1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
|
import os.path
import tempfile
import unittest
import pandas as pd
import numpy as np
from skbio.metadata._metadata import (MetadataColumn, CategoricalMetadataColumn,
NumericMetadataColumn)
# Dummy class for testing MetadataColumn ABC
class DummyMetadataColumn(MetadataColumn):
type = 'dummy'
@classmethod
def _is_supported_dtype(cls, dtype):
return dtype == 'float' or dtype == 'int' or dtype == 'int64'
@classmethod
def _normalize_(cls, series):
return series.astype(float, copy=True, errors='raise')
class TestInvalidMetadataColumnConstruction(unittest.TestCase):
def test_non_series(self):
with self.assertRaisesRegex(
TypeError, 'DummyMetadataColumn constructor.*Series.*not.*'
'DataFrame'):
DummyMetadataColumn(pd.DataFrame(
{'col1': [1, 2, 3]},
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_no_ids(self):
with self.assertRaisesRegex(ValueError,
'DummyMetadataColumn.*at least one ID'):
DummyMetadataColumn(pd.Series([], name='col',
index=pd.Index([], name='id'),
dtype=object))
def test_invalid_id_header(self):
# default index name
with self.assertRaisesRegex(ValueError, r'Index\.name.*None'):
DummyMetadataColumn(pd.Series([1, 2, 3], name='col',
index=pd.Index(['a', 'b', 'c'],
dtype=object)))
with self.assertRaisesRegex(ValueError, r'Index\.name.*my-id-header'):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='col',
index=pd.Index(['a', 'b', 'c'], name='my-id-header')))
def test_non_str_id(self):
with self.assertRaisesRegex(
TypeError, 'non-string metadata ID.*type.*float.*nan'):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='col',
index=pd.Index(['a', np.nan, 'c'], name='id')))
def test_non_str_column_name(self):
# default series name
with self.assertRaisesRegex(
TypeError, 'non-string metadata column name.*type.*'
'NoneType.*None'):
DummyMetadataColumn(pd.Series(
[1, 2, 3], index=pd.Index(['a', 'b', 'c'], name='id')))
with self.assertRaisesRegex(
TypeError, 'non-string metadata column name.*type.*'
'float.*nan'):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name=np.nan,
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_empty_id(self):
with self.assertRaisesRegex(
ValueError, 'empty metadata ID.*at least one character'):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='col',
index=pd.Index(['a', '', 'c'], name='id')))
def test_empty_column_name(self):
with self.assertRaisesRegex(
ValueError, 'empty metadata column name.*'
'at least one character'):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_pound_sign_id(self):
with self.assertRaisesRegex(
ValueError, "metadata ID.*begins with a pound sign.*'#b'"):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='col',
index=pd.Index(['a', '#b', 'c'], name='id')))
def test_id_conflicts_with_id_header(self):
with self.assertRaisesRegex(
ValueError, "metadata ID 'sample-id'.*conflicts.*reserved.*"
"ID header"):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='col',
index=pd.Index(['a', 'sample-id', 'c'], name='id')))
def test_column_name_conflicts_with_id_header(self):
with self.assertRaisesRegex(
ValueError, "metadata column name 'featureid'.*conflicts.*"
"reserved.*ID header"):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='featureid',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_duplicate_ids(self):
with self.assertRaisesRegex(ValueError, "Metadata IDs.*unique.*'a'"):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='col',
index=pd.Index(['a', 'b', 'a'], name='id')))
def test_unsupported_column_dtype(self):
with self.assertRaisesRegex(
TypeError, "DummyMetadataColumn 'col1' does not support.*"
"Series.*dtype.*bool"):
DummyMetadataColumn(pd.Series(
[True, False, True], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_unknown_missing_scheme(self):
with self.assertRaisesRegex(ValueError, "BAD:SCHEME"):
DummyMetadataColumn(pd.Series(
[1, 2, 3], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')),
missing_scheme='BAD:SCHEME')
def test_missing_q2_error(self):
with self.assertRaisesRegex(ValueError, "col1.*no-missing"):
DummyMetadataColumn(pd.Series(
[1, np.nan, 3], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')),
missing_scheme='no-missing')
class TestMetadataColumnConstructionAndProperties(unittest.TestCase):
def test_single_id(self):
index = pd.Index(['id1'], name='id')
series = pd.Series([42], name='col1', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.id_count, 1)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('id1',))
self.assertEqual(mdc.name, 'col1')
def test_multiple_ids(self):
index = pd.Index(['id1', 'a', 'my-id'], name='id')
series = pd.Series([42, 4.2, -4.2], name='column', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.id_count, 3)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('id1', 'a', 'my-id'))
self.assertEqual(mdc.name, 'column')
def test_supported_id_headers(self):
case_insensitive = {
'id', 'sampleid', 'sample id', 'sample-id', 'featureid',
'feature id', 'feature-id'
}
exact_match = {
'#SampleID', '#Sample ID', '#OTUID', '#OTU ID', 'sample_name'
}
# Build a set of supported headers, including exact matches and headers
# with different casing.
headers = set()
for header in case_insensitive:
headers.add(header)
headers.add(header.upper())
headers.add(header.title())
for header in exact_match:
headers.add(header)
count = 0
for header in headers:
index = pd.Index(['id1', 'id2'], name=header)
series = pd.Series([0, 123], name='column', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.id_header, header)
count += 1
# Since this test case is a little complicated, make sure that the
# expected number of comparisons are happening.
self.assertEqual(count, 26)
def test_recommended_ids(self):
index = pd.Index(['c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID'],
name='id')
series = pd.Series([-1, -2], name='col1', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.id_count, 2)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids,
('c6ca034a-223f-40b4-a0e0-45942912a5ea', 'My.ID'))
self.assertEqual(mdc.name, 'col1')
def test_non_standard_characters(self):
index = pd.Index(['©id##1', '((id))2', "'id_3<>'", '"id#4"',
'i d\r\t\n5'], name='id')
series = pd.Series([0, 1, 2, 3, 4], name='↩c@l1™', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.id_count, 5)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(
mdc.ids, ('©id##1', '((id))2', "'id_3<>'", '"id#4"', 'i d\r\t\n5'))
self.assertEqual(mdc.name, '↩c@l1™')
def test_missing_data(self):
index = pd.Index(['None', 'nan', 'NA'], name='id')
series = pd.Series([np.nan, np.nan, np.nan], name='NA', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.id_count, 3)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('None', 'nan', 'NA'))
self.assertEqual(mdc.name, 'NA')
def test_missing_insdc(self):
index = pd.Index(['None', 'nan', 'NA'], name='id')
# TODO: note we cannot make a numeric style column of entirely encoded
# nans, as there's no way to indicate the true type of the column
series = pd.Series(['missing', 'not applicable', 5.0], name='NA',
index=index)
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
self.assertEqual(mdc.id_count, 3)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('None', 'nan', 'NA'))
self.assertEqual(mdc.name, 'NA')
pd.testing.assert_series_equal(
mdc.to_series(), pd.Series(
[np.nan, np.nan, 5.0], name='NA', index=index))
def test_does_not_cast_ids_or_column_name(self):
index = pd.Index(['0.000001', '0.004000', '0.000000'], dtype=object,
name='id')
series = pd.Series([2.0, 1.0, 3.0], name='42.0', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.id_count, 3)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('0.000001', '0.004000', '0.000000'))
self.assertEqual(mdc.name, '42.0')
def test_case_insensitive_duplicate_ids(self):
index = pd.Index(['a', 'b', 'A'], name='id')
series = pd.Series([1, 2, 3], name='column', index=index)
mdc = DummyMetadataColumn(series)
self.assertEqual(mdc.ids, ('a', 'b', 'A'))
class TestRepr(unittest.TestCase):
def test_single_id(self):
mdc = DummyMetadataColumn(pd.Series(
[42], name='foo', index=pd.Index(['id1'], name='id')))
obs = repr(mdc)
self.assertEqual(obs, "<DummyMetadataColumn name='foo' id_count=1>")
def test_multiple_ids(self):
mdc = DummyMetadataColumn(pd.Series(
[42, 43, 44], name='my column',
index=pd.Index(['id1', 'id2', 'id3'], name='id')))
obs = repr(mdc)
self.assertEqual(
obs, "<DummyMetadataColumn name='my column' id_count=3>")
# Extensive tests of the MetadataWriter are performed in test_io.py. This test
# is a sanity check that a new MetadataColumn subclass (DummyMetadataColumn)
# can be written to disk with its column type preserved. This test would have
# caught a bug in the original implementation of MetadataColumn.save(), which
# converted itself into a Metadata object, losing the "dummy" column type and
# replacing it with "numeric". In order for a MetadataColumn to turn itself
# into a Metadata object in a lossless/safe way, the Metadata constructor needs
# a `column_types` parameter to preserve column types.
class TestSave(unittest.TestCase):
def setUp(self):
self.temp_dir_obj = tempfile.TemporaryDirectory(
prefix='qiime2-metadata-tests-temp-')
self.temp_dir = self.temp_dir_obj.name
self.filepath = os.path.join(self.temp_dir, 'metadata.tsv')
def tearDown(self):
self.temp_dir_obj.cleanup()
def test_basic(self):
mdc = DummyMetadataColumn(pd.Series(
[42, 42.5, -999.123], name='dummy-column',
index=pd.Index(['id1', 'id2', 'id3'], name='id')))
mdc.save(self.filepath)
with open(self.filepath, 'r') as fh:
obs = fh.read()
exp = (
"id\tdummy-column\n"
"#sk:types\tdummy\n"
"id1\t42\n"
"id2\t42.5\n"
"id3\t-999.123\n"
)
self.assertEqual(obs, exp)
class TestToSeries(unittest.TestCase):
def test_single_id(self):
series = pd.Series([0.0], name='col',
index=pd.Index(['id1'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.to_series()
pd.testing.assert_series_equal(obs, series)
def test_multiple_ids(self):
series = pd.Series([-1.5, np.nan, 42], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.to_series()
pd.testing.assert_series_equal(obs, series)
def test_id_header_preserved(self):
series = pd.Series(
[-1.5, 0.0, 42], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='#OTU ID'))
mdc = DummyMetadataColumn(series)
obs = mdc.to_series()
pd.testing.assert_series_equal(obs, series)
self.assertEqual(obs.index.name, '#OTU ID')
def test_series_copy(self):
series = pd.Series([1, 2.5, 3], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.to_series()
pd.testing.assert_series_equal(obs, series)
self.assertIsNot(obs, series)
def test_encode_missing_no_missing(self):
series = pd.Series([1, 2.5, 3], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
obs = mdc.to_series(encode_missing=True)
pd.testing.assert_series_equal(obs, series)
self.assertIsNot(obs, series)
def test_encode_missing_true(self):
series = pd.Series([1, 2.5, 'missing'], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
obs = mdc.to_series(encode_missing=True)
pd.testing.assert_series_equal(obs, series)
self.assertIsNot(obs, series)
def test_encode_missing_false(self):
series = pd.Series([1, 2.5, 'missing'], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
obs = mdc.to_series()
exp = pd.Series([1, 2.5, np.nan], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
pd.testing.assert_series_equal(obs, exp)
self.assertIsNot(obs, series)
class TestToDataframe(unittest.TestCase):
def test_single_id(self):
series = pd.Series([0.0], name='col',
index=pd.Index(['id1'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.to_dataframe()
exp = pd.DataFrame({'col': [0.0]}, index=pd.Index(['id1'], name='id'))
pd.testing.assert_frame_equal(obs, exp)
def test_multiple_ids(self):
series = pd.Series([0.0, 4.2, np.nan], name='my column',
index=pd.Index(['a', 'b', 'c'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.to_dataframe()
exp = pd.DataFrame({'my column': [0.0, 4.2, np.nan]},
index=pd.Index(['a', 'b', 'c'], name='id'))
pd.testing.assert_frame_equal(obs, exp)
def test_id_header_preserved(self):
series = pd.Series([0.0, 4.2, 123], name='my column',
index=pd.Index(['a', 'b', 'c'], name='#Sample ID'))
mdc = DummyMetadataColumn(series)
obs = mdc.to_dataframe()
exp = pd.DataFrame({'my column': [0.0, 4.2, 123]},
index=pd.Index(['a', 'b', 'c'], name='#Sample ID'))
pd.testing.assert_frame_equal(obs, exp)
self.assertEqual(obs.index.name, '#Sample ID')
def test_encode_missing_no_missing(self):
series = pd.Series([1, 2.5, 3], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
obs = mdc.to_dataframe(encode_missing=True)
exp = pd.DataFrame({'col': series}, index=series.index)
pd.testing.assert_frame_equal(obs, exp)
def test_encode_missing_true(self):
series = pd.Series([1, 2.5, 'missing'], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
obs = mdc.to_dataframe(encode_missing=True)
exp = pd.DataFrame({'col': series}, index=series.index)
pd.testing.assert_frame_equal(obs, exp)
def test_encode_missing_false(self):
series = pd.Series([1, 2.5, 'missing'], name='col',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
obs = mdc.to_dataframe()
exp = pd.DataFrame({'col': [1, 2.5, np.nan]}, index=series.index)
pd.testing.assert_frame_equal(obs, exp)
class TestGetValue(unittest.TestCase):
def test_id_not_found(self):
series = pd.Series([1, 2, 3], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id'))
mdc = DummyMetadataColumn(series)
with self.assertRaisesRegex(
ValueError, "'d' is not present.*DummyMetadataColumn.*'col1'"):
mdc.get_value('d')
def test_get_value(self):
series = pd.Series([1, 2, np.nan], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.get_value('a')
self.assertEqual(obs, 1.0)
obs = mdc.get_value('b')
self.assertEqual(obs, 2.0)
obs = mdc.get_value('c')
self.assertTrue(np.isnan(obs))
class TestHasMissingValues(unittest.TestCase):
def test_no_missing_values(self):
series = pd.Series([0.0, 2.2, 3.3], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.has_missing_values()
self.assertEqual(obs, False)
def test_with_missing_values(self):
series = pd.Series([0.0, np.nan, 3.3], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.has_missing_values()
self.assertEqual(obs, True)
class TestDropMissingValues(unittest.TestCase):
def test_no_missing_values(self):
series = pd.Series([0.0, 2.2, 3.3], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.drop_missing_values()
self.assertEqual(obs, mdc)
self.assertIsNot(obs, mdc)
def test_with_missing_values(self):
series = pd.Series(
[0.0, np.nan, 3.3, np.nan, np.nan, 4.4], name='col1',
index=pd.Index(['a', 'b', 'c', 'd', 'e', 'f'], name='sampleid'))
mdc = DummyMetadataColumn(series)
obs = mdc.drop_missing_values()
exp = DummyMetadataColumn(pd.Series(
[0.0, 3.3, 4.4], name='col1',
index=pd.Index(['a', 'c', 'f'], name='sampleid')))
self.assertEqual(obs, exp)
def test_with_missing_scheme(self):
series = pd.Series(
[0.0, np.nan, 3.3, 'missing', 'not applicable', 4.4], name='col1',
index=pd.Index(['a', 'b', 'c', 'd', 'e', 'f'], name='sampleid'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
obs = mdc.drop_missing_values()
exp = DummyMetadataColumn(pd.Series(
[0.0, 3.3, 4.4], name='col1',
index=pd.Index(['a', 'c', 'f'], name='sampleid')))
self.assertEqual(obs, exp)
class TestGetIDs(unittest.TestCase):
def test_single_id(self):
series = pd.Series([1.234], name='col1',
index=pd.Index(['my id'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.get_ids()
self.assertEqual(obs, {'my id'})
def test_multiple_ids(self):
series = pd.Series(
[1.234, np.nan, 5.67, np.nan, 8.9], name='col1',
index=pd.Index(['id1', 'id2', 'id3', 'id4', 'id5'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.get_ids()
self.assertEqual(obs, {'id1', 'id2', 'id3', 'id4', 'id5'})
def test_where_values_missing(self):
series = pd.Series(
[1.234, np.nan, 5.67, np.nan, 8.9], name='col1',
index=pd.Index(['id1', 'id2', 'id3', 'id4', 'id5'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.get_ids(where_values_missing=True)
self.assertEqual(obs, {'id2', 'id4'})
def test_where_values_missing_all_missing(self):
series = pd.Series(
[np.nan, np.nan, np.nan], name='col1',
index=pd.Index(['id1', 'id2', 'id3'], name='id'))
mdc = DummyMetadataColumn(series)
obs = mdc.get_ids(where_values_missing=True)
self.assertEqual(obs, {'id1', 'id2', 'id3'})
class TestGetMissing(unittest.TestCase):
def test_missing_mixed(self):
series = pd.Series(
[0.0, np.nan, 3.3, 'missing', 'not applicable', 4.4], name='col1',
index=pd.Index(['a', 'b', 'c', 'd', 'e', 'f'], name='sampleid'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
missing = mdc.get_missing()
exp = pd.Series([np.nan, 'missing', 'not applicable'], name='col1',
index=pd.Index(['b', 'd', 'e'], name='sampleid'))
pd.testing.assert_series_equal(missing, exp)
def test_missing_blanks(self):
series = pd.Series(
[0.0, np.nan, 3.3, np.nan, np.nan, 4.4], name='col1',
index=pd.Index(['a', 'b', 'c', 'd', 'e', 'f'], name='sampleid'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
missing = mdc.get_missing()
exp = pd.Series([np.nan, np.nan, np.nan], name='col1', dtype=object,
index=pd.Index(['b', 'd', 'e'], name='sampleid'))
pd.testing.assert_series_equal(missing, exp)
def test_no_missing(self):
series = pd.Series(
[0.0, 1.1, 3.3, 3.5, 4.0, 4.4], name='col1',
index=pd.Index(['a', 'b', 'c', 'd', 'e', 'f'], name='sampleid'))
mdc = DummyMetadataColumn(series, missing_scheme='INSDC:missing')
missing = mdc.get_missing()
exp = pd.Series([], name='col1', dtype=object,
index=pd.Index([], name='sampleid'))
pd.testing.assert_series_equal(missing, exp)
# The tests for CategoricalMetadataColumn and NumericMetadataColumn only test
# behavior specific to these subclasses. More extensive tests of these objects
# are performed above by testing the MetadataColumn ABC in a generic way.
class TestCategoricalMetadataColumn(unittest.TestCase):
def test_unsupported_dtype(self):
with self.assertRaisesRegex(
TypeError, "CategoricalMetadataColumn 'col1' does not support"
".*Series.*dtype.*float64"):
CategoricalMetadataColumn(pd.Series(
[42.5, 42.6, 42.7], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_unsupported_type_value(self):
with self.assertRaisesRegex(
TypeError, "CategoricalMetadataColumn.*strings or missing "
r"values.*42\.5.*float.*'col1'"):
CategoricalMetadataColumn(pd.Series(
['foo', 'bar', 42.5], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_empty_str_value(self):
with self.assertRaisesRegex(
ValueError, "CategoricalMetadataColumn.*empty strings.*"
"column 'col1'"):
CategoricalMetadataColumn(pd.Series(
['foo', '', 'bar'], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_type_property(self):
self.assertEqual(CategoricalMetadataColumn.type, 'categorical')
def test_supported_dtype(self):
series = pd.Series(
['foo', np.nan, 'bar', 'foo'], name='my column',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
mdc = CategoricalMetadataColumn(series)
self.assertEqual(mdc.id_count, 4)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
self.assertEqual(mdc.name, 'my column')
obs_series = mdc.to_series()
pd.testing.assert_series_equal(obs_series, series)
self.assertEqual(obs_series.dtype, object)
def test_numeric_strings_preserved_as_strings(self):
series = pd.Series(
['1', np.nan, '2.5', '3.0'], name='my column',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
mdc = CategoricalMetadataColumn(series)
self.assertEqual(mdc.id_count, 4)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
self.assertEqual(mdc.name, 'my column')
obs_series = mdc.to_series()
pd.testing.assert_series_equal(obs_series, series)
self.assertEqual(obs_series.dtype, object)
def test_missing_data_normalized(self):
# Different missing data representations should be normalized to np.nan
mdc = CategoricalMetadataColumn(pd.Series(
[np.nan, 'foo', float('nan'), None], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id')))
obs = mdc.to_series()
exp = pd.Series(
[np.nan, 'foo', np.nan, np.nan], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
pd.testing.assert_series_equal(obs, exp)
self.assertEqual(obs.dtype, object)
self.assertTrue(np.isnan(obs['a']))
self.assertTrue(np.isnan(obs['c']))
self.assertTrue(np.isnan(obs['d']))
def test_all_missing_data(self):
mdc = CategoricalMetadataColumn(pd.Series(
np.array([np.nan, np.nan, np.nan], dtype=object), name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
obs = mdc.to_series()
exp = pd.Series(
np.array([np.nan, np.nan, np.nan], dtype=object), name='col1',
index=pd.Index(['a', 'b', 'c'], name='id'))
pd.testing.assert_series_equal(obs, exp)
self.assertEqual(obs.dtype, object)
def test_leading_trailing_whitespace_value(self):
col1 = CategoricalMetadataColumn(pd.Series(
['foo', ' bar ', 'baz'], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
col2 = CategoricalMetadataColumn(pd.Series(
['foo', 'bar', 'baz'], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
self.assertEqual(col1, col2)
def test_leading_trailing_whitespace_id(self):
col1 = CategoricalMetadataColumn(pd.Series(
['foo', ' bar ', 'baz'], name='col',
index=pd.Index(['a', ' b ', 'c'], name='id')))
col2 = CategoricalMetadataColumn(pd.Series(
['foo', ' bar ', 'baz'], name='col',
index=pd.Index(['a', 'b', 'c'], name='id')))
self.assertEqual(col1, col2)
def test_leading_trailing_whitespace_column_name(self):
col1 = CategoricalMetadataColumn(pd.Series(
['foo', ' bar ', 'baz'], name=' col ',
index=pd.Index(['a', 'b', 'c'], name='id')))
col2 = CategoricalMetadataColumn(pd.Series(
['foo', ' bar ', 'baz'], name='col',
index=pd.Index(['a', 'b', 'c'], name='id')))
self.assertEqual(col1, col2)
def test_missing_insdc(self):
mdc = CategoricalMetadataColumn(pd.Series(
['missing', 'foo', float('nan'), None], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id')),
missing_scheme='INSDC:missing')
obs = mdc.to_series()
exp = pd.Series(
[np.nan, 'foo', np.nan, np.nan], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
pd.testing.assert_series_equal(obs, exp)
self.assertEqual(obs.dtype, object)
self.assertTrue(np.isnan(obs['a']))
self.assertTrue(np.isnan(obs['c']))
self.assertTrue(np.isnan(obs['d']))
class TestNumericMetadataColumn(unittest.TestCase):
def test_unsupported_dtype(self):
with self.assertRaisesRegex(
TypeError, "NumericMetadataColumn 'col1' does not support"
".*Series.*dtype.*bool"):
NumericMetadataColumn(pd.Series(
[True, False, True], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_infinity_value(self):
with self.assertRaisesRegex(
ValueError, "NumericMetadataColumn.*positive or negative "
"infinity.*column 'col1'"):
NumericMetadataColumn(pd.Series(
[42, float('+inf'), 4.3], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
def test_type_property(self):
self.assertEqual(NumericMetadataColumn.type, 'numeric')
def test_supported_dtype_float(self):
series = pd.Series(
[1.23, np.nan, 4.56, -7.891], name='my column',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
mdc = NumericMetadataColumn(series)
self.assertEqual(mdc.id_count, 4)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
self.assertEqual(mdc.name, 'my column')
obs_series = mdc.to_series()
pd.testing.assert_series_equal(obs_series, series)
self.assertEqual(obs_series.dtype, np.float64)
def test_supported_dtype_int(self):
series = pd.Series(
[0, 1, 42, -2], name='my column',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
mdc = NumericMetadataColumn(series)
self.assertEqual(mdc.id_count, 4)
self.assertEqual(mdc.id_header, 'id')
self.assertEqual(mdc.ids, ('a', 'b', 'c', 'd'))
self.assertEqual(mdc.name, 'my column')
obs_series = mdc.to_series()
exp_series = pd.Series(
[0.0, 1.0, 42.0, -2.0], name='my column',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
pd.testing.assert_series_equal(obs_series, exp_series)
self.assertEqual(obs_series.dtype, np.float64)
def test_missing_data_normalized(self):
# Different missing data representations should be normalized to np.nan
mdc = NumericMetadataColumn(pd.Series(
[np.nan, 4.2, float('nan'), -5.678], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id')))
obs = mdc.to_series()
exp = pd.Series(
[np.nan, 4.2, np.nan, -5.678], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
pd.testing.assert_series_equal(obs, exp)
self.assertEqual(obs.dtype, np.float64)
self.assertTrue(np.isnan(obs['a']))
self.assertTrue(np.isnan(obs['c']))
def test_all_missing_data(self):
mdc = NumericMetadataColumn(pd.Series(
[np.nan, np.nan, np.nan], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id')))
obs = mdc.to_series()
exp = pd.Series(
[np.nan, np.nan, np.nan], name='col1',
index=pd.Index(['a', 'b', 'c'], name='id'))
pd.testing.assert_series_equal(obs, exp)
self.assertEqual(obs.dtype, np.float64)
def test_missing_insdc(self):
mdc = NumericMetadataColumn(pd.Series(
['missing', 4.2, float('nan'), -5.678], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id')),
missing_scheme='INSDC:missing')
obs = mdc.to_series()
exp = pd.Series(
[np.nan, 4.2, np.nan, -5.678], name='col1',
index=pd.Index(['a', 'b', 'c', 'd'], name='id'))
pd.testing.assert_series_equal(obs, exp)
self.assertEqual(obs.dtype, np.float64)
self.assertTrue(np.isnan(obs['a']))
self.assertTrue(np.isnan(obs['c']))
if __name__ == '__main__':
unittest.main()
|