File: __init__.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (188 lines) | stat: -rw-r--r-- 5,069 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
r"""Ordination methods (:mod:`skbio.stats.ordination`)
==================================================

.. currentmodule:: skbio.stats.ordination

This module provides functions for ordination -- a category of methods that aim at
arranging data so that similar data points are proximate to each other. Ordination can
preserve and represent the structure of high-dimensional data within a low-dimensional
space, thereby facilitating visual exploration and statistical analysis.

Mathematically, ordination shares similarities with, and is in multiple respects
equivalent to, embedding and dimensionality reduction. While all three aim to represent
high-dimensional data in a lower-dimensional space, the term "ordination" is mainly
used in the field of ecology to reveal patterns such as groups or gradients underlying
community data. However, the ordination methods implemented in scikit-bio are
versatile, serving not only ecological studies but also broader applications in
scientific computing.


Multidimensional scaling
------------------------

.. autosummary::
   :toctree:

   pcoa
   pcoa_biplot


Correspondence analysis
-----------------------

.. autosummary::
   :toctree:

   ca


Canonical analysis
------------------

.. autosummary::
   :toctree:

   cca
   rda


Ordination results
------------------

.. autosummary::
   :toctree:

   OrdinationResults


Utility functions
-----------------

.. autosummary::
   :toctree:

   mean_and_std
   corr
   scale
   svd_rank
   e_matrix
   f_matrix


Examples
--------
This is an artificial dataset (table 11.3 in [1]_) that represents fish
abundance in different sites (`Y`, the response variables) and
environmental variables (`X`, the explanatory variables).

>>> import numpy as np
>>> import pandas as pd

First we need to construct our explanatory variable dataset `X`.

>>> X = np.array([[1.0, 0.0, 1.0, 0.0],
...               [2.0, 0.0, 1.0, 0.0],
...               [3.0, 0.0, 1.0, 0.0],
...               [4.0, 0.0, 0.0, 1.0],
...               [5.0, 1.0, 0.0, 0.0],
...               [6.0, 0.0, 0.0, 1.0],
...               [7.0, 1.0, 0.0, 0.0],
...               [8.0, 0.0, 0.0, 1.0],
...               [9.0, 1.0, 0.0, 0.0],
...               [10.0, 0.0, 0.0, 1.0]])
>>> transects = ['depth', 'substrate_coral', 'substrate_sand',
...              'substrate_other']
>>> sites = ['site1', 'site2', 'site3', 'site4', 'site5', 'site6', 'site7',
...          'site8', 'site9', 'site10']
>>> X = pd.DataFrame(X, sites, transects)

Then we need to create a dataframe with the information about the species
observed at different sites.

>>> species = ['specie1', 'specie2', 'specie3', 'specie4', 'specie5',
...            'specie6', 'specie7', 'specie8', 'specie9']
>>> Y = np.array([[1, 0, 0, 0, 0, 0, 2, 4, 4],
...               [0, 0, 0, 0, 0, 0, 5, 6, 1],
...               [0, 1, 0, 0, 0, 0, 0, 2, 3],
...               [11, 4, 0, 0, 8, 1, 6, 2, 0],
...               [11, 5, 17, 7, 0, 0, 6, 6, 2],
...               [9, 6, 0, 0, 6, 2, 10, 1, 4],
...               [9, 7, 13, 10, 0, 0, 4, 5, 4],
...               [7, 8, 0, 0, 4, 3, 6, 6, 4],
...               [7, 9, 10, 13, 0, 0, 6, 2, 0],
...               [5, 10, 0, 0, 2, 4, 0, 1, 3]])
>>> Y = pd.DataFrame(Y, sites, species)

We can now perform canonical correspondence analysis. Matrix `X` contains a
continuous variable (depth) and a categorical one (substrate type) encoded
using a one-hot encoding.

>>> from skbio.stats.ordination import cca

We explicitly need to avoid perfect collinearity, so we'll drop one of the
substrate types (the last column of `X`).

>>> del X['substrate_other']
>>> ordination_result = cca(Y, X, scaling=2)

Exploring the results we see that the first three axes explain about
80% of all the variance.

>>> ordination_result.proportion_explained
CCA1    0.466911
CCA2    0.238327
CCA3    0.100548
CCA4    0.104937
CCA5    0.044805
CCA6    0.029747
CCA7    0.012631
CCA8    0.001562
CCA9    0.000532
dtype: float64

References
----------
.. [1] Legendre P. and Legendre L. 1998. Numerical Ecology. Elsevier,
   Amsterdam.


"""  # noqa: D205, D415

# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

from ._redundancy_analysis import rda
from ._correspondence_analysis import ca
from ._canonical_correspondence_analysis import cca
from ._principal_coordinate_analysis import pcoa, pcoa_biplot
from ._ordination_results import OrdinationResults
from ._utils import (
    mean_and_std,
    scale,
    svd_rank,
    corr,
    e_matrix,
    f_matrix,
    center_distance_matrix,
)

__all__ = [
    "ca",
    "rda",
    "cca",
    "pcoa",
    "pcoa_biplot",
    "OrdinationResults",
    "mean_and_std",
    "scale",
    "svd_rank",
    "corr",
    "e_matrix",
    "f_matrix",
    "center_distance_matrix",
]