File: test_io.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (1605 lines) | stat: -rw-r--r-- 56,381 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
import collections
import os.path
import tempfile
import unittest

import numpy as np
import pandas as pd
from skbio.util import get_data_path
from skbio.metadata._metadata import (SampleMetadata, CategoricalMetadataColumn,
                                      NumericMetadataColumn) 
from skbio.metadata.io import MetadataFileError


# NOTE: many of the test files in the `data` directory intentionally have
# leading/trailing whitespace characters on some lines, as well as mixed usage
# of spaces, tabs, carriage returns, and newlines. When editing these files,
# please make sure your code editor doesn't strip these leading/trailing
# whitespace characters (e.g. Atom does this by default), nor automatically
# modify the files in some other way such as converting Windows-style CRLF
# line terminators to Unix-style newlines.
#
# When committing changes to the files, carefully review the diff to make sure
# unintended changes weren't introduced.


class TestLoadErrors(unittest.TestCase):
    def test_path_does_not_exist(self):
        with self.assertRaisesRegex(MetadataFileError,
                                    "Metadata file path doesn't exist"):
            SampleMetadata.load(
                '/qiime2/unit/tests/hopefully/this/path/does/not/exist')

    def test_path_is_directory(self):
        fp = get_data_path('valid')

        with self.assertRaisesRegex(MetadataFileError,
                                    "path points to something other than a "
                                    "file"):
            SampleMetadata.load(fp)

    def test_non_utf_8_file(self):
        fp = get_data_path('invalid/non-utf-8.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'encoded as UTF-8 or ASCII'):
            SampleMetadata.load(fp)

    def test_utf_16_le_file(self):
        fp = get_data_path('invalid/simple-utf-16le.txt')

        with self.assertRaisesRegex(MetadataFileError,
                                    'UTF-16 Unicode'):
            SampleMetadata.load(fp)

    def test_utf_16_be_file(self):
        fp = get_data_path('invalid/simple-utf-16be.txt')

        with self.assertRaisesRegex(MetadataFileError,
                                    'UTF-16 Unicode'):
            SampleMetadata.load(fp)

    def test_empty_file(self):
        fp = get_data_path('invalid/empty-file')

        with self.assertRaisesRegex(MetadataFileError,
                                    'locate header.*file may be empty'):
            SampleMetadata.load(fp)

    def test_comments_and_empty_rows_only(self):
        fp = get_data_path('invalid/comments-and-empty-rows-only.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'locate header.*only of comments or empty '
                                    'rows'):
            SampleMetadata.load(fp)

    def test_header_only(self):
        fp = get_data_path('invalid/header-only.tsv')

        with self.assertRaisesRegex(MetadataFileError, 'at least one ID'):
            SampleMetadata.load(fp)

    def test_header_only_with_comments_and_empty_rows(self):
        fp = get_data_path(
            'invalid/header-only-with-comments-and-empty-rows.tsv')

        with self.assertRaisesRegex(MetadataFileError, 'at least one ID'):
            SampleMetadata.load(fp)

    def test_qiime1_empty_mapping_file(self):
        fp = get_data_path('invalid/qiime1-empty.tsv')

        with self.assertRaisesRegex(MetadataFileError, 'at least one ID'):
            SampleMetadata.load(fp)

    def test_invalid_header(self):
        fp = get_data_path('invalid/invalid-header.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'unrecognized ID column name.*'
                                    'invalid_id_header'):
            SampleMetadata.load(fp)

    def test_empty_id(self):
        fp = get_data_path('invalid/empty-id.tsv')

        with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'):
            SampleMetadata.load(fp)

    def test_whitespace_only_id(self):
        fp = get_data_path('invalid/whitespace-only-id.tsv')

        with self.assertRaisesRegex(MetadataFileError, 'empty metadata ID'):
            SampleMetadata.load(fp)

    def test_empty_column_name(self):
        fp = get_data_path('invalid/empty-column-name.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'column without a name'):
            SampleMetadata.load(fp)

    def test_whitespace_only_column_name(self):
        fp = get_data_path('invalid/whitespace-only-column-name.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'column without a name'):
            SampleMetadata.load(fp)

    def test_duplicate_ids(self):
        fp = get_data_path('invalid/duplicate-ids.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'IDs must be unique.*id1'):
            SampleMetadata.load(fp)

    def test_duplicate_ids_with_whitespace(self):
        fp = get_data_path('invalid/duplicate-ids-with-whitespace.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'IDs must be unique.*id1'):
            SampleMetadata.load(fp)

    def test_duplicate_column_names(self):
        fp = get_data_path('invalid/duplicate-column-names.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'Column names must be unique.*col1'):
            SampleMetadata.load(fp)

    def test_duplicate_column_names_with_whitespace(self):
        fp = get_data_path(
            'invalid/duplicate-column-names-with-whitespace.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'Column names must be unique.*col1'):
            SampleMetadata.load(fp)

    def test_id_conflicts_with_id_header(self):
        fp = get_data_path('invalid/id-conflicts-with-id-header.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    "ID 'id' conflicts.*ID column header"):
            SampleMetadata.load(fp)

    def test_column_name_conflicts_with_id_header(self):
        fp = get_data_path(
            'invalid/column-name-conflicts-with-id-header.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    "column name 'featureid' conflicts.*ID "
                                    "column header"):
            SampleMetadata.load(fp)

    def test_column_types_unrecognized_column_name(self):
        fp = get_data_path('valid/simple.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'not_a_column.*column_types.*not a column '
                                    'in the metadata file'):
            SampleMetadata.load(fp, column_types={'not_a_column': 'numeric'})

    def test_column_types_unrecognized_column_type(self):
        fp = get_data_path('valid/simple.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'col2.*column_types.*unrecognized column '
                                    'type.*CATEGORICAL'):
            SampleMetadata.load(fp, column_types={'col1': 'numeric',
                                            'col2': 'CATEGORICAL'})

    def test_column_types_not_convertible_to_numeric(self):
        fp = get_data_path('valid/simple.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    "column 'col3' to numeric.*could not be "
                                    "interpreted as numeric: 'bar', 'foo'"):
            SampleMetadata.load(fp, column_types={'col1': 'numeric',
                                            'col2': 'categorical',
                                            'col3': 'numeric'})

    def test_column_types_override_directive_not_convertible_to_numeric(self):
        fp = get_data_path('valid/simple-with-directive.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    "column 'col3' to numeric.*could not be "
                                    "interpreted as numeric: 'bar', 'foo'"):
            SampleMetadata.load(fp, column_types={'col3': 'numeric'})

    def test_directive_before_header(self):
        fp = get_data_path('invalid/directive-before-header.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'directive.*#q2:types.*searching for '
                                    'header'):
            SampleMetadata.load(fp)

    def test_unrecognized_directive(self):
        fp = get_data_path('invalid/unrecognized-directive.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'Unrecognized directive.*#q2:foo.*'
                                    '#q2:types.*#q2:missing.*directive'):
            SampleMetadata.load(fp)

    def test_duplicate_directives(self):
        fp = get_data_path('invalid/duplicate-directives.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'duplicate directive.*#q2:types'):
            SampleMetadata.load(fp)

    def test_unrecognized_column_type_in_directive(self):
        fp = get_data_path('invalid/unrecognized-column-type.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'col2.*unrecognized column type.*foo.*'
                                    '#q2:types directive'):
            SampleMetadata.load(fp)

    def test_column_types_directive_not_convertible_to_numeric(self):
        fp = get_data_path('invalid/types-directive-non-numeric.tsv')

        # This error message regex is intentionally verbose because we want to
        # assert that many different types of non-numeric strings aren't
        # interpreted as numbers. The error message displays a sorted list of
        # all values that couldn't be converted to numbers, making it possible
        # to test a variety of non-numeric strings in a single test case.
        msg = (r"column 'col2' to numeric.*could not be interpreted as "
               r"numeric: '\$42', '\+inf', '-inf', '0xAF', '1,000', "
               r"'1\.000\.0', '1_000_000', '1e3e4', 'Infinity', 'NA', 'NaN', "
               "'a', 'e3', 'foo', 'inf', 'nan', 'sample-1'")
        with self.assertRaisesRegex(MetadataFileError, msg):
            SampleMetadata.load(fp)

    def test_directive_after_directives_section(self):
        fp = get_data_path(
            'invalid/directive-after-directives-section.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    '#q2:types.*outside of the directives '
                                    'section'):
            SampleMetadata.load(fp)

    def test_directive_longer_than_header(self):
        fp = get_data_path('invalid/directive-longer-than-header.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'row has 5 cells.*header declares 4 '
                                    'cells'):
            SampleMetadata.load(fp)

    def test_data_longer_than_header(self):
        fp = get_data_path('invalid/data-longer-than-header.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'row has 5 cells.*header declares 4 '
                                    'cells'):
            SampleMetadata.load(fp)

    def test_unknown_missing_scheme(self):
        fp = get_data_path('invalid/missing-unknown-scheme.tsv')

        with self.assertRaisesRegex(MetadataFileError,
                                    'col1.*BAD:SCHEME.*#sk:missing'):
            SampleMetadata.load(fp)


class TestLoadSuccess(unittest.TestCase):
    def setUp(self):
        self.temp_dir_obj = tempfile.TemporaryDirectory(
            prefix='qiime2-metadata-tests-temp-')
        self.temp_dir = self.temp_dir_obj.name

        # This Metadata object is compared against observed Metadata objects in
        # many of the tests, so just define it once here.
        self.simple_md = SampleMetadata(
            pd.DataFrame({'col1': [1.0, 2.0, 3.0],
                          'col2': ['a', 'b', 'c'],
                          'col3': ['foo', 'bar', '42']},
                         index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        # Basic sanity check to make sure the columns are ordered and typed as
        # expected. It'd be unfortunate to compare observed results to expected
        # results that aren't representing what we think they are!
        obs_columns = [(name, props.type)
                       for name, props in self.simple_md.columns.items()]
        exp_columns = [('col1', 'numeric'), ('col2', 'categorical'),
                       ('col3', 'categorical')]
        self.assertEqual(obs_columns, exp_columns)

    def tearDown(self):
        self.temp_dir_obj.cleanup()

    def test_simple(self):
        # Simple metadata file without comments, empty rows, jaggedness,
        # missing data, odd IDs or column names, directives, etc. The file has
        # multiple column types (numeric, categorical, and something that has
        # mixed numbers and strings, which must be interpreted as categorical).
        fp = get_data_path('valid/simple.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_bom_simple_txt(self):
        # This is the encoding that notepad.exe will use most commonly
        fp = get_data_path('valid/BOM-simple.txt')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_different_file_extension(self):
        fp = get_data_path('valid/simple.txt')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_no_newline_at_eof(self):
        fp = get_data_path('valid/no-newline-at-eof.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_unix_line_endings(self):
        fp = get_data_path('valid/unix-line-endings.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_windows_line_endings(self):
        fp = get_data_path('valid/windows-line-endings.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_mac_line_endings(self):
        fp = get_data_path('valid/mac-line-endings.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_retains_column_order(self):
        # Explicitly test that the file's column order is retained in the
        # Metadata object. Many of the test cases use files with column names
        # in alphabetical order (e.g. "col1", "col2", "col3"), which matches
        # how pandas orders columns in a DataFrame when supplied with a dict
        # (many of the test cases use this feature of the DataFrame
        # constructor when constructing the expected DataFrame).
        fp = get_data_path('valid/column-order.tsv')

        obs_md = SampleMetadata.load(fp)

        # Supply DataFrame constructor with explicit column ordering instead of
        # a dict.
        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_columns = ['z', 'y', 'x']
        exp_data = [
            [1.0, 'a', 'foo'],
            [2.0, 'b', 'bar'],
            [3.0, 'c', '42']
        ]
        exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_leading_trailing_whitespace(self):
        fp = get_data_path('valid/leading-trailing-whitespace.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_comments(self):
        fp = get_data_path('valid/comments.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_empty_rows(self):
        fp = get_data_path('valid/empty-rows.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_qiime1_mapping_file(self):
        fp = get_data_path('valid/qiime1.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='#SampleID')
        exp_df = pd.DataFrame({'col1': [1.0, 2.0, 3.0],
                               'col2': ['a', 'b', 'c'],
                               'col3': ['foo', 'bar', '42']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_qiita_sample_information_file(self):
        fp = get_data_path('valid/qiita-sample-information.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id.1', 'id.2'], name='sample_name')
        exp_df = pd.DataFrame({
            'DESCRIPTION': ['description 1', 'description 2'],
            'TITLE': ['A Title', 'Another Title']},
            index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_qiita_preparation_information_file(self):
        fp = get_data_path('valid/qiita-preparation-information.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id.1', 'id.2'], name='sample_name')
        exp_df = pd.DataFrame({
            'BARCODE': ['ACGT', 'TGCA'],
            'EXPERIMENT_DESIGN_DESCRIPTION': ['longitudinal study',
                                              'longitudinal study']},
            index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_biom_observation_metadata_file(self):
        fp = get_data_path('valid/biom-observation-metadata.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['OTU_1', 'OTU_2'], name='#OTUID')
        exp_df = pd.DataFrame([['k__Bacteria;p__Firmicutes', 0.890],
                               ['k__Bacteria', 0.9999]],
                              columns=['taxonomy', 'confidence'],
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_supported_id_headers(self):
        case_insensitive = {
            'id', 'sampleid', 'sample id', 'sample-id', 'featureid',
            'feature id', 'feature-id'
        }

        exact_match = {
            '#SampleID', '#Sample ID', '#OTUID', '#OTU ID', 'sample_name'
        }

        # Build a set of supported headers, including exact matches and headers
        # with different casing.
        headers = set()
        for header in case_insensitive:
            headers.add(header)
            headers.add(header.upper())
            headers.add(header.title())
        for header in exact_match:
            headers.add(header)

        fp = os.path.join(self.temp_dir, 'metadata.tsv')
        count = 0
        for header in headers:
            with open(fp, 'w') as fh:
                fh.write('%s\tcolumn\nid1\tfoo\nid2\tbar\n' % header)

            obs_md = SampleMetadata.load(fp)

            exp_index = pd.Index(['id1', 'id2'], name=header)
            exp_df = pd.DataFrame({'column': ['foo', 'bar']}, index=exp_index)
            exp_md = SampleMetadata(exp_df)

            self.assertEqual(obs_md, exp_md)
            count += 1

        # Since this test case is a little complicated, make sure that the
        # expected number of comparisons are happening.
        self.assertEqual(count, 26)

    def test_recommended_ids(self):
        fp = get_data_path('valid/recommended-ids.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID'],
                             name='id')
        exp_df = pd.DataFrame({'col1': ['foo', 'bar']}, index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_non_standard_characters(self):
        # Test that non-standard characters in IDs, column names, and cells are
        # handled correctly. The test case isn't exhaustive (e.g. it doesn't
        # test every Unicode character; that would be a nice additional test
        # case to have in the future). Instead, this test aims to be more of an
        # integration test for the robustness of the reader to non-standard
        # data. Many of the characters and their placement within the data file
        # are based on use-cases/bugs reported on the forum, Slack, etc. The
        # data file has comments explaining these test case choices in more
        # detail.
        fp = get_data_path('valid/non-standard-characters.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['©id##1', '((id))2', "'id_3<>'", '"id#4"',
                              'i d\r\t\n5'], name='id')
        exp_columns = ['↩c@l1™', 'col(#2)', "#col'3", '"<col_4>"',
                       'col\t  \r\n5']
        exp_data = [
            ['Æ’oo', '(foo)', '#f o #o', 'fo\ro', np.nan],
            ["''2''", 'b#r', 'ba\nr', np.nan, np.nan],
            ['b"ar', 'c\td', '4\r\n2', np.nan, np.nan],
            ['b__a_z', '<42>', '>42', np.nan, np.nan],
            ['baz', np.nan, '42']
        ]
        exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_missing_data(self):
        print(f"Running things...!")
        fp = get_data_path('valid/missing-data.tsv')

        obs_md = SampleMetadata.load(fp)
        

        exp_index = pd.Index(['None', 'nan', 'NA'], name='id')
        exp_df = pd.DataFrame(collections.OrderedDict([
            ('col1', [1.0, np.nan, np.nan]),
            ('NA', [np.nan, np.nan, np.nan]),
            ('col3', ['null', 'N/A', 'NA']),
            ('col4', np.array([np.nan, np.nan, np.nan], dtype=object))]),
            index=exp_index)
        exp_md = SampleMetadata(exp_df)
        print(f"obs_md: {obs_md}, exp_md: {exp_md}")

        self.assertEqual(obs_md, exp_md)

        # Test that column types are correct (mainly for the two empty columns;
        # one should be numeric, the other categorical).
        obs_columns = [(name, props.type)
                       for name, props in obs_md.columns.items()]
        exp_columns = [('col1', 'numeric'), ('NA', 'numeric'),
                       ('col3', 'categorical'), ('col4', 'categorical')]
        self.assertEqual(obs_columns, exp_columns)

    def test_missing_insdc(self):
        fp = get_data_path('valid/missing-insdc.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6'],
                             name='id')
        exp_df = pd.DataFrame({'col1': [1, 2, 3] + ([float('nan')] * 3),
                               'col2': ['a', 'b', 'c'] + ([float('nan')] * 3),
                               'col3': ['foo', 'bar', '42', 'anything',
                                        'whatever', '10']}, index=exp_index)

        # not testing column_missing_schemes here on purpose, externally the
        # nan's shouldn't be meaningfully different
        exp_md = SampleMetadata(exp_df)
        pd.testing.assert_frame_equal(obs_md.to_dataframe(),
                                      exp_md.to_dataframe())

        obs_columns = [(name, props.type, props.missing_scheme)
                       for name, props in obs_md.columns.items()]
        exp_columns = [
            ('col1', 'numeric', 'INSDC:missing'),
            ('col2', 'categorical', 'INSDC:missing'),
            ('col3', 'categorical', 'no-missing')
        ]
        self.assertEqual(obs_columns, exp_columns)

    def test_insdc_no_directives(self):
        fp = get_data_path('valid/missing-insdc-no-directive.tsv')

        obs_md = SampleMetadata.load(fp, default_missing_scheme='INSDC:missing')

        exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6'],
                             name='id')
        exp_df = pd.DataFrame({'col1': [1, 2, 3] + ([float('nan')] * 3),
                               'col2': ['a', 'b', 'c'] + ([float('nan')] * 3),
                               'col3': ['foo', 'bar', '42', 'anything',
                                        'whatever', '10']}, index=exp_index)

        # not testing column_missing_schemes here on purpose, externally the
        # nan's shouldn't be meaningfully different
        exp_md = SampleMetadata(exp_df)
        pd.testing.assert_frame_equal(obs_md.to_dataframe(),
                                      exp_md.to_dataframe())

        obs_columns = [(name, props.type, props.missing_scheme)
                       for name, props in obs_md.columns.items()]
        exp_columns = [
            ('col1', 'numeric', 'INSDC:missing'),
            ('col2', 'categorical', 'INSDC:missing'),
            ('col3', 'categorical', 'INSDC:missing')
        ]
        self.assertEqual(obs_columns, exp_columns)

    def test_insdc_override(self):
        fp = get_data_path('valid/override-insdc.tsv')

        # This file has INSDC terms, but they aren't missing values.
        obs_md = SampleMetadata.load(fp, default_missing_scheme='INSDC:missing')

        exp_index = pd.Index(['id1', 'id2', 'id3', 'id4'],
                             name='id')
        exp_df = pd.DataFrame({'col1': ['collected', 'not collected',
                                        'not collected', 'collected']},
                              index=exp_index)

        pd.testing.assert_frame_equal(obs_md.to_dataframe(), exp_df)

        obs_columns = [(name, props.type, props.missing_scheme)
                       for name, props in obs_md.columns.items()]
        exp_columns = [
            ('col1', 'categorical', 'no-missing'),
        ]
        self.assertEqual(obs_columns, exp_columns)

    def test_minimal_file(self):
        # Simplest possible metadata file consists of one ID and zero columns.
        fp = get_data_path('valid/minimal.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['a'], name='id')
        exp_df = pd.DataFrame({}, index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_single_id(self):
        fp = get_data_path('valid/single-id.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1'], name='id')
        exp_df = pd.DataFrame({'col1': [1.0], 'col2': ['a'], 'col3': ['foo']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_no_columns(self):
        fp = get_data_path('valid/no-columns.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['a', 'b', 'my-id'], name='id')
        exp_df = pd.DataFrame({}, index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_single_column(self):
        fp = get_data_path('valid/single-column.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': [1.0, 2.0, 3.0]}, index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_trailing_columns(self):
        fp = get_data_path('valid/trailing-columns.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_jagged_trailing_columns(self):
        # Test case based on https://github.com/qiime2/qiime2/issues/335
        fp = get_data_path('valid/jagged-trailing-columns.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_padding_rows_shorter_than_header(self):
        fp = get_data_path('valid/rows-shorter-than-header.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': [1.0, 2.0, np.nan],
                               'col2': ['a', np.nan, np.nan],
                               'col3': [np.nan, np.nan, np.nan]},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_all_cells_padded(self):
        fp = get_data_path('valid/all-cells-padded.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': [np.nan, np.nan, np.nan],
                               'col2': [np.nan, np.nan, np.nan],
                               'col3': [np.nan, np.nan, np.nan]},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_does_not_cast_ids_or_column_names(self):
        fp = get_data_path('valid/no-id-or-column-name-type-cast.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['0.000001', '0.004000', '0.000000'],
                             dtype=object, name='id')
        exp_columns = ['42.0', '1000', '-4.2']
        exp_data = [
            [2.0, 'b', 2.5],
            [1.0, 'b', 4.2],
            [3.0, 'c', -9.999]
        ]
        exp_df = pd.DataFrame(exp_data, index=exp_index, columns=exp_columns)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_numeric_column(self):
        fp = get_data_path('valid/numeric-column.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7',
                              'id8', 'id9', 'id10', 'id11', 'id12'], name='id')
        exp_df = pd.DataFrame({'col1': [0.0, 2.0, 0.0003, -4.2, 1e-4, 1e4,
                                        1.5e2, np.nan, 1.0, 0.5, 1e-8, -0.0]},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_numeric_column_as_categorical(self):
        fp = get_data_path('valid/numeric-column.tsv')

        obs_md = SampleMetadata.load(fp, column_types={'col1': 'categorical'})

        exp_index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7',
                              'id8', 'id9', 'id10', 'id11', 'id12'], name='id')
        exp_df = pd.DataFrame({'col1': ['0', '2.0', '0.00030', '-4.2', '1e-4',
                                        '1e4', '+1.5E+2', np.nan, '1.', '.5',
                                        '1e-08', '-0']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_with_complete_types_sk_directive(self):
        fp = get_data_path('valid/complete-types-directive_w_sk.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': ['1', '2', '3'],
                               'col2': ['a', 'b', 'c'],
                               'col3': ['foo', 'bar', '42']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_with_complete_types_directive(self):
        fp = get_data_path('valid/complete-types-directive.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': ['1', '2', '3'],
                               'col2': ['a', 'b', 'c'],
                               'col3': ['foo', 'bar', '42']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_with_partial_types_directive(self):
        fp = get_data_path('valid/partial-types-directive.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': ['1', '2', '3'],
                               'col2': ['a', 'b', 'c'],
                               'col3': ['foo', 'bar', '42']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_with_empty_types_directive(self):
        fp = get_data_path('valid/empty-types-directive.tsv')

        obs_md = SampleMetadata.load(fp)

        self.assertEqual(obs_md, self.simple_md)

    def test_with_case_insensitive_types_directive(self):
        fp = get_data_path('valid/case-insensitive-types-directive.tsv')

        obs_md = SampleMetadata.load(fp)

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': ['1', '2', '3'],
                               'col2': ['a', 'b', 'c'],
                               'col3': [-5.0, 0.0, 42.0]},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_column_types_without_directive(self):
        fp = get_data_path('valid/simple.tsv')

        obs_md = SampleMetadata.load(fp, column_types={'col1': 'categorical'})

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': ['1', '2', '3'],
                               'col2': ['a', 'b', 'c'],
                               'col3': ['foo', 'bar', '42']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)

    def test_column_types_override_directive(self):
        fp = get_data_path('valid/simple-with-directive.tsv')

        obs_md = SampleMetadata.load(fp, column_types={'col1': 'categorical',
                                                 'col2': 'categorical'})

        exp_index = pd.Index(['id1', 'id2', 'id3'], name='id')
        exp_df = pd.DataFrame({'col1': ['1', '2', '3'],
                               'col2': ['a', 'b', 'c'],
                               'col3': ['foo', 'bar', '42']},
                              index=exp_index)
        exp_md = SampleMetadata(exp_df)

        self.assertEqual(obs_md, exp_md)


class TestSave(unittest.TestCase):
    def setUp(self):
        self.temp_dir_obj = tempfile.TemporaryDirectory(
            prefix='qiime2-metadata-tests-temp-')
        self.temp_dir = self.temp_dir_obj.name

        self.filepath = os.path.join(self.temp_dir, 'metadata.tsv')

    def tearDown(self):
        self.temp_dir_obj.cleanup()

    def test_simple(self):
        md = SampleMetadata(pd.DataFrame(
            {'col1': [1.0, 2.0, 3.0],
             'col2': ['a', 'b', 'c'],
             'col3': ['foo', 'bar', '42']},
            index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\tcol2\tcol3\n"
            "#sk:types\tnumeric\tcategorical\tcategorical\n"
            "id1\t1\ta\tfoo\n"
            "id2\t2\tb\tbar\n"
            "id3\t3\tc\t42\n"
        )

        self.assertEqual(obs, exp)

    def test_save_metadata_auto_extension(self):
        md = SampleMetadata(pd.DataFrame(
            {'col1': [1.0, 2.0, 3.0],
             'col2': ['a', 'b', 'c'],
             'col3': ['foo', 'bar', '42']},
            index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        # Filename & extension endswith is matching (non-default).
        fp = os.path.join(self.temp_dir, 'metadatatsv')
        obs_md = md.save(fp, '.tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadatatsv.tsv')

        # No period in filename; no extension included.
        fp = os.path.join(self.temp_dir, 'metadata')
        obs_md = md.save(fp)
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata')

        # No period in filename; no period in extension.
        fp = os.path.join(self.temp_dir, 'metadata')
        obs_md = md.save(fp, 'tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # No period in filename; multiple periods in extension.
        fp = os.path.join(self.temp_dir, 'metadata')
        obs_md = md.save(fp, '..tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # Single period in filename; no period in extension.
        fp = os.path.join(self.temp_dir, 'metadata.')
        obs_md = md.save(fp, 'tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # Single period in filename; single period in extension.
        fp = os.path.join(self.temp_dir, 'metadata.')
        obs_md = md.save(fp, '.tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # Single period in filename; multiple periods in extension.
        fp = os.path.join(self.temp_dir, 'metadata.')
        obs_md = md.save(fp, '..tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # Multiple periods in filename; single period in extension.
        fp = os.path.join(self.temp_dir, 'metadata..')
        obs_md = md.save(fp, '.tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # Multiple periods in filename; multiple periods in extension.
        fp = os.path.join(self.temp_dir, 'metadata..')
        obs_md = md.save(fp, '..tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # No extension in filename; no extension input.
        fp = os.path.join(self.temp_dir, 'metadata')
        obs_md = md.save(fp)
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata')

        # No extension in filename; extension input.
        fp = os.path.join(self.temp_dir, 'metadata')
        obs_md = md.save(fp, '.tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # Extension in filename; no extension input.
        fp = os.path.join(self.temp_dir, 'metadata.tsv')
        obs_md = md.save(fp)
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

        # Extension in filename; extension input (non-matching).
        fp = os.path.join(self.temp_dir, 'metadata.tsv')
        obs_md = md.save(fp, '.txt')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv.txt')

        # Extension in filename; extension input (matching).
        fp = os.path.join(self.temp_dir, 'metadata.tsv')
        obs_md = md.save(fp, '.tsv')
        obs_filename = os.path.basename(obs_md)

        self.assertEqual(obs_filename, 'metadata.tsv')

    def test_no_bom(self):
        md = SampleMetadata(pd.DataFrame(
            {'col1': [1.0, 2.0, 3.0],
             'col2': ['a', 'b', 'c'],
             'col3': ['foo', 'bar', '42']},
            index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        md.save(self.filepath)

        with open(self.filepath, 'rb') as fh:
            obs = fh.read(2)

        self.assertEqual(obs, b'id')

    def test_different_file_extension(self):
        md = SampleMetadata(pd.DataFrame(
            {'col1': [1.0, 2.0, 3.0],
             'col2': ['a', 'b', 'c'],
             'col3': ['foo', 'bar', '42']},
            index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        filepath = os.path.join(self.temp_dir, 'metadata.txt')
        md.save(filepath)

        with open(filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\tcol2\tcol3\n"
            "#sk:types\tnumeric\tcategorical\tcategorical\n"
            "id1\t1\ta\tfoo\n"
            "id2\t2\tb\tbar\n"
            "id3\t3\tc\t42\n"
        )

        self.assertEqual(obs, exp)

    def test_some_missing_data(self):
        md = SampleMetadata(
            pd.DataFrame({'col1': [42.0, np.nan, -3.5],
                          'col2': ['a', np.nan, np.nan]},
                         index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\tcol2\n"
            "#sk:types\tnumeric\tcategorical\n"
            "id1\t42\ta\n"
            "id2\t\t\n"
            "id3\t-3.5\t\n"
        )

        self.assertEqual(obs, exp)

    def test_all_missing_data(self):
        # nan-only columns that are numeric or categorical.
        md = SampleMetadata(
            pd.DataFrame({'col1': [np.nan, np.nan, np.nan],
                          'col2': np.array([np.nan, np.nan, np.nan],
                                           dtype=object)},
                         index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\tcol2\n"
            "#sk:types\tnumeric\tcategorical\n"
            "id1\t\t\n"
            "id2\t\t\n"
            "id3\t\t\n"
        )

        self.assertEqual(obs, exp)

    def test_missing_schemes(self):
        md = SampleMetadata(
            pd.DataFrame({'col1': [42.0, np.nan, -3.5],
                          'col2': ['a', 'not applicable',
                                   'restricted access']},
                         index=pd.Index(['id1', 'id2', 'id3'], name='id')),
            column_missing_schemes={
                'col1': 'blank', 'col2': 'INSDC:missing'}
        )

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\tcol2\n"
            "#sk:types\tnumeric\tcategorical\n"
            "#sk:missing\tblank\tINSDC:missing\n"
            "id1\t42\ta\n"
            "id2\t\tnot applicable\n"
            "id3\t-3.5\trestricted access\n"
        )

        self.assertEqual(obs, exp)

    def test_default_missing_scheme(self):
        md = SampleMetadata(
            pd.DataFrame({'col1': [42.0, np.nan, -3.5],
                          'col2': ['a', 'not applicable',
                                   'restricted access']},
                         index=pd.Index(['id1', 'id2', 'id3'], name='id')),
            default_missing_scheme='INSDC:missing')

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\tcol2\n"
            "#sk:types\tnumeric\tcategorical\n"
            "#sk:missing\tINSDC:missing\tINSDC:missing\n"
            "id1\t42\ta\n"
            "id2\t\tnot applicable\n"
            "id3\t-3.5\trestricted access\n"
        )

        self.assertEqual(obs, exp)

    def test_default_missing_scheme_override(self):
        md = SampleMetadata(
            pd.DataFrame({'col1': [42.0, np.nan, -3.5],
                          'col2': ['a', 'not applicable',
                                   'restricted access']},
                         index=pd.Index(['id1', 'id2', 'id3'], name='id')),
            default_missing_scheme='sk:error',
            column_missing_schemes=dict(col1='INSDC:missing',
                                        col2='INSDC:missing'))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\tcol2\n"
            "#sk:types\tnumeric\tcategorical\n"
            "#sk:missing\tINSDC:missing\tINSDC:missing\n"
            "id1\t42\ta\n"
            "id2\t\tnot applicable\n"
            "id3\t-3.5\trestricted access\n"
        )

        self.assertEqual(obs, exp)

    def test_unsorted_column_order(self):
        index = pd.Index(['id1', 'id2', 'id3'], name='id')
        columns = ['z', 'b', 'y']
        data = [
            [1.0, 'a', 'foo'],
            [2.0, 'b', 'bar'],
            [3.0, 'c', '42']
        ]
        md = SampleMetadata(pd.DataFrame(data, index=index, columns=columns))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tz\tb\ty\n"
            "#sk:types\tnumeric\tcategorical\tcategorical\n"
            "id1\t1\ta\tfoo\n"
            "id2\t2\tb\tbar\n"
            "id3\t3\tc\t42\n"
        )

        self.assertEqual(obs, exp)

    def test_alternate_id_header(self):
        md = SampleMetadata(pd.DataFrame(
            {'col1': [1.0, 2.0, 3.0],
             'col2': ['a', 'b', 'c'],
             'col3': ['foo', 'bar', '42']},
            index=pd.Index(['id1', 'id2', 'id3'], name='#SampleID')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "#SampleID\tcol1\tcol2\tcol3\n"
            "#sk:types\tnumeric\tcategorical\tcategorical\n"
            "id1\t1\ta\tfoo\n"
            "id2\t2\tb\tbar\n"
            "id3\t3\tc\t42\n"
        )

        self.assertEqual(obs, exp)

    def test_various_numbers(self):
        numbers = [
            0.0, -0.0, np.nan, 1.0, 42.0, -33.0, 1e-10, 1.5e15, 0.0003, -4.234,
            # This last number should be rounded because it exceeds 15 digits
            # of precision.
            12.34567891234567
        ]
        index = pd.Index(['id1', 'id2', 'id3', 'id4', 'id5', 'id6', 'id7',
                          'id8', 'id9', 'id10', 'id11'], name='ID')
        md = SampleMetadata(pd.DataFrame({'numbers': numbers}, index=index))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "ID\tnumbers\n"
            "#sk:types\tnumeric\n"
            "id1\t0\n"
            "id2\t-0\n"
            "id3\t\n"
            "id4\t1\n"
            "id5\t42\n"
            "id6\t-33\n"
            "id7\t1e-10\n"
            "id8\t1.5e+15\n"
            "id9\t0.0003\n"
            "id10\t-4.234\n"
            "id11\t12.3456789123457\n"
        )

        self.assertEqual(obs, exp)

    def test_minimal(self):
        md = SampleMetadata(pd.DataFrame({}, index=pd.Index(['my-id'], name='id')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\n"
            "#sk:types\n"
            "my-id\n"
        )

        self.assertEqual(obs, exp)

    def test_single_id(self):
        md = SampleMetadata(pd.DataFrame(
            {'col1': ['foo'], 'col2': [4.002]},
            index=pd.Index(['my-id'], name='featureid')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "featureid\tcol1\tcol2\n"
            "#sk:types\tcategorical\tnumeric\n"
            "my-id\tfoo\t4.002\n"
        )

        self.assertEqual(obs, exp)

    def test_no_columns(self):
        md = SampleMetadata(pd.DataFrame(
            {}, index=pd.Index(['foo', 'bar', 'baz'], name='id')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\n"
            "#sk:types\n"
            "foo\n"
            "bar\n"
            "baz\n"
        )

        self.assertEqual(obs, exp)

    def test_single_column(self):
        md = SampleMetadata(pd.DataFrame(
            {'col1': ['42', '4.3', '4.4000']},
            index=pd.Index(['foo', 'bar', 'baz'], name='id')))

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcol1\n"
            "#sk:types\tcategorical\n"
            "foo\t42\n"
            "bar\t4.3\n"
            "baz\t4.4000\n"
        )

        self.assertEqual(obs, exp)

    def test_ids_and_column_names_as_numeric_strings(self):
        index = pd.Index(['0.000001', '0.004000', '0.000000'],
                         dtype=object, name='id')
        columns = ['42.0', '1000', '-4.2']
        data = [
            [2.0, 'b', 2.5],
            [1.0, 'b', 4.2],
            [3.0, 'c', -9.999]
        ]
        df = pd.DataFrame(data, index=index, columns=columns)
        md = SampleMetadata(df)

        md.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\t42.0\t1000\t-4.2\n"
            "#sk:types\tnumeric\tcategorical\tnumeric\n"
            "0.000001\t2\tb\t2.5\n"
            "0.004000\t1\tb\t4.2\n"
            "0.000000\t3\tc\t-9.999\n"
        )

        self.assertEqual(obs, exp)

    # A couple of basic tests for CategoricalMetadataColumn and
    # NumericMetadataColumn below. Those classes simply transform themselves
    # into single-column Metadata objects within `MetadataColumn.save()` and
    # use the same writer code from there on.

    def test_categorical_metadata_column(self):
        mdc = CategoricalMetadataColumn(pd.Series(
            ['foo', 'bar', '42.50'], name='categorical-column',
            index=pd.Index(['id1', 'id2', 'id3'], name='id')))

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcategorical-column\n"
            "#sk:types\tcategorical\n"
            "id1\tfoo\n"
            "id2\tbar\n"
            "id3\t42.50\n"
        )

        self.assertEqual(obs, exp)

    def test_categorical_metadata_column_insdc_no_missing(self):
        mdc = CategoricalMetadataColumn(pd.Series(
            ['foo', 'bar', '42.50'], name='categorical-column',
            index=pd.Index(['id1', 'id2', 'id3'], name='id')),
            missing_scheme='INSDC:missing')

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcategorical-column\n"
            "#sk:types\tcategorical\n"
            "#sk:missing\tINSDC:missing\n"
            "id1\tfoo\n"
            "id2\tbar\n"
            "id3\t42.50\n"
        )

        self.assertEqual(obs, exp)

    def test_categorical_metadata_column_insdc_missing(self):
        mdc = CategoricalMetadataColumn(pd.Series(
            ['foo', 'missing', '42.50'], name='categorical-column',
            index=pd.Index(['id1', 'id2', 'id3'], name='id')),
            missing_scheme='INSDC:missing')

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "id\tcategorical-column\n"
            "#sk:types\tcategorical\n"
            "#sk:missing\tINSDC:missing\n"
            "id1\tfoo\n"
            "id2\tmissing\n"
            "id3\t42.50\n"
        )

        self.assertEqual(obs, exp)

    def test_numeric_metadata_column(self):
        mdc = NumericMetadataColumn(pd.Series(
            [1e-15, 42.50, -999.0], name='numeric-column',
            index=pd.Index(['id1', 'id2', 'id3'], name='#OTU ID')))

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "#OTU ID\tnumeric-column\n"
            "#sk:types\tnumeric\n"
            "id1\t1e-15\n"
            "id2\t42.5\n"
            "id3\t-999\n"
        )

        self.assertEqual(obs, exp)

    def test_numeric_metadata_column_insdc_no_missing(self):
        mdc = NumericMetadataColumn(pd.Series(
            [1e-15, 42.50, -999.0], name='numeric-column',
            index=pd.Index(['id1', 'id2', 'id3'], name='#OTU ID')),
            missing_scheme='INSDC:missing')

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "#OTU ID\tnumeric-column\n"
            "#sk:types\tnumeric\n"
            "#sk:missing\tINSDC:missing\n"
            "id1\t1e-15\n"
            "id2\t42.5\n"
            "id3\t-999\n"
        )

        self.assertEqual(obs, exp)

    def test_numeric_metadata_column_insdc_missing(self):
        mdc = NumericMetadataColumn(pd.Series(
            [1e-15, 'missing', -999.0], name='numeric-column',
            index=pd.Index(['id1', 'id2', 'id3'], name='#OTU ID')),
            missing_scheme='INSDC:missing')

        mdc.save(self.filepath)

        with open(self.filepath, 'r') as fh:
            obs = fh.read()

        exp = (
            "#OTU ID\tnumeric-column\n"
            "#sk:types\tnumeric\n"
            "#sk:missing\tINSDC:missing\n"
            "id1\t1e-15\n"
            "id2\tmissing\n"
            "id3\t-999\n"
        )

        self.assertEqual(obs, exp)


# TODO this class spot-checks some of the more "difficult" valid files to make
# sure they can be read, written to disk, and read again in a lossless way.
# A more complete strategy (with fewer test cases) would be performing a
# roundtrip test on every valid file under the `data` directory (e.g. with a
# `glob` and for loop).
class TestRoundtrip(unittest.TestCase):
    def setUp(self):
        self.temp_dir_obj = tempfile.TemporaryDirectory(
            prefix='qiime2-metadata-tests-temp-')
        self.temp_dir = self.temp_dir_obj.name

        self.filepath = os.path.join(self.temp_dir, 'metadata.tsv')

    def tearDown(self):
        self.temp_dir_obj.cleanup()

    def test_simple(self):
        fp = get_data_path('valid/simple.tsv')
        md1 = SampleMetadata.load(fp)

        md1.save(self.filepath)
        md2 = SampleMetadata.load(self.filepath)

        self.assertEqual(md1, md2)

    def test_non_standard_characters(self):
        fp = get_data_path('valid/non-standard-characters.tsv')
        md1 = SampleMetadata.load(fp)

        md1.save(self.filepath)
        md2 = SampleMetadata.load(self.filepath)

        self.assertEqual(md1, md2)

    def test_missing_data(self):
        fp = get_data_path('valid/missing-data.tsv')
        md1 = SampleMetadata.load(fp)

        md1.save(self.filepath)
        md2 = SampleMetadata.load(self.filepath)

        self.assertEqual(md1, md2)

    def test_missing_insdc(self):
        fp = get_data_path('valid/missing-insdc.tsv')
        md1 = SampleMetadata.load(fp)

        md1.save(self.filepath)
        md2 = SampleMetadata.load(self.filepath)

        self.assertEqual(md1, md2)

    def test_minimal_file(self):
        fp = get_data_path('valid/minimal.tsv')
        md1 = SampleMetadata.load(fp)

        md1.save(self.filepath)
        md2 = SampleMetadata.load(self.filepath)

        self.assertEqual(md1, md2)

    def test_numeric_column(self):
        fp = get_data_path('valid/numeric-column.tsv')
        md1 = SampleMetadata.load(fp)

        md1.save(self.filepath)
        md2 = SampleMetadata.load(self.filepath)

        self.assertEqual(md1, md2)

    def test_all_cells_padded(self):
        fp = get_data_path('valid/all-cells-padded.tsv')
        md1 = SampleMetadata.load(fp)

        md1.save(self.filepath)
        md2 = SampleMetadata.load(self.filepath)

        self.assertEqual(md1, md2)

    def test_categorical_metadata_column(self):
        fp = get_data_path('valid/simple.tsv')
        md1 = SampleMetadata.load(fp)
        mdc1 = md1.get_column('col2')

        self.assertIsInstance(mdc1, CategoricalMetadataColumn)

        mdc1.save(self.filepath)

        md2 = SampleMetadata.load(self.filepath)
        mdc2 = md2.get_column('col2')

        self.assertIsInstance(mdc1, CategoricalMetadataColumn)
        self.assertEqual(mdc1, mdc2)

    def test_numeric_metadata_column(self):
        fp = get_data_path('valid/simple.tsv')
        md1 = SampleMetadata.load(fp)
        mdc1 = md1.get_column('col1')

        self.assertIsInstance(mdc1, NumericMetadataColumn)

        mdc1.save(self.filepath)

        md2 = SampleMetadata.load(self.filepath)
        mdc2 = md2.get_column('col1')

        self.assertIsInstance(mdc1, NumericMetadataColumn)
        self.assertEqual(mdc1, mdc2)


if __name__ == '__main__':
    unittest.main()