File: test_util.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (328 lines) | stat: -rw-r--r-- 13,439 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io
from unittest import TestCase, main

import numpy as np
import pandas as pd
import numpy.testing as npt

from skbio import TreeNode
from skbio.table import example_table
from skbio.diversity._util import (_validate_counts_vector,
                                   _validate_counts_matrix,
                                   _validate_taxa_and_tree,
                                   vectorize_counts_and_tree,
                                   _quantitative_to_qualitative_counts,
                                   _check_taxa_alias,
                                   _table_to_numpy,
                                   _validate_table)
from skbio.tree import DuplicateNodeError, MissingNodeError


class ValidationTests(TestCase):

    def test_validate_counts_vector(self):
        # python list
        obs = _validate_counts_vector([0, 2, 1, 3])
        npt.assert_array_equal(obs, np.array([0, 2, 1, 3]))
        self.assertEqual(obs.dtype, int)

        # numpy array (no copy made)
        data = np.array([0, 2, 1, 3])
        obs = _validate_counts_vector(data)
        npt.assert_array_equal(obs, data)
        self.assertEqual(obs.dtype, int)
        self.assertTrue(obs is data)

        # single element
        obs = _validate_counts_vector([42])
        npt.assert_array_equal(obs, np.array([42]))
        self.assertEqual(obs.dtype, int)
        self.assertEqual(obs.shape, (1,))

        # keep float
        obs = _validate_counts_vector([42.2, 42.7, 0])
        npt.assert_array_equal(obs, np.array([42.2, 42.7, 0]))
        self.assertEqual(obs.dtype, float)

        # cast into int
        obs = _validate_counts_vector([42.2, 42.7, 0], cast_int=True)
        npt.assert_array_equal(obs, np.array([42, 42, 0]))
        self.assertEqual(obs.dtype, int)

        # all zeros
        obs = _validate_counts_vector([0, 0, 0])
        npt.assert_array_equal(obs, np.array([0, 0, 0]))
        self.assertEqual(obs.dtype, int)

        # all zeros (single value)
        obs = _validate_counts_vector([0])
        npt.assert_array_equal(obs, np.array([0]))
        self.assertEqual(obs.dtype, int)

    def test_validate_counts_vector_invalid_input(self):
        # wrong data type (strings)
        with self.assertRaises(ValueError):
            _validate_counts_vector(['a', 'b', 'c'])

        # wrong data type (complex numbers)
        with self.assertRaises(ValueError):
            _validate_counts_vector([1 + 2j, 3 + 4j])

        # wrong number of dimensions (2-D)
        with self.assertRaises(ValueError):
            _validate_counts_vector([[0, 2, 1, 3], [4, 5, 6, 7]])

        # wrong number of dimensions (scalar)
        with self.assertRaises(ValueError):
            _validate_counts_vector(1)

        # negative values
        with self.assertRaises(ValueError):
            _validate_counts_vector([0, 0, 2, -1, 3])

        # strings
        with self.assertRaises(ValueError):
            _validate_counts_vector([0, 0, 'a', -1, 3])

    def test_validate_counts_matrix(self):
        # basic valid input (n=2)
        obs = _validate_counts_matrix([[0, 1, 1, 0, 2],
                                       [0, 0, 2, 1, 3]])
        npt.assert_array_equal(obs[0], np.array([0, 1, 1, 0, 2]))
        npt.assert_array_equal(obs[1], np.array([0, 0, 2, 1, 3]))

        # basic valid input (n=3)
        obs = _validate_counts_matrix([[0, 1, 1, 0, 2],
                                       [0, 0, 2, 1, 3],
                                       [1, 1, 1, 1, 1]])
        npt.assert_array_equal(obs[0], np.array([0, 1, 1, 0, 2]))
        npt.assert_array_equal(obs[1], np.array([0, 0, 2, 1, 3]))
        npt.assert_array_equal(obs[2], np.array([1, 1, 1, 1, 1]))

        # empty counts vectors
        obs = _validate_counts_matrix(np.array([[], []], dtype=int))
        npt.assert_array_equal(obs[0], np.array([]))
        npt.assert_array_equal(obs[1], np.array([]))

    def test_validate_counts_matrix_pandas(self):
        obs = _validate_counts_matrix(pd.DataFrame([[0, 1, 1, 0, 2],
                                                    [0, 0, 2, 1, 3],
                                                    [1, 1, 1, 1, 1]]))
        npt.assert_array_equal(obs[0], np.array([0, 1, 1, 0, 2]))
        npt.assert_array_equal(obs[1], np.array([0, 0, 2, 1, 3]))
        npt.assert_array_equal(obs[2], np.array([1, 1, 1, 1, 1]))

    def test_validate_counts_matrix_cast_int(self):
        obs = _validate_counts_matrix(
            [[42.2, 42.1, 0], [42.2, 42.1, 1.0]], cast_int=True)
        npt.assert_array_equal(obs[0], np.array([42, 42, 0]))
        npt.assert_array_equal(obs[1], np.array([42, 42, 1]))
        self.assertEqual(obs[0].dtype, int)
        self.assertEqual(obs[1].dtype, int)

    def test_validate_counts_matrix_negative_counts(self):
        with self.assertRaises(ValueError):
            _validate_counts_matrix([[0, 1, 1, 0, 2], [0, 0, 2, -1, 3]])
        with self.assertRaises(ValueError):
            _validate_counts_matrix([[0, 0, 2, -1, 3], [0, 1, 1, 0, 2]])

    def test_validate_counts_matrix_unmatching_ids(self):
        with self.assertRaises(ValueError):
            _validate_counts_matrix([[0, 1, 1, 0, 2],
                                     [0, 0, 2, 1, 3],
                                     [1, 1, 1, 1, 1]], ids=['a', 'b'])
        with self.assertRaises(ValueError):
            obs = _validate_counts_matrix(pd.DataFrame(
                [[0, 1, 1, 0, 2],
                 [0, 0, 2, 1, 3],
                 [1, 1, 1, 1, 1]]), ids=['a', 'b'])

    def test_validate_counts_matrix_unequal_lengths(self):
        # len of vectors not equal
        with self.assertRaises(ValueError):
            _validate_counts_matrix([[0], [0, 0], [9, 8]])
        with self.assertRaises(ValueError):
            _validate_counts_matrix([[0, 0], [0, 0, 8], [9, 8]])
        with self.assertRaises(ValueError):
            _validate_counts_matrix([[0, 0, 75], [0, 0, 3], [9, 8, 22, 44]])

    def test_validate_counts_matrix_invalid_input(self):
        with self.assertRaises(ValueError):
            _validate_counts_matrix([['a', 'b', 'c']])
        with self.assertRaises(ValueError):
            _validate_counts_matrix([[1 + 2j, 3 + 4j]])

    def test_validate_taxa_and_tree(self):
        # basic valid input
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 1, 1]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertTrue(_validate_taxa_and_tree(counts, taxa, tree) is None)

        # all tips observed
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 1, 1, 1, 1]
        taxa = ['OTU1', 'OTU2', 'OTU3', 'OTU4', 'OTU5']
        self.assertTrue(_validate_taxa_and_tree(counts, taxa, tree) is None)

        # no tips observed
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = []
        taxa = []
        self.assertTrue(_validate_taxa_and_tree(counts, taxa, tree) is None)

        # all counts zero
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [0, 0, 0, 0, 0]
        taxa = ['OTU1', 'OTU2', 'OTU3', 'OTU4', 'OTU5']
        self.assertTrue(_validate_taxa_and_tree(counts, taxa, tree) is None)

    def test_validate_taxa_and_tree_invalid_input(self):
        # tree has duplicated tip ids
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU2:0.75):1.25):0.0)root;'))
        counts = [1, 1, 1]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(DuplicateNodeError, _validate_taxa_and_tree,
                          counts, taxa, tree)

        # unrooted tree as input
        tree = TreeNode.read(io.StringIO('((OTU1:0.1, OTU2:0.2):0.3, OTU3:0.5,'
                                      'OTU4:0.7);'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, _validate_taxa_and_tree, counts, taxa, tree)

        # taxa has duplicated ids
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU2']
        self.assertRaises(ValueError, _validate_taxa_and_tree, counts, taxa, tree)

        # len of vectors not equal
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, _validate_taxa_and_tree, counts, taxa, tree)
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2']
        self.assertRaises(ValueError, _validate_taxa_and_tree, counts, taxa, tree)

        # tree with no branch lengths
        tree = TreeNode.read(io.StringIO('((((OTU1,OTU2),OTU3)),(OTU4,OTU5));'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, _validate_taxa_and_tree, counts, taxa, tree)

        # tree missing some branch lengths
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU3']
        self.assertRaises(ValueError, _validate_taxa_and_tree, counts, taxa, tree)

        # taxa not present in tree
        tree = TreeNode.read(
            io.StringIO(
                '(((((OTU1:0.25,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:'
                '0.75,OTU5:0.75):1.25):0.0)root;'))
        counts = [1, 2, 3]
        taxa = ['OTU1', 'OTU2', 'OTU32']
        self.assertRaises(MissingNodeError, _validate_taxa_and_tree, counts, taxa, tree)

        # single node tree
        tree = TreeNode.read(io.StringIO('root;'))
        counts = []
        taxa = []
        self.assertRaises(ValueError, _validate_taxa_and_tree, counts, taxa, tree)

    def test_vectorize_counts_and_tree(self):
        tree = TreeNode.read(io.StringIO("((a:1, b:2)c:3)root;"))
        counts = np.array([[0, 1], [1, 5], [10, 1]])
        count_array, indexed, branch_lengths = \
            vectorize_counts_and_tree(counts, np.array(['a', 'b']), tree)
        exp_counts = np.array([[0, 1, 10], [1, 5, 1], [1, 6, 11], [1, 6, 11]])
        npt.assert_equal(count_array, exp_counts.T)

    def test_quantitative_to_qualitative_counts(self):
        counts = np.array([[0, 1], [1, 5], [10, 1]])
        exp = np.array([[False, True], [True, True], [True, True]])
        obs = _quantitative_to_qualitative_counts(counts)
        npt.assert_equal(obs, exp)

        counts = np.array([[0, 0, 0], [1, 0, 42]])
        exp = np.array([[False, False, False], [True, False, True]])
        obs = _quantitative_to_qualitative_counts(counts)
        npt.assert_equal(obs, exp)

    def test_check_taxa_alias(self):
        # for backward compatibility; will be removed in the future
        msg = "A list of taxon IDs must be provided."
        with self.assertRaises(ValueError) as cm:
            _check_taxa_alias(None, None, None)
        self.assertEqual(str(cm.exception), msg)

        msg = "A phylogenetic tree must be provided."
        with self.assertRaises(ValueError) as cm:
            _check_taxa_alias([1], None, None)
        self.assertEqual(str(cm.exception), msg)

        obs = _check_taxa_alias([1], '1', None)
        self.assertListEqual(obs, [1])
        obs = _check_taxa_alias(None, '1', [1])
        self.assertListEqual(obs, [1])


class TableConversionTests(TestCase):
    def test_table_to_numpy(self):
        exp_data = np.array([[0, 1, 2], [3, 4, 5]]).T
        exp_ids = ['S1', 'S2', 'S3']
        exp_feat_ids = ['O1', 'O2']
        obs_data, obs_ids, obs_feat_ids = _table_to_numpy(example_table)
        npt.assert_equal(obs_data, exp_data)
        self.assertEqual(obs_ids, exp_ids)
        self.assertEqual(obs_feat_ids, exp_feat_ids)

    def test_validate_table(self):
        self.assertRaises(ValueError, _validate_table, example_table, ['foo', 'bar'], {})
        self.assertRaises(ValueError, _validate_table, example_table, None,
                          {'taxa': 'foo'})
        obs_data, obs_ids = _validate_table(example_table, None, {})
        exp_data = np.array([[0, 1, 2], [3, 4, 5]]).T
        exp_ids = ['S1', 'S2', 'S3']
        npt.assert_equal(obs_data, exp_data)
        self.assertEqual(obs_ids, exp_ids)


if __name__ == "__main__":
    main()