1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
# -----------------------------------------------------------------------------
# Copyright (c) 2021-2021, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# -----------------------------------------------------------------------------
import numpy as np
cimport numpy as cnp
cnp.import_array()
cimport cython
from cython.parallel import prange
from libc.math cimport sqrt, fabs
ctypedef cnp.npy_intp intp_t
ctypedef fused TReal:
float
double
ctypedef fused floating:
cnp.float64_t
cnp.float32_t
ctypedef cnp.float64_t float64_t
ctypedef cnp.float32_t float32_t
@cython.boundscheck(False)
@cython.wraparound(False)
def is_symmetric_and_hollow_cy(TReal[:, ::1] mat):
"""
Check if mat is symmetric and hollow.
Equivalent to [not (mat.T != mat).any(), np.trace(mat) == 0]
Parameters
----------
mat : 2D array_like
Distance matrix.
Result:
-------
is_symmetric: Boolean
not (mat.T != mat).any()
is_hollow: Boolean
np.trace(mat) == 0
"""
cdef Py_ssize_t in_n = mat.shape[0]
cdef Py_ssize_t in2 = mat.shape[1]
assert in_n == in2
cdef Py_ssize_t trow,tcol
cdef Py_ssize_t trow_max,tcol_max
cdef Py_ssize_t row,col
cdef TReal testval
# use int instead of bool for portability
cdef int is_sym = True
cdef int is_hollow = True
# use a tiled approach to maximize memory locality
for trow in prange(0, in_n, 24, nogil=True):
trow_max = min(trow+24, in_n)
for tcol in range(0, in_n, 24):
tcol_max = min(tcol+24, in_n)
for row in range(trow, trow_max, 1):
for col in range(tcol, tcol_max, 1):
is_sym &= (mat[row,col]==mat[col,row])
if (trow==tcol): # diagonal block, only ones that can have col==row
for col in range(tcol, tcol_max, 1):
is_hollow &= (mat[col,col]==0)
return [(is_sym==True), (is_hollow==True)]
@cython.boundscheck(False)
@cython.wraparound(False)
def distmat_reorder_cy(TReal[:, ::1] in_mat, intp_t[::1] reorder_vec,
TReal[:, ::1] out_mat):
"""
Reorder the rows and columns of a distance matrix
given a reorder vector.
Not all of the columns need to be used.
For example:
[ [0, 1, 2, 3] ,
[1, 0, 4, 5] ,
[2, 4, 0, 6] ,
[3, 5, 6, 0] ]
with
[1,0,3,2]
will result in
[ [0, 1, 5, 4] ,
[1, 0, 3, 2] ,
[5, 3, 0, 6] ,
[4, 2, 6, 0] ]
Note: No error checking is performed.
The caller must ensure that all values in reorder_vec are valid
Parameters
----------
in_mat : 2D array_like
Distance matrix.
reorder_vec : 1D_array_like
List of permutation indexes
out_mat : 2D array_like
Output, Distance matrix, must be same size as reorder_vec
"""
cdef Py_ssize_t in_n = in_mat.shape[0]
cdef Py_ssize_t in2 = in_mat.shape[1]
cdef Py_ssize_t out_n = reorder_vec.shape[0]
cdef Py_ssize_t on2 = out_mat.shape[0]
cdef Py_ssize_t on3 = out_mat.shape[1]
assert in_n == in2
assert out_n == on2
assert out_n == on3
cdef Py_ssize_t row,col
cdef Py_ssize_t vrow
for row in prange(out_n, nogil=True):
vrow = reorder_vec[row]
for col in range(out_n):
out_mat[row,col] = in_mat[vrow, reorder_vec[col]]
@cython.boundscheck(False)
@cython.wraparound(False)
def distmat_reorder_condensed_cy(TReal[:, ::1] in_mat, intp_t[::1] reorder_vec,
TReal[::1] out_mat_condensed):
"""
Reorder the rows and columns of a distance matrix
given a reorder vector.
Not all of the columns need to be used.
For example:
[ [0, 1, 2, 3] ,
[1, 0, 4, 5] ,
[2, 4, 0, 6] ,
[3, 5, 6, 0] ]
with
[1,0,3,2]
will result in
[ 1, 5, 4, 3, 2, 6 ]
Note: No error checking is performed.
The caller must ensure that all values in reorder_vec are valid
Parameters
----------
in_mat : 2D array_like
Distance matrix.
reorder_vec : 1D_array_like
List of permutation indexes
out_mat_condensed : 1D array_like
Output, condensed distance matrix
"""
cdef Py_ssize_t in_n = in_mat.shape[0]
cdef Py_ssize_t in2 = in_mat.shape[1]
cdef Py_ssize_t out_n = reorder_vec.shape[0]
cdef Py_ssize_t on2 = out_mat_condensed.shape[0]
assert in_n == in2
assert on2 == ((out_n-1)*out_n)/2
cdef Py_ssize_t row,col
cdef Py_ssize_t vrow
cdef Py_ssize_t idx
for row in prange(out_n-1, nogil=True):
vrow = reorder_vec[row]
idx = row*(out_n-1) - ((row-1)*row)//2
for col in range(out_n-row-1):
out_mat_condensed[idx+col] = in_mat[vrow, reorder_vec[col+row+1]]
@cython.boundscheck(False)
@cython.wraparound(False)
def mantel_perm_pearsonr_cy(TReal[:, ::1] x_data, intp_t[:, ::1] perm_order,
TReal xmean, TReal normxm,
TReal[::1] ym_normalized,
TReal[::1] permuted_stats):
"""
Fused permute, fma, pearsonr for mantel.
Replaces the following python code:
def _mantel_perm_pearsonr_one(x_flat, xmean, normxm, ym_normalized):
# inline pearsonr, condensed from scipy.stats.pearsonr
# and reusing some of the known values
xm_normalized = (x_flat - xmean)/normxm
one_stat = np.dot(xm_normalized, ym_normalized)
one_stat = max(min(one_stat, 1.0), -1.0)
return one_stat
perm_gen = (_mantel_perm_pearsonr_one(distmat_reorder_condensed(x._data, perm_order[p,:]),
xmean, normxm, ym_normalized)
for p in range(permutations))
permuted_stats = np.fromiter(perm_gen, np.float, count=permutations)
Parameters
----------
x_data : 2D array_like
Distance matrix.
perm_order : 2D array_like
List of permutation orders.
xmean: real
Mean value of condensed x_data
normxm: real
Norm of pre-processed xm
ym_normalized : 1D_array_like
Normalized condensed y_data
permuted_stats : 1D array_like
Output, Pearson stats
"""
cdef Py_ssize_t in_n = x_data.shape[0]
cdef Py_ssize_t in2 = x_data.shape[1]
cdef Py_ssize_t perms_n = perm_order.shape[0]
cdef Py_ssize_t out_n = perm_order.shape[1]
cdef Py_ssize_t y_n = ym_normalized.shape[0]
cdef Py_ssize_t on2 = permuted_stats.shape[0]
assert in_n == in2
assert y_n == ((out_n-1)*out_n)/2
assert perms_n == on2
cdef Py_ssize_t p
cdef Py_ssize_t row,col,icol
cdef Py_ssize_t vrow
cdef Py_ssize_t idx
cdef TReal mul = 1.0/normxm
cdef TReal add = -xmean/normxm
cdef TReal my_ps
cdef TReal yval
cdef TReal xval
for p in prange(perms_n, nogil=True):
my_ps = 0.0
for row in range(out_n-1):
vrow = perm_order[p, row]
idx = row*(out_n-1) - ((row-1)*row)//2
for icol in range(out_n-row-1):
col = icol+row+1
yval = ym_normalized[idx+icol]
xval = x_data[vrow, perm_order[p, col]]*mul + add
# do not use += to avoid having prange consider it for reduction
my_ps = yval*xval + my_ps
# Presumably, if abs(one_stat) > 1, then it is only some small artifact of
# floating point arithmetic.
if my_ps>1.0:
my_ps = 1.0
elif my_ps<-1.0:
my_ps = -1.0
permuted_stats[p] = my_ps
@cython.boundscheck(False)
@cython.wraparound(False)
def permanova_f_stat_sW_cy(TReal[:, ::1] distance_matrix,
Py_ssize_t[::1] group_sizes,
Py_ssize_t[::1] grouping):
"""Compute PERMANOVA pseudo-F partial statistic."""
cdef Py_ssize_t in_n = distance_matrix.shape[0]
cdef Py_ssize_t in2 = distance_matrix.shape[1]
cdef Py_ssize_t in3 = grouping.shape[0]
assert in_n == in2
assert in_n == in3
cdef double s_W = 0.0
cdef Py_ssize_t group_idx
cdef double local_s_W
cdef double val
cdef Py_ssize_t row, col, rowi, coli
cdef Py_ssize_t in_n_2 = in_n//2
for rowi in prange(in_n_2, nogil=True):
# since columns get shorter, combine first and last
row=rowi
local_s_W = 0.0
group_idx = grouping[row]
for coli in range(in_n-row-1):
col = coli+row+1
if grouping[col] == group_idx:
val = distance_matrix[row,col]
local_s_W = local_s_W + val * val
s_W += local_s_W/group_sizes[group_idx]
row = in_n-rowi-2
if row!=rowi: # don't double count
local_s_W = 0.0
group_idx = grouping[row]
for coli in range(in_n-row-1):
col = coli+row+1
if grouping[col] == group_idx:
val = distance_matrix[row,col]
local_s_W = local_s_W + val * val
s_W += local_s_W/group_sizes[group_idx]
return s_W
@cython.boundscheck(False)
@cython.wraparound(False)
def geomedian_axis_one(floating[:, :] X, floating eps=1e-7,
size_t maxiters=500):
"""Compute high dimensional median.
This function, its helpers (dist_euclidean, norm_euclidean, sum), and necessary
type definitions (floating) were ported from hdmedians v0.14.2. The only change was
changing "cdef" to "def" on the line defining the function. See
https://github.com/daleroberts/hdmedians for more information.
"""
cdef size_t p = X.shape[0]
cdef size_t n = X.shape[1]
cdef floating[:] y = np.mean(X, axis=1)
if n == 1:
return y
if floating is cnp.float32_t:
dtype = np.float32
else:
dtype = np.float64
cdef floating[:] D = np.empty(n, dtype=dtype)
cdef floating[:] Dinv = np.empty(n, dtype=dtype)
cdef floating[:] W = np.empty(n, dtype=dtype)
cdef floating[:] T = np.empty(p, dtype=dtype)
cdef floating[:] y1 = np.empty(p, dtype=dtype)
cdef floating[:] R = np.empty(p, dtype=dtype)
cdef floating dist, Dinvs, total, r, rinv, tmp, Di
cdef size_t nzeros = n
cdef size_t iteration
with nogil:
iteration = 0
while iteration < maxiters:
for i in range(n):
Di = _dist_euclidean(X[:, i], y)
D[i] = Di
if fabs(Di) > eps:
Dinv[i] = 1. / Di
else:
Dinv[i] = 0.
Dinvs = _sum(Dinv)
for i in range(n):
W[i] = Dinv[i] / Dinvs
for j in range(p):
total = 0.
for i in range(n):
if fabs(D[i]) > eps:
total += W[i] * X[j, i]
T[j] = total
nzeros = n
for i in range(n):
if fabs(D[i]) > eps:
nzeros -= 1
if nzeros == 0:
y1 = T
elif nzeros == n:
break
else:
for j in range(p):
R[j] = (T[j] - y[j]) * Dinvs
r = _norm_euclidean(R)
if r > eps:
rinv = nzeros/r
else:
rinv = 0.
for j in range(p):
y1[j] = max(0, 1-rinv)*T[j] + min(1, rinv)*y[j]
dist = _dist_euclidean(y, y1)
if dist < eps:
break
y[:] = y1
iteration = iteration + 1
return y
cdef floating _dist_euclidean(floating[:] x, floating[:] y) nogil:
cdef size_t n = x.shape[0]
cdef float64_t d = 0.
cdef float64_t tmp
for i in range(n):
tmp = x[i] - y[i]
d += tmp * tmp
return <floating>sqrt(d)
cdef floating _norm_euclidean(floating[:] x) nogil:
cdef size_t n = x.shape[0]
cdef float64_t d = 0.
for i in range(n):
d += x[i] * x[i]
return <floating>sqrt(d)
cdef floating _sum(floating[:] x) nogil:
cdef size_t n = x.shape[0]
cdef float64_t total = 0.
for i in range(n):
total += x[i]
return <floating>total
|