7);'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)

        # taxa has duplicated ids
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU2:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU2']
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)

        # count and OTU vectors are not equal length
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU2:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2']
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU2:0.75):1.25):0.0)root;'))
        counts = [1, 2]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)

        # tree with no branch lengths
        t = TreeNode.read(
            io.StringIO('((((OTU1,OTU2),OTU3)),(OTU4,OTU5));'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)

        # tree missing some branch lengths
        t = TreeNode.read(
            io.StringIO('(((((OTU1,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                        '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)

        # some taxa not present in tree
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU42']
        self.assertRaises(MissingNodeError, alpha_diversity, 'faith_pd',
                          counts, taxa=taxa, tree=t)

        # table and taxa are provided
        test_table = Table(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
                           ['O1', 'O2', 'O3'],
                           ['S1', 'S2', 'S3'])
        self.assertRaises(ValueError, alpha_diversity, 'faith_pd',
                          test_table, taxa=taxa, tree=t)

    def test_empty(self):
        # empty vector
        actual = alpha_diversity('sobs', np.array([], dtype=np.int64))
        expected = pd.Series([0], dtype=np.int64)
        assert_series_almost_equal(actual, expected)

        # array of empty vector
        actual = alpha_diversity('sobs', np.array([[]], dtype=np.int64))
        expected = pd.Series([0], dtype=np.int64)
        assert_series_almost_equal(actual, expected)

        # array of empty vectors
        actual = alpha_diversity('sobs', np.array([[], []], dtype=np.int64))
        expected = pd.Series([0, 0], dtype=np.int64)
        assert_series_almost_equal(actual, expected)

        # empty vector
        actual = alpha_diversity('faith_pd', np.array([], dtype=np.int64),
                                 tree=self.tree1, taxa=[])
        expected = pd.Series([0.])
        assert_series_almost_equal(actual, expected)

        # array of empty vector
        actual = alpha_diversity('faith_pd',
                                 np.array([[]], dtype=np.int64),
                                 tree=self.tree1, taxa=[])
        expected = pd.Series([0.])
        assert_series_almost_equal(actual, expected)

        # array of empty vectors
        actual = alpha_diversity('faith_pd',
                                 np.array([[], []], dtype=np.int64),
                                 tree=self.tree1, taxa=[])
        expected = pd.Series([0., 0.])
        assert_series_almost_equal(actual, expected)

        # empty Table
        actual = alpha_diversity('sobs', Table(np.array([[]]), [], ['S1', ]))
        actual.index = pd.RangeIndex(len(actual))
        expected = pd.Series([0], dtype=np.int64)
        assert_series_almost_equal(actual, expected)

    def test_single_count_vector(self):
        actual = alpha_diversity('sobs', np.array([1, 0, 2]))
        expected = pd.Series([2], dtype=np.int64)
        assert_series_almost_equal(actual, expected)

        actual = alpha_diversity('faith_pd', np.array([1, 3, 0, 1, 0]),
                                 tree=self.tree1, taxa=self.oids1)
        self.assertAlmostEqual(actual[0], 4.5)

    def test_input_types(self):
        list_result = alpha_diversity('sobs', [1, 3, 0, 1, 0])
        array_result = alpha_diversity('sobs',
                                       np.array([1, 3, 0, 1, 0]))
        table_result = alpha_diversity('sobs',
                                       Table(np.array([[1, 3, 0, 1, 0], ]).T,
                                             list('ABCDE'),
                                             ['S1', ]))

        # using a table we get sample IDs for free, drop them for the test
        table_result.index = pd.RangeIndex(len(table_result))

        self.assertAlmostEqual(list_result[0], 3)
        assert_series_almost_equal(list_result, array_result)
        assert_series_almost_equal(table_result, array_result)

        list_result = alpha_diversity('faith_pd', [1, 3, 0, 1, 0],
                                      tree=self.tree1, taxa=self.oids1)
        array_result = alpha_diversity('faith_pd', np.array([1, 3, 0, 1, 0]),
                                       tree=self.tree1, taxa=self.oids1)
        table_result = alpha_diversity('faith_pd',
                                       Table(np.array([[1, 3, 0, 1, 0], ]).T,
                                             self.oids1,
                                             ['S1', ]),
                                       tree=self.tree1)

        # using a table we get sample IDs for free, drop them for the test
        table_result.index = pd.RangeIndex(len(table_result))

        self.assertAlmostEqual(list_result[0], 4.5)
        assert_series_almost_equal(list_result, array_result)
        assert_series_almost_equal(table_result, array_result)

    def test_sobs(self):
        # expected values hand-calculated
        expected = pd.Series([3, 3, 3, 3], index=self.sids1, dtype=np.int64)
        actual = alpha_diversity('sobs', self.table1, self.sids1)
        assert_series_almost_equal(actual, expected)
        # function passed instead of string
        actual = alpha_diversity(sobs, self.table1, self.sids1)
        assert_series_almost_equal(actual, expected)
        # alt input table
        expected = pd.Series([2, 1, 0], index=self.sids2, dtype=np.int64)
        actual = alpha_diversity('sobs', self.table2, self.sids2)
        assert_series_almost_equal(actual, expected)

    def test_faith_pd(self):
        # calling faith_pd through alpha_diversity gives same results as
        # calling it directly
        expected = []
        for e in self.table1:
            expected.append(faith_pd(e, tree=self.tree1, taxa=self.oids1))
        expected = pd.Series(expected)
        actual = alpha_diversity('faith_pd', self.table1, tree=self.tree1,
                                 taxa=self.oids1)
        assert_series_almost_equal(actual, expected)

        # alt input table and tree
        expected = []
        for e in self.table2:
            expected.append(faith_pd(e, tree=self.tree2, taxa=self.oids2))
        expected = pd.Series(expected)
        actual = alpha_diversity('faith_pd', self.table2, tree=self.tree2,
                                 taxa=self.oids2)
        assert_series_almost_equal(actual, expected)

    def test_phydiv(self):
        expected = []
        for e in self.table1:
            expected.append(phydiv(e, tree=self.tree1, taxa=self.oids1))
        expected = pd.Series(expected)
        actual = alpha_diversity('phydiv', self.table1, tree=self.tree1,
                                 taxa=self.oids1)
        assert_series_almost_equal(actual, expected)

        expected = []
        for e in self.table1:
            expected.append(phydiv(e, tree=self.tree1, taxa=self.oids1,
                                   rooted=False))
        expected = pd.Series(expected)
        actual = alpha_diversity('phydiv', self.table1, tree=self.tree1,
                                 taxa=self.oids1, rooted=False)
        assert_series_almost_equal(actual, expected)

        expected = []
        for e in self.table1:
            expected.append(phydiv(e, tree=self.tree1, taxa=self.oids1,
                                   weight=True))
        expected = pd.Series(expected)
        actual = alpha_diversity('phydiv', self.table1, tree=self.tree1,
                                 taxa=self.oids1, weight=True)
        assert_series_almost_equal(actual, expected)

    def test_no_ids(self):
        # expected values hand-calculated
        expected = pd.Series([3, 3, 3, 3], dtype=np.int64)
        actual = alpha_diversity('sobs', self.table1)
        assert_series_almost_equal(actual, expected)

    def test_optimized(self):
        # calling optimized faith_pd gives same results as calling unoptimized
        # version
        optimized = alpha_diversity('faith_pd', self.table1, tree=self.tree1,
                                    taxa=self.oids1)
        unoptimized = alpha_diversity(faith_pd, self.table1, tree=self.tree1,
                                      taxa=self.oids1)
        assert_series_almost_equal(optimized, unoptimized)


class BetaDiversityTests(TestCase):
    def setUp(self):
        self.table1 = [[1, 5],
                       [2, 3],
                       [0, 1]]
        self.sids1 = list('ABC')
        self.tree1 = TreeNode.read(io.StringIO(
            '((O1:0.25, O2:0.50):0.25, O3:0.75)root;'))
        self.oids1 = ['O1', 'O2']

        self.table2 = [[23, 64, 14, 0, 0, 3, 1],
                       [0, 3, 35, 42, 0, 12, 1],
                       [0, 5, 5, 0, 40, 40, 0],
                       [44, 35, 9, 0, 1, 0, 0],
                       [0, 2, 8, 0, 35, 45, 1],
                       [0, 0, 25, 35, 0, 19, 0]]
        self.sids2 = list('ABCDEF')

        self.table3 = [[23, 64, 14, 0, 0, 3, 1],
                       [0, 3, 35, 42, 0, 12, 1],
                       [0, 5, 5, 0, 40, 40, 0],
                       [44, 35, 9, 0, 1, 0, 0],
                       [0, 2, 8, 0, 35, 45, 1],
                       [0, 0, 25, 35, 0, 19, 0],
                       [88, 31, 0, 5, 5, 5, 5],
                       [44, 39, 0, 0, 0, 0, 0]]

    def test_available_metrics(self):

        for metric in _valid_beta_metrics:
            try:
                beta_diversity(metric, self.table3)
            except Exception as exc:
                raise ValueError(
                    f'Metric {metric} failed with exception:\n {exc}')

    def test_use_of_dataframe_index(self):
        '''reference to issue 1808'''

        df1 = pd.DataFrame(self.table1, index=self.sids1)
        df2 = pd.DataFrame(self.table2, index=self.sids2)

        matrix1 = beta_diversity('jaccard', df1)
        matrix2 = beta_diversity('jaccard', df2)

        self.assertEqual(self.sids1, list(matrix1.to_data_frame().index))
        self.assertEqual(self.sids2, list(matrix2.to_data_frame().index))

    def test_qualitative_bug_issue_1549(self):
        as_presence_absence = np.asarray(self.table3) > 0

        for metric in _valid_beta_metrics:
            obs_mat = beta_diversity(metric, self.table3)
            obs_presence_absence = beta_diversity(metric, as_presence_absence)
            if metric in _qualitative_beta_metrics:
                self.assertEqual(obs_mat, obs_presence_absence)
            else:
                self.assertNotEqual(obs_mat, obs_presence_absence)

    def test_invalid_input(self):
        # number of ids doesn't match the number of samples
        error_msg = (r"Number of rows")
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity(self.table1, list('AB'), 'euclidean')

        # unknown metric provided
        error_msg = r"not-a-metric"
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity('not-a-metric', self.table1)

        # 3-D list provided as input
        error_msg = (r"Only 1-D and 2-D")
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity('euclidean', [[[43]]])

        # negative counts
        error_msg = r"negative values."
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity('euclidean', [[0, 1, 3, 4], [0, 3, -12, 42]])
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity('euclidean', [[0, 1, 3, -4], [0, 3, 12, 42]])

        # additional kwargs
        error_msg = r"argument"
        with self.assertRaisesRegex(TypeError, error_msg):
            beta_diversity('euclidean', [[0, 1, 3], [0, 3, 12]],
                           not_a_real_kwarg=42.0)
        with self.assertRaisesRegex(TypeError, error_msg):
            beta_diversity('unweighted_unifrac', [[0, 1, 3], [0, 3, 12]],
                           not_a_real_kwarg=42.0, tree=self.tree1,
                           taxa=['O1', 'O2', 'O3'])
        with self.assertRaisesRegex(TypeError, error_msg):
            beta_diversity('weighted_unifrac', [[0, 1, 3], [0, 3, 12]],
                           not_a_real_kwarg=42.0, tree=self.tree1,
                           taxa=['O1', 'O2', 'O3'])
        with self.assertRaisesRegex(TypeError, error_msg):
            beta_diversity(weighted_unifrac, [[0, 1, 3], [0, 3, 12]],
                           not_a_real_kwarg=42.0, tree=self.tree1,
                           taxa=['O1', 'O2', 'O3'])

        error_msg = r"`counts` and `ids`"
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity('euclidean', example_table, ids=['foo', 'bar'])

        error_msg = r"`counts` and `taxa`"
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity(weighted_unifrac, example_table, taxa=['foo', 'bar'],
                           tree=self.tree1)

    def test_invalid_input_mahalanobis(self):
        error_msg = (r"requires more samples than features")
        with self.assertRaisesRegex(ValueError, error_msg):
            beta_diversity('mahalanobis', self.table2)

    def test_invalid_input_phylogenetic(self):
        # taxa not provided
        self.assertRaises(ValueError, beta_diversity, 'weighted_unifrac',
                          self.table1, list('ABC'), tree=self.tree1)
        self.assertRaises(ValueError, beta_diversity, 'unweighted_unifrac',
                          self.table1, list('ABC'), tree=self.tree1)
        # tree not provided
        self.assertRaises(ValueError, beta_diversity, 'weighted_unifrac',
                          self.table1, list('ABC'), taxa=self.oids1)
        self.assertRaises(ValueError, beta_diversity, 'unweighted_unifrac',
                          self.table1, list('ABC'), taxa=self.oids1)

        # tree has duplicated tip ids
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU2:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(DuplicateNodeError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(DuplicateNodeError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)

        # unrooted tree as input
        t = TreeNode.read(io.StringIO('((OTU1:0.1, OTU2:0.2):0.3, OTU3:0.5,'
                                      'OTU4:0.7);'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(ValueError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)

        # taxa has duplicated ids
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU2:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU2']
        self.assertRaises(ValueError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(ValueError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)

        # count and OTU vectors are not equal length
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU2:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2']
        self.assertRaises(ValueError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(ValueError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU2:0.75):1.25):0.0)root;'))
        counts = [1, 2]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(ValueError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)

        # tree with no branch lengths
        t = TreeNode.read(
            io.StringIO('((((OTU1,OTU2),OTU3)),(OTU4,OTU5));'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(ValueError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)

        # tree missing some branch lengths
        t = TreeNode.read(
            io.StringIO('(((((OTU1,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                        '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(ValueError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)

        # some taxa not present in tree
        t = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU42']
        self.assertRaises(MissingNodeError, beta_diversity,
                          'weighted_unifrac', counts, taxa=taxa, tree=t)
        self.assertRaises(MissingNodeError, beta_diversity,
                          'unweighted_unifrac', counts, taxa=taxa,
                          tree=t)

    def test_empty(self):
        # array of empty vectors
        actual = beta_diversity('euclidean',
                                np.array([[], []], dtype=np.int64),
                                ids=['a', 'b'])
        expected_dm = DistanceMatrix([[0.0, 0.0], [0.0, 0.0]], ['a', 'b'])
        npt.assert_array_equal(actual, expected_dm)

        actual = beta_diversity('unweighted_unifrac',
                                np.array([[], []], dtype=np.int64),
                                ids=['a', 'b'], tree=self.tree1, taxa=[])
        expected_dm = DistanceMatrix([[0.0, 0.0], [0.0, 0.0]], ['a', 'b'])
        self.assertEqual(actual, expected_dm)

        actual = beta_diversity('unweighted_unifrac',
                                Table(np.array([[], []]).T, [], ['a', 'b']),
                                tree=self.tree1)
        expected_dm = DistanceMatrix([[0.0, 0.0], [0.0, 0.0]], ['a', 'b'])
        self.assertEqual(actual, expected_dm)

    def test_input_types(self):
        actual_array = beta_diversity('euclidean',
                                      np.array([[1, 5], [2, 3]]),
                                      ids=['a', 'b'])
        actual_list = beta_diversity('euclidean',
                                     [[1, 5], [2, 3]], ids=['a', 'b'])
        actual_table = beta_diversity('euclidean',
                                      Table(np.array([[1, 5], [2, 3]]).T,
                                            ['O1', 'O2'],
                                            ['a', 'b']))
        self.assertEqual(actual_array, actual_list)
        self.assertEqual(actual_array, actual_table)

    def test_euclidean(self):
        # TODO: update npt.assert_almost_equal calls to use DistanceMatrix
        # near-equality testing when that support is available
        actual_dm = beta_diversity('euclidean', self.table1, self.sids1)
        self.assertEqual(actual_dm.shape, (3, 3))
        npt.assert_almost_equal(actual_dm['A', 'A'], 0.0)
        npt.assert_almost_equal(actual_dm['B', 'B'], 0.0)
        npt.assert_almost_equal(actual_dm['C', 'C'], 0.0)
        npt.assert_almost_equal(actual_dm['A', 'B'], 2.23606798)
        npt.assert_almost_equal(actual_dm['B', 'A'], 2.23606798)
        npt.assert_almost_equal(actual_dm['A', 'C'], 4.12310563)
        npt.assert_almost_equal(actual_dm['C', 'A'], 4.12310563)
        npt.assert_almost_equal(actual_dm['B', 'C'], 2.82842712)
        npt.assert_almost_equal(actual_dm['C', 'B'], 2.82842712)

        actual_dm = beta_diversity('euclidean', self.table2, self.sids2)
        expected_data = [
            [0., 80.8455317, 84.0297566, 36.3042697, 86.0116271, 78.9176786],
            [80.8455317, 0., 71.0844568, 74.4714710, 69.3397433, 14.422205],
            [84.0297566, 71.0844568, 0., 77.2851861, 8.3066238, 60.7536007],
            [36.3042697, 74.4714710, 77.2851861, 0., 78.7908624, 70.7389567],
            [86.0116271, 69.3397433, 8.3066238, 78.7908624, 0., 58.4807660],
            [78.9176786, 14.422205, 60.7536007, 70.7389567, 58.4807660, 0.]]
        expected_dm = DistanceMatrix(expected_data, self.sids2)
        for id1 in self.sids2:
            for id2 in self.sids2:
                npt.assert_almost_equal(actual_dm[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_braycurtis(self):
        # TODO: update npt.assert_almost_equal calls to use DistanceMatrix
        # near-equality testing when that support is available
        actual_dm = beta_diversity('braycurtis', self.table1, self.sids1)
        self.assertEqual(actual_dm.shape, (3, 3))
        npt.assert_almost_equal(actual_dm['A', 'A'], 0.0)
        npt.assert_almost_equal(actual_dm['B', 'B'], 0.0)
        npt.assert_almost_equal(actual_dm['C', 'C'], 0.0)
        npt.assert_almost_equal(actual_dm['A', 'B'], 0.27272727)
        npt.assert_almost_equal(actual_dm['B', 'A'], 0.27272727)
        npt.assert_almost_equal(actual_dm['A', 'C'], 0.71428571)
        npt.assert_almost_equal(actual_dm['C', 'A'], 0.71428571)
        npt.assert_almost_equal(actual_dm['B', 'C'], 0.66666667)
        npt.assert_almost_equal(actual_dm['C', 'B'], 0.66666667)

        actual_dm = beta_diversity('braycurtis', self.table2, self.sids2)
        expected_data = [
            [0., 0.78787879, 0.86666667, 0.30927835, 0.85714286, 0.81521739],
            [0.78787879, 0., 0.78142077, 0.86813187, 0.75, 0.1627907],
            [0.86666667, 0.78142077, 0., 0.87709497, 0.09392265, 0.71597633],
            [0.30927835, 0.86813187, 0.87709497, 0., 0.87777778, 0.89285714],
            [0.85714286, 0.75, 0.09392265, 0.87777778, 0., 0.68235294],
            [0.81521739, 0.1627907, 0.71597633, 0.89285714, 0.68235294, 0.]]
        expected_dm = DistanceMatrix(expected_data, self.sids2)
        for id1 in self.sids2:
            for id2 in self.sids2:
                npt.assert_almost_equal(actual_dm[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_unweighted_unifrac(self):
        # TODO: update npt.assert_almost_equal calls to use DistanceMatrix
        # near-equality testing when that support is available
        # expected values calculated by hand
        dm1 = beta_diversity('unweighted_unifrac', self.table1, self.sids1,
                             taxa=self.oids1, tree=self.tree1)
        dm2 = beta_diversity(unweighted_unifrac, self.table1, self.sids1,
                             taxa=self.oids1, tree=self.tree1)
        self.assertEqual(dm1.shape, (3, 3))
        self.assertEqual(dm1, dm2)
        expected_data = [[0.0, 0.0, 0.25],
                         [0.0, 0.0, 0.25],
                         [0.25, 0.25, 0.0]]
        expected_dm = DistanceMatrix(expected_data, ids=self.sids1)
        for id1 in self.sids1:
            for id2 in self.sids1:
                npt.assert_almost_equal(dm1[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_weighted_unifrac(self):
        # TODO: update npt.assert_almost_equal calls to use DistanceMatrix
        # near-equality testing when that support is available
        # expected values calculated by hand
        dm1 = beta_diversity('weighted_unifrac', self.table1, self.sids1,
                             taxa=self.oids1, tree=self.tree1)
        dm2 = beta_diversity(weighted_unifrac, self.table1, self.sids1,
                             taxa=self.oids1, tree=self.tree1)
        self.assertEqual(dm1.shape, (3, 3))
        self.assertEqual(dm1, dm2)
        expected_data = [
            [0.0, 0.1750000, 0.12499999],
            [0.1750000, 0.0, 0.3000000],
            [0.12499999, 0.3000000, 0.0]]
        expected_dm = DistanceMatrix(expected_data, ids=self.sids1)
        for id1 in self.sids1:
            for id2 in self.sids1:
                npt.assert_almost_equal(dm1[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_weighted_unifrac_normalized(self):
        # TODO: update npt.assert_almost_equal calls to use DistanceMatrix
        # near-equality testing when that support is available
        # expected values calculated by hand
        dm1 = beta_diversity('weighted_unifrac', self.table1, self.sids1,
                             taxa=self.oids1, tree=self.tree1,
                             normalized=True)
        dm2 = beta_diversity(weighted_unifrac, self.table1, self.sids1,
                             taxa=self.oids1, tree=self.tree1,
                             normalized=True)
        self.assertEqual(dm1.shape, (3, 3))
        self.assertEqual(dm1, dm2)
        expected_data = [
            [0.0, 0.128834, 0.085714],
            [0.128834, 0.0, 0.2142857],
            [0.085714, 0.2142857, 0.0]]
        expected_dm = DistanceMatrix(expected_data, ids=self.sids1)
        for id1 in self.sids1:
            for id2 in self.sids1:
                npt.assert_almost_equal(dm1[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_scipy_kwargs(self):
        # confirm that p can be passed to SciPy's minkowski, and that it
        # gives a different result than not passing it (the off-diagonal
        # entries are not equal).
        dm1 = beta_diversity('minkowski', self.table1, self.sids1)
        dm2 = beta_diversity('minkowski', self.table1, self.sids1, p=42.0)

        for id1 in self.sids1:
            for id2 in self.sids1:
                if id1 != id2:
                    self.assertNotEqual(dm1[id1, id2], dm2[id1, id2])

    def test_alt_pairwise_func(self):
        # confirm that pairwise_func is actually being used
        def not_a_real_pdist(counts, metric):
            return [[0.0, 42.0], [42.0, 0.0]]
        dm1 = beta_diversity('unweighted_unifrac', self.table1,
                             taxa=self.oids1, tree=self.tree1,
                             pairwise_func=not_a_real_pdist)
        expected = DistanceMatrix([[0.0, 42.0], [42.0, 0.0]])
        self.assertEqual(dm1, expected)

        dm1 = beta_diversity('weighted_unifrac', self.table1,
                             taxa=self.oids1, tree=self.tree1,
                             pairwise_func=not_a_real_pdist)
        expected = DistanceMatrix([[0.0, 42.0], [42.0, 0.0]])
        self.assertEqual(dm1, expected)

        dm1 = beta_diversity(unweighted_unifrac, self.table1,
                             taxa=self.oids1, tree=self.tree1,
                             pairwise_func=not_a_real_pdist)
        expected = DistanceMatrix([[0.0, 42.0], [42.0, 0.0]])
        self.assertEqual(dm1, expected)

        dm1 = beta_diversity("euclidean", self.table1,
                             pairwise_func=not_a_real_pdist)
        expected = DistanceMatrix([[0.0, 42.0], [42.0, 0.0]])
        self.assertEqual(dm1, expected)


class MetricGetters(TestCase):

    def test_get_alpha_diversity_metrics(self):
        m = get_alpha_diversity_metrics()
        # basic sanity checks
        self.assertTrue('faith_pd' in m)
        self.assertTrue('chao1' in m)

    def test_get_alpha_diversity_metrics_sorted(self):
        m = get_alpha_diversity_metrics()
        n = sorted(list(m))
        self.assertEqual(m, n)

    def test_get_beta_diversity_metrics(self):
        m = get_beta_diversity_metrics()
        # basic sanity checks
        self.assertTrue('unweighted_unifrac' in m)
        self.assertTrue('weighted_unifrac' in m)

    def test_get_beta_diversity_metrics_sorted(self):
        m = get_beta_diversity_metrics()
        n = sorted(list(m))
        self.assertEqual(m, n)


class TestPartialBetaDiversity(TestCase):
    def setUp(self):
        self.table1 = [[1, 5],
                       [2, 3],
                       [0, 1]]
        self.sids1 = list('ABC')
        self.tree1 = TreeNode.read(io.StringIO(
            '((O1:0.25, O2:0.50):0.25, O3:0.75)root;'))
        self.oids1 = ['O1', 'O2']

        self.table2 = [[23, 64, 14, 0, 0, 3, 1],
                       [0, 3, 35, 42, 0, 12, 1],
                       [0, 5, 5, 0, 40, 40, 0],
                       [44, 35, 9, 0, 1, 0, 0],
                       [0, 2, 8, 0, 35, 45, 1],
                       [0, 0, 25, 35, 0, 19, 0]]
        self.sids2 = list('ABCDEF')

    def test_id_pairs_as_iterable(self):
        id_pairs = iter([('B', 'C'), ])
        dm = partial_beta_diversity('unweighted_unifrac', self.table1,
                                    self.sids1, taxa=self.oids1,
                                    tree=self.tree1, id_pairs=id_pairs)
        self.assertEqual(dm.shape, (3, 3))
        expected_data = [[0.0, 0.0, 0.0],
                         [0.0, 0.0, 0.25],
                         [0.0, 0.25, 0.0]]
        expected_dm = DistanceMatrix(expected_data, ids=self.sids1)
        for id1 in self.sids1:
            for id2 in self.sids1:
                npt.assert_almost_equal(dm[id1, id2],
                                        expected_dm[id1, id2], 6)

        # pass in iter(foo)

    def test_unweighted_unifrac_partial(self):
        # TODO: update npt.assert_almost_equal calls to use DistanceMatrix
        # near-equality testing when that support is available
        # expected values calculated by hand
        dm = partial_beta_diversity('unweighted_unifrac', self.table1,
                                    self.sids1, taxa=self.oids1,
                                    tree=self.tree1, id_pairs=[('B', 'C'), ])
        self.assertEqual(dm.shape, (3, 3))
        expected_data = [[0.0, 0.0, 0.0],
                         [0.0, 0.0, 0.25],
                         [0.0, 0.25, 0.0]]
        expected_dm = DistanceMatrix(expected_data, ids=self.sids1)
        for id1 in self.sids1:
            for id2 in self.sids1:
                npt.assert_almost_equal(dm[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_weighted_unifrac_partial_full(self):
        # TODO: update npt.assert_almost_equal calls to use DistanceMatrix
        # near-equality testing when that support is available
        # expected values calculated by hand
        dm1 = partial_beta_diversity('weighted_unifrac', self.table1,
                                     self.sids1, taxa=self.oids1,
                                     tree=self.tree1, id_pairs=[('A', 'B'),
                                                                ('A', 'C'),
                                                                ('B', 'C')])
        dm2 = beta_diversity('weighted_unifrac', self.table1, self.sids1,
                             taxa=self.oids1, tree=self.tree1)

        self.assertEqual(dm1.shape, (3, 3))
        self.assertEqual(dm1, dm2)
        expected_data = [
            [0.0, 0.1750000, 0.12499999],
            [0.1750000, 0.0, 0.3000000],
            [0.12499999, 0.3000000, 0.0]]
        expected_dm = DistanceMatrix(expected_data, ids=self.sids1)
        for id1 in self.sids1:
            for id2 in self.sids1:
                npt.assert_almost_equal(dm1[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_self_self_pair(self):
        error_msg = (r"A duplicate or a self-self pair was observed.")
        with self.assertRaisesRegex(ValueError, error_msg):
            partial_beta_diversity((lambda x, y: x + y), self.table1,
                                   self.sids1, id_pairs=[('A', 'B'),
                                                         ('A', 'A')])

    def test_duplicate_pairs(self):
        # confirm that partial pairwise execution fails if duplicate pairs are
        # observed
        error_msg = (r"A duplicate or a self-self pair was observed.")
        with self.assertRaisesRegex(ValueError, error_msg):
            partial_beta_diversity((lambda x, y: x + y), self.table1,
                                   self.sids1, id_pairs=[('A', 'B'),
                                                         ('A', 'B')])

    def test_duplicate_transpose_pairs(self):
        # confirm that partial pairwise execution fails if a transpose
        # duplicate is observed
        error_msg = (r"A duplicate or a self-self pair was observed.")
        with self.assertRaisesRegex(ValueError, error_msg):
            partial_beta_diversity((lambda x, y: x + y), self.table1,
                                   self.sids1, id_pairs=[('A', 'B'),
                                                         ('A', 'B')])

    def test_pairs_not_subset(self):
        # confirm raise when pairs are not a subset of IDs
        error_msg = (r"`id_pairs` are not a subset of `ids`")
        with self.assertRaisesRegex(ValueError, error_msg):
            partial_beta_diversity((lambda x, y: x + y), self.table1,
                                   self.sids1, id_pairs=[('x', 'b'), ])

    def test_euclidean(self):
        # confirm that pw execution through partial is identical
        def euclidean(u, v, **kwargs):
            return np.sqrt(((u - v)**2).sum())

        id_pairs = [('A', 'B'), ('B', 'F'), ('D', 'E')]
        actual_dm = partial_beta_diversity(euclidean, self.table2, self.sids2,
                                           id_pairs=id_pairs)
        actual_dm = DistanceMatrix(actual_dm, self.sids2)

        expected_data = [
            [0., 80.8455317, 0., 0., 0., 0.],
            [80.8455317, 0., 0., 0., 0., 14.422205],
            [0., 0., 0., 0., 0., 0.],
            [0., 0., 0., 0., 78.7908624, 0.],
            [0., 0., 0., 78.7908624, 0., 0.],
            [0., 14.422205, 0., 0., 0., 0.]]

        expected_dm = DistanceMatrix(expected_data, self.sids2)
        for id1 in self.sids2:
            for id2 in self.sids2:
                npt.assert_almost_equal(actual_dm[id1, id2],
                                        expected_dm[id1, id2], 6)

    def test_unusable_metric(self):
        id_pairs = [('A', 'B'), ('B', 'F'), ('D', 'E')]
        error_msg = r"partial_beta_diversity is only compatible"
        with self.assertRaisesRegex(ValueError, error_msg):
            partial_beta_diversity('hamming', self.table2, self.sids2,
                                   id_pairs=id_pairs)


if __name__ == "__main__":
    main()