1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
from heapq import heapify, heappop
import numpy as np
from skbio.tree import TreeNode
from ._c_me import (
_preorder,
_postorder,
_insert_taxon,
_avgdist_taxon,
_bal_avgdist_taxon,
_avgdist_d2_insert,
_bal_avgdist_insert,
_ols_lengths,
_ols_lengths_d2,
_bal_lengths,
_ols_min_branch_d2,
_bal_min_branch,
_avgdist_matrix,
_bal_avgdist_matrix,
_avgdist_swap,
_bal_avgdist_swap,
_ols_all_swaps,
_ols_corner_swaps,
_bal_all_swaps,
_bal_avgdist_insert_p,
)
from ._utils import _check_dm, _check_dm_tree
def gme(dm, neg_as_zero=True):
r"""Perform greedy minimum evolution (GME) for phylogenetic reconstruction.
.. versionadded:: 0.6.2
.. versionchanged:: 0.6.3
Computational efficiency significantly improved.
Parameters
----------
dm : skbio.DistanceMatrix
Input distance matrix containing distances between taxa.
neg_as_zero : bool, optional
If True (default), convert negative branch lengths into zeros.
Returns
-------
TreeNode
Reconstructed phylogenetic tree.
See Also
--------
bme
nni
nj
Notes
-----
Greedy Minimum Evolution (GME) [1]_ is a distance-based algorithm for phylogenetic
reconstruction. It utilizes the minimum evolution (ME) principle [2]_ for selecting
a tree topology with the lowest sum of branch lengths, as calculated using an
ordinary least squares (OLS) framework [3]_.
GME is *O*\(*n*:sup:`2`) in time and *O*\(*n*) in space, making it a more scalable
method than multiple alternatives (e.g., :func:`nj` and :func:`bme`). Therefore it
is suitable for reconstructing very large phylogenetic trees.
GME generates an unrooted tree with variable tip heights and potentially some
negative branch lengths. The first taxon in the distance matrix is always placed as
a child of the root node. See the notes of :func:`nj` for how to deal with unrooted
trees and negative branch lengths.
A GME-generated tree may be further improved by executing the FastNNI algorithm
implemented in :func:`nni` (with ``balanced=False``).
A similar but less scalable algorithm using the balanced instead of OLS framework
is provided in :func:`bme`.
The same methods underlying :func:`gme`, :func:`bme` and :func:`nni` were also
provided by the software package FastME [4]_.
.. note::
These scikit-bio functions were implemented following the original paper [1]_.
It is not guaranteed that they will precisely mirror FastME's output. Although
in practices they usually generate identical or equally optimal phylogenetic
trees as FastME does.
References
----------
.. [1] Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction
algorithms based on the minimum-evolution principle. J Comput Biol, 9(5),
687-705.
.. [2] Rzhetsky, A., & Nei, M. (1993). Theoretical foundation of the
minimum-evolution method of phylogenetic inference. Mol Biol Evol, 10(5),
1073-1095.
.. [3] Cavalli-Sforza, L. L., & Edwards, A. W. (1967). Phylogenetic analysis.
Models and estimation procedures. American journal of human genetics,
19(3 Pt 1), 233.
.. [4] Lefort, V., Desper, R., & Gascuel, O. (2015). FastME 2.0: a comprehensive,
accurate, and fast distance-based phylogeny inference program. Mol Biol Evol,
32(10), 2798-2800.
Examples
--------
Define a new distance matrix object describing the distances between five taxa:
human, monkey, pig, rat, and chicken.
>>> from skbio import DistanceMatrix
>>> from skbio.tree import gme
>>> dm = DistanceMatrix([[0, 0.02, 0.18, 0.34, 0.55],
... [0.02, 0, 0.19, 0.35, 0.55],
... [0.18, 0.19, 0, 0.34, 0.54],
... [0.34, 0.35, 0.34, 0, 0.62],
... [0.55, 0.55, 0.54, 0.62, 0]],
... ['human','monkey','pig','rat','chicken'])
Perform Greedy Minimum Evoltuion (GME) and construct the minimum evolution tree
representing the relationship between those taxa. This is returned as a TreeNode
object.
>>> tree = gme(dm)
>>> print(tree.ascii_art())
/-monkey
|
| /-pig
|---------|
---------| | /-rat
| \--------|
| \-chicken
|
\-human
"""
_check_dm(dm)
# reconstruct tree topology and branch lengths using GME
tree, lens = _gme(dm.data)
if neg_as_zero:
lens[lens < 0] = 0
return _to_treenode(tree, dm.ids, lens, unroot=True)
def bme(dm, neg_as_zero=True, **kwargs):
r"""Perform balanced minimum evolution (BME) for phylogenetic reconstruction.
.. versionadded:: 0.6.3
Parameters
----------
dm : skbio.DistanceMatrix
Input distance matrix containing distances between taxa.
neg_as_zero : bool, optional
If True (default), convert negative branch lengths into zeros.
Returns
-------
TreeNode
Reconstructed phylogenetic tree.
See Also
--------
gme
nni
nj
Notes
-----
Balanced Minimum Evolution (BME) [1]_ is a refinement of the distance-based minimum
evolution problem where the average distances between subtrees are independent of
the sizes of the subtrees. This is referred to as a balanced (or simply BME)
framework [2]_, as in contrast to the OLS framework used by GME (:func:`gme`).
The BME algorithm implemented here uses a similar greedy algorithm as implemented
in :func:`gme`, but less scalable due to the need to update subtree distances as
the tree topology changes. The algorithm is sub-*O*\(*n*:sup:`3`) in time and
*O*\(*n*:sup:`2`) in space.
Refer to :func:`gme` for the format of the output tree and subsequent treatments.
A BME-generated tree may be further improved by executing the BNNI algorithm
implemented in :func:`nni` (with ``balanced=True``).
The same method was provided by FastME [3]_. See :func:`gme` for notes on this.
.. note::
Experimental feature: Add ``parallel=True`` will enable parallelization,
which may increase the performance of the algorithm. This feature may not
be stable and may be modified without notice in the future.
References
----------
.. [1] Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction
algorithms based on the minimum-evolution principle. J Comput Biol, 9(5),
687-705.
.. [2] Pauplin, Y. (2000). Direct calculation of a tree length using a distance
matrix. J Mol Evol, 51, 41-47.
.. [3] Lefort, V., Desper, R., & Gascuel, O. (2015). FastME 2.0: a comprehensive,
accurate, and fast distance-based phylogeny inference program. Mol Biol Evol,
32(10), 2798-2800.
Examples
--------
Define a new distance matrix object describing the distances between five taxa:
human, monkey, pig, rat, and chicken.
>>> from skbio import DistanceMatrix
>>> from skbio.tree import bme
>>> dm = DistanceMatrix([[0, 0.02, 0.18, 0.34, 0.55],
... [0.02, 0, 0.19, 0.35, 0.55],
... [0.18, 0.19, 0, 0.34, 0.54],
... [0.34, 0.35, 0.34, 0, 0.62],
... [0.55, 0.55, 0.54, 0.62, 0]],
... ['human','monkey','pig','rat','chicken'])
Perform Balanced Minimum Evoltuion (BME) and construct the minimum evolution tree
representing the relationship between those taxa. This is returned as a TreeNode
object.
>>> tree = bme(dm)
>>> print(tree.ascii_art())
/-monkey
|
| /-pig
|---------|
---------| | /-rat
| \--------|
| \-chicken
|
\-human
"""
_check_dm(dm)
# reconstruct tree topology and branch lengths using BME
tree, lens = _bme(dm.data, **kwargs)
if neg_as_zero:
lens[lens < 0] = 0
return _to_treenode(tree, dm.ids, lens, unroot=True)
def nni(tree, dm, balanced=True, neg_as_zero=True):
r"""Perform nearest neighbor interchange (NNI) to improve a phylogenetic tree.
.. versionadded:: 0.6.2
.. versionchanged:: 0.6.3
Computational efficiency significantly improved.
Parameters
----------
tree : skbio.TreeNode
Input phylogenetic tree to be rearranged.
dm : skbio.DistanceMatrix
Input distance matrix containing distances between taxa.
balanced : bool, optional
Use the OLS framework (False) or the balanced framework (True, default).
neg_as_zero : bool, optional
If True (default), convert negative branch lengths into zeros.
Returns
-------
TreeNode
Rearranged phylogenetic tree.
Notes
-----
Nearest neighbor interchange (NNI) is a method for tree rearrangement aiming at
optimizing a given tree topology according to certain criteria. It iteratively
swaps neighboring branches that could result in a better tree, until no such swaps
remain in the optimized tree.
This function performs NNI for the minimum evolution (ME) problem on phylogenetic
trees. The implementation is based on [1]_. Two versions of the method are
provided: the FastNNI algorithm (``balanced=False``) based on an ordinary least
squares (OLS) framework (see also :func:`gme`) and the BNNI algorithm
(``balanced=True``) based on a balanced framework (see also :func:`bme`). The
former is more scalable than the latter.
The input tree may be rooted or unrooted, and it must be strictly bifurcating. One
can apply :meth:`~TreeNode.is_bifurcating` or :meth:`~TreeNode.bifurcate` to check
or make a bifurcating tree. The set of taxa in the tree (accessible via
:meth:`~TreeNode.subset`) must match those in the distance matrix.
The output tree is unrooted, with the first taxon in the distance matrix placed as
a child of the root node. Branch lengths are assigned according to the framework of
choice. See also :func:`nj` regarding rooting an unrooted tree and dealing with
potential negative branch lengths.
The same methods were provided by FastME [2]_. See :func:`gme` for notes on this.
References
----------
.. [1] Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction
algorithms based on the minimum-evolution principle. J Comput Biol, 9(5),
687-705.
.. [2] Lefort, V., Desper, R., & Gascuel, O. (2015). FastME 2.0: a comprehensive,
accurate, and fast distance-based phylogeny inference program. Mol Biol Evol,
32(10), 2798-2800.
Examples
--------
>>> from skbio import DistanceMatrix, TreeNode
>>> from skbio.tree import nni
Define a distance matrix describing the distances between five taxa.
>>> dm = DistanceMatrix([[0, 0.02, 0.18, 0.34, 0.55],
... [0.02, 0, 0.19, 0.35, 0.55],
... [0.18, 0.19, 0, 0.34, 0.54],
... [0.34, 0.35, 0.34, 0, 0.62],
... [0.55, 0.55, 0.54, 0.62, 0]],
... ['human','monkey','pig','rat','chicken'])
Provide a tree to be rearranged. The tree must be bifurcating. Branches lengths are
not required.
>>> tree = TreeNode.read(["((human,chicken),(rat,monkey),pig);"])
>>> print(tree.ascii_art())
/-human
/--------|
| \-chicken
|
---------| /-rat
|---------|
| \-monkey
|
\-pig
Perform nearest neighbor interchange (NNI). This will rearrange tree topolgy to
better approach the minimum evolution criterion.
>>> tree = nni(tree, dm)
>>> print(tree.ascii_art())
/-pig
/--------|
| | /-chicken
| \--------|
---------| \-rat
|
|--monkey
|
\-human
Besides rearranging tree topology, estimated branch lengths are assigned to the
tree.
>>> rat = tree.find('rat')
>>> print(rat.length)
0.20875
"""
_check_dm_tree(dm, tree)
# generate tree array
taxa = dm.ids
tree, preodr, postodr = _root_from_treenode(tree, taxa)
# allocate lengths
lens = np.empty(len(tree), dtype=float)
# perform BNNI or FastNNI
func = _bnni if balanced else _fastnni
func(dm.data, tree, preodr, postodr, lens)
if neg_as_zero:
lens[lens < 0] = 0
# generate TreeNode object
return _to_treenode(tree, taxa, lens, unroot=True)
def _gme(dm):
r"""Perform greedy minimum evolution (GME) for phylogenetic reconstruction.
Parameters
----------
dm : ndarray of float of shape (m, m)
Input distance matrix containing distances between taxa.
Returns
-------
tree : ndarray of int of shape (2m - 3, 4)
Reconstructed tree topology by GME.
lens : ndarray of float of shape (2m - 3,)
Estimated branch lengths by OLS.
Notes
-----
The GME algorithm involves growing an unrooted tree by iteratively inserting taxa.
In the beginning it initializes a triplet tree with the first three taxa:
0
|
x
/ \
1 2
Taxon 0 is placed at the root position, with its unique descendant x serving as
connector for taxa 1 and 2 as its left and right children. Next, taxon 3 will
be inserted into a branch that suffices the minimum evolution criterion. Let's say
the branch connecting x and 2. The tree becomes:
0
|
x
/ \
1 y
/ \
2 3
So on so forth until all taxa are included in the tree.
Finally, branch lengths are estimated using an ordinary least squares (OLS)
framework.
---
This implementation uses an array-based tree structure to improve efficiency. See
:func:`_check_tree` for details of this structure. Basically, the root node (taxon
0) is omitted, making the tree strictly binary. Instead, the unique descendant (x)
is now treated as the root and marked with taxon 0:
0
/ \
1 y
/ \
2 3
The root is always the first row in the tree array. Other nodes are appended to the
tree array in the same order as they are added to the tree.
---
For an input distance matrix with m taxa, the output tree will have 2m - 3 nodes.
This memory space is pre-allocated to improve efficiency. The algorithm doesn't
remake arrays during iteration, but repeatedly uses the already allocated space.
During an interation involving x nodes, the first x positions of each array are
occupied, while the remaining positions are disregarded. There is no need to reset
array values after each iteration.
Since they are created de novo, all arrays are C-continuous. This permits further
optimization in the Cython code.
"""
# number of taxa
m = dm.shape[0]
# number of nodes in the final tree
n = 2 * m - 3
# Pre-allocate memory spaces:
# tree structure
tree, preodr, postodr = _allocate_tree(n)
# average distances between distant-2 subtrees
ad2 = np.empty((n, 2), dtype=float)
# average distances from a taxon to each subtree
adk = np.empty((n, 2), dtype=float)
# branch lengths or length changes
lens = np.empty((n,), dtype=float)
# Initialize 3-taxon tree.
_init_tree(dm, tree, preodr, postodr, ad2, matrix=False)
# Iteratively add taxa to the tree.
for k in range(3, m):
# Calculate average distances from new taxon to existing subtrees.
_avgdist_taxon(adk, k, dm, tree, preodr, postodr)
# Find a branch with minimum length change.
target = _ols_min_branch_d2(lens, ad2, adk, tree, preodr)
# Update average distances between distant-2 subtrees.
_avgdist_d2_insert(ad2, target, adk, tree, preodr)
# Insert new taxon into tree.
_insert_taxon(k, target, tree, preodr, postodr, use_depth=False)
# Calculate branch lengths using an OLS framework.
_ols_lengths_d2(lens, ad2, tree)
return tree, lens
def _bme(dm, parallel=False):
r"""Perform balanced minimum evolution (BME) for phylogenetic reconstruction.
Parameters
----------
dm : ndarray of float of shape (m, m)
Input distance matrix containing distances between taxa.
Returns
-------
tree : ndarray of int of shape (2m - 3, 4)
Reconstructed tree topology by BME.
lens : ndarray of float of shape (2m - 3,)
Estimated branch lengths by a balanced framework.
Notes
-----
The BME algorithm resembles GME but uses a balanced instead of OLS framework.
See :func:`_gme` for details of the latter.
The main differences are: 1) BME requires a full matrix stored and iteratively
updated, which is less efficient than GME in time and space. 2) BME doesn't rely
on subtree sizes, which is simpler and more efficient than GME in individual
calculations (but this cannot compensate for the former).
"""
func = _bal_avgdist_insert_p if parallel else _bal_avgdist_insert
# numbers of taxa and nodes in the tree
m = dm.shape[0]
n = 2 * m - 3
# Pre-allocate memory spaces:
# tree structure
tree, preodr, postodr = _allocate_tree(n)
# average distances between all subtrees
# (This is the dominant factor in BME, and what makes it more expensive than GME.)
adm = np.empty((n, n), dtype=float)
# average distances from a taxon to each subtree
adk = np.empty((n, 2), dtype=float)
# branch lengths or length changes
lens = np.empty((n,), dtype=float)
# a stack for traversal operations
stack = np.empty((n,), dtype=int)
# initialize 3-taxon tree
_init_tree(dm, tree, preodr, postodr, adm, matrix=True)
# Pre-calculate negative powers of 2.
powers = np.ldexp(1.0, -np.arange(m))
# Iteratively add taxa to the tree.
for k in range(3, m):
# Calculate balanced average distances from new taxon to existing subtrees.
_bal_avgdist_taxon(adk, k, dm, tree, preodr, postodr)
# Find the branch with minimum length change.
target = _bal_min_branch(lens, adm, adk, tree, preodr)
# Update balanced average distance matrix between all subtrees.
func(adm, target, adk, tree, preodr, postodr, powers, stack)
# Insert new taxon into tree.
_insert_taxon(k, target, tree, preodr, postodr, use_depth=True)
# Calculate branch lengths using a balanced framework.
_bal_lengths(lens, adm, tree)
return tree, lens
def _fastnni(dm, tree, preodr, postodr, lens):
r"""Perform fast nearest neighbor interchange (FastNNI) on a tree.
To improve the tree under the minimum evolution (ME) criterion using an OLS
framework on a distance matrix between taxa.
This algorithm was implemented following Section 2.2 and Appendix 4 of Desper and
Gascuel (2002). Basically, it creates a full average distance matrix between all
pairs of subtrees, evaluates all possible swaps, then it iteratively perform
swaps that lead to the maximum reduction of overall branch lengths. During this
process, it needs to update the evaluation of the four corner branches after one
branch is swapped.
---
The swaps that can reduce overall branch length are stored in a heap. The paper
suggests using a maxheap, but the following code uses Python's heapq which is a
minheap. Therefore the length changes are negated (in contrast to `_bnni`). Each
item in the heap is a tuple consisting of:
0. Length change (negative; smaller is better)
1. Corresponding node index
2. Corresponding side (0: left, 1: right) child to be swapped with sibling
For example, (-0.15, 7, 1) means that swapping the right child and the sibling of
node 7 will reduce the overall branch length by 0.15.
Meanwhile, the length change of each node is stored in `lens`. For root and tips,
this value is 0. For internal nodes, this value is negative or 0. Only negative
values are stored in the heap. 0 means this node is not useful.
Additionally, the "side" information is stored in column 7 of the tree array.
When a swap is updated, the new length change (if negative) is pushed into the
heap, but the old length change won't be deleted from the heap (which would be
inefficient as O(n)). Instead, a "lazy deletion" mechanism is adopted: When the
negative-most swap is popped out of the heap, it is checked against the stored
length change (in `lens`) and side (in `tree[:, 7]`). If they don't match, then
it means that it is outdated and should be skipped. Otherwise, it is considered
relevant and the swap will be performed.
TODO: heapq is a Python module and may not be efficient. Tests showed that the
code isn't significantly faster than a naive `np.argmax` on then entire `lens`.
Consider optimization.
"""
n = tree.shape[0]
stack = np.empty(n, dtype=int)
# Calculate average distances between all pairs of subtrees.
adm = np.empty((n, n))
_avgdist_matrix(adm, dm, tree, preodr, postodr)
# Calculate length changes of all possible swaps.
_ols_all_swaps(lens, tree, adm)
# Create a heap that stores negative length changes and their nodes and sides.
heap = [(lens[i], i, tree[i, 7]) for i in np.nonzero(lens)[0]]
heapify(heap)
# Iteratively swap branches until there is no more beneficial swap.
while heap:
# Pop the swap that reduces the most length.
L, target, side = heappop(heap)
# Skip if this swap is outdated.
if L != lens[target] or side != tree[target, 7]:
continue
# Reset this swap.
lens[target] = 0
# Swap the branches in the tree.
_swap_branches(target, side, tree, preodr, stack, use_depth=False)
# Update average distances after swapping.
_avgdist_swap(adm, target, side, tree)
# Update length reductions of swaps of the four corner branches.
_ols_corner_swaps(target, heap, lens, tree, adm)
# Calculate branch lengths using an OLS framework.
_ols_lengths(lens, adm, tree)
def _bnni(dm, tree, preodr, postodr, lens):
r"""Perform balanced nearest neighbor interchange (BNNI) on a tree.
To improve the tree under the balanced minimum evolution (BME) criterion given a
distance matrix between taxa.
Implemented according to Section 3.2 and Appendix 5 of Desper and Gascuel (2002).
Basically, BNNI is similar to FastNNI (see `_fastnni`), but it needs to update
more than the four corner branches after each swap, as balanced average distances
are dependent on the topology of the tree.
---
The original paper doesn't explain how to store and update positive swaps. Because
a large proportion of swaps need to be re-evaluated during every iteration, one
would expect that a heap structure as suggested for the FastNNI algorithm may not
be efficient. The current code simply stores all swaps (positive or not) and runs
`np.argmax` on all of them during each iteration.
"""
n = tree.shape[0]
stack = np.empty(n, dtype=int)
# Calculate balanced average distances between all pairs of subtrees.
adm = np.empty((n, n))
_bal_avgdist_matrix(adm, dm, tree, preodr, postodr)
# Pre-calculate negative powers of 2.
powers = np.ldexp(1.0, -np.arange(dm.shape[0]))
# Initialize branch swapping information.
gains, sides, nodes = _init_swaps(tree)
# Iteratively swap branches until there is no more beneficial swap.
while True:
# Calculate length reductions of all possible swaps.
_bal_all_swaps(gains, sides, nodes, adm, tree)
# Find the swap with the maximum length reduction, and stop if non-positive.
branch = gains.argmax()
if (gain := gains[branch]) <= 0:
break
side = sides[branch]
target = nodes[branch]
# Swap the branches in the tree.
_swap_branches(target, side, tree, preodr, stack, use_depth=True)
# Update balanced average distances after swapping.
_bal_avgdist_swap(adm, target, side, tree, preodr, powers, stack)
# Calculate branch lengths using a balanced framework.
_bal_lengths(lens, adm, tree)
def _check_tree(tree, preodr, postodr):
r"""Check the integrity of an array-based tree structure.
The greedy algorithms implemented in this module use a special array-based tree
structure to improve efficiency.
In this 2-D array, rows represent nodes in the order of addition to the tree,
with the root placed at row 0. There are eight columns:
0. Left child index, or 0 if a tip.
1. Right child index, or taxon index if a tip.
2. Parent index, or 0 if root.
3. Sibling index, or 0 if root.
4. Size, i.e., number of taxa descending from the node, or 1 if a tip.
5. Depth, i.e., number of branches constituting the path to root.
6. Preorder index.
7. Postorder index.
Meanwhile, node indices in preorder and postorder are stored in two separate 1-D
arrays to facilitate traversals.
Note: Columns 2-7 and the two separate arrays can be derived from columns 0 and 1.
They are explicitly stored because of their frequent usage during the calculation.
Also, they are updated iteratively as the tree grows, which is more efficient than
de novo calculation on an existing tree.
---
For example, a tree with four taxa is like (see :func:`_gme`):
0
/ \
1 y
/ \
2 3
This tree can be represented by the following 2-D array:
[[1, 2, 0, 0, 3, 0, 0, 4],
[0, 1, 0, 2, 1, 1, 1, 0],
[3, 4, 0, 1, 2, 1, 2, 3],
[0, 2, 2, 4, 1, 2, 3, 1],
[0, 3, 2, 3, 1, 2, 4, 2]]
The separate pre- and postorder arrays are:
[0, 1, 2, 3, 4]
[1, 3, 4, 2, 0]
---
This function ensures that a tree array is valid. It is for test purpose, but not
used in the actual greedy algorithms.
"""
assert tree.shape[1] == 8
n = tree[0, 4] * 2 - 1
assert (tree[:n, 6].argsort() == preodr[:n]).all()
assert (tree[:n, 7].argsort() == postodr[:n]).all()
for i in range(n):
left, right, parent, sibling, size, depth, preidx, postidx = tree[i]
if left == 0:
assert i == 0 or right != 0
else:
assert tree[left, 2] == tree[right, 2] == i
assert tree[left, 3] == right
assert tree[right, 3] == left
sizes = np.zeros((n,), dtype=int)
for i in range(n):
node = postodr[i]
if tree[node, 0] == 0:
sizes[node] = 1
else:
sizes[node] = sizes[tree[node, :2]].sum()
assert (sizes == tree[:n, 4]).all()
depths = np.zeros((n,), dtype=int)
for i in range(1, n):
node = preodr[i]
depths[node] = depths[tree[node, 2]] + 1
assert (depths == tree[:n, 5]).all()
stack = np.zeros((n,), dtype=int)
_preorder(exp := np.zeros((n,), dtype=int), tree, stack)
assert (exp == preodr[:n]).all()
_postorder(exp := np.zeros((n,), dtype=int), tree, stack)
assert (exp == postodr[:n]).all()
def _allocate_tree(n):
r"""Pre-allocate memory space for an array-based tree structure.
Parameters
----------
n : int
Total number of nodes in the tree.
Returns
-------
(n, 8) ndarray of int
Tree structure.
(n,) ndarray of int
Nodes in preorder.
(n,) ndarray of int
Nodes in postorder.
See Also
--------
_check_tree
"""
tree = np.empty((n, 8), dtype=int)
preodr = np.empty((n,), dtype=int)
postodr = np.empty((n,), dtype=int)
return tree, preodr, postodr
def _to_treenode(tree, taxa, lens=None, unroot=False):
r"""Convert an array-based tree structure into a TreeNode object.
Parameters
----------
tree : (n, 2+) array_like of int
Tree structure.
taxa : list of str
Taxon names in order.
lens : (n,) array_like of float, optional
Branch lengths.
unroot : bool, optional
If True, generate an unrooted tree in which the root node has three children,
the last of which is the first taxon. Otherwise leave the first taxon at the
root node.
Returns
-------
TreeNode
Converted TreeNode object.
See Also
--------
TreeNode
Notes
-----
This function only needs the first two columns (left child, right child / taxon
name) of a tree array to generate a TreeNode object.
"""
nodes = [TreeNode(taxa[0])] + [
TreeNode(None if a else taxa[b]) for a, b in tree[1:, :2]
]
if lens is not None:
for node, L in zip(nodes, lens):
node.length = L
for node, (left, right, *_) in zip(nodes, tree):
if left:
node.extend([nodes[left], nodes[right]], uncache=False)
tree = nodes[0]
if unroot:
tree.append(TreeNode(taxa[0], length=tree.length), uncache=False)
tree.name = None
tree.length = None
return tree
def _from_treenode(obj, taxmap, tree, preodr, postodr, pos=0, depth=0):
r"""Convert a TreeNode object into an array-based tree structure.
Parameters
----------
tree : TreeNode
Input tree. It must be strictly bifurcating.
taxmap : dict of str : int
Mapping of taxon names to indices.
tree : (n, 8) ndarray of int
Tree structure.
preodr : (n,) ndarray of int
Nodes in preorder.
postodr : (n,) ndarray of int
Nodes in postorder.
pos : int, optional
Position (axis 0) in the tree array for new data.
depth : int, optional
Depth of the root node.
Raises
------
ValueError
If tree is not strictly bifurcating.
See Also
--------
_allocate_tree
_root_from_treenode
Notes
-----
This function fills in pre-allocated tree arrays. It doesn't return any value.
Nodes in the resulting tree array are ordered by preorder traversal. This may not
agree with the order they were added to the original tree, if that ever happened.
Therefore, one shouldn't directly compare the original and generated tree arrays.
However, the topologies represented by the two tree arrays should be identical.
The function doesn't fill branch lengths, which aren't required by the downstream
algorithms. Adding this functionality should be straightforward.
Parameters ``pos`` and ``depth`` are typically set by :func:`_root_from_treenode`.
One doesn't need to specify them if working with this function alone. ``depth``
also impacts the position in ``postodr``. See ``_root_from_treenode`` for
rationales.
"""
# determine position in postorder
post_pos = pos - depth
# create root node
tree[pos, 2] = 0
tree[pos, 3] = 0
tree[pos, 5] = depth
# if root node is a tip, just wrap up and return
if not obj.children:
tree[pos, 0] = 0
tree[pos, 1] = taxmap[obj.name]
tree[pos, 4] = 1
preodr[pos] = tree[pos, 6] = pos
postodr[post_pos] = pos
tree[pos, 7] = post_pos
return
# perform preorder traversal, index nodes, fill parent (2), depth (5), taxon (1)
# and length
obj.i = pos
pos_1 = pos + 1
for i, node in enumerate(obj.preorder(include_self=False)):
node.i = (ni := pos_1 + i)
tree[ni, 2] = (pi := node.parent.i)
tree[ni, 5] = tree[pi, 5] + 1
if not node.children:
tree[ni, 0] = 0
tree[ni, 1] = taxmap[node.name]
# number of nodes in the current tree
n = i + 2
# fill preorder and indices
end = pos + n
preodr[pos:end] = tree[pos:end, 6] = np.arange(pos, end)
# perform postorder traversal, fill children (0 and 1), sibling (3), and size (4)
for i, node in enumerate(obj.postorder()):
postodr[post_pos + i] = (ni := node.i)
tree[ni, 7] = post_pos + i
if not node.children:
tree[ni, 4] = 1
else:
try:
left, right = node.children
except ValueError:
raise ValueError("Tree is not strictly bifurcating.")
li, ri = left.i, right.i
tree[ni, 0] = tree[ri, 3] = li
tree[ni, 1] = tree[li, 3] = ri
tree[ni, 4] = tree[li, 4] + tree[ri, 4]
del left.i
del right.i
del obj.i
def _root_from_treenode(obj, taxa):
r"""Convert a TreeNode object into a tree array rooted at the first taxon.
Parameters
----------
tree : TreeNode
Input tree. It must be strictly bifurcating.
taxa : list of str
Taxon names in order.
tree : (n, 8) ndarray of int
Tree structure.
Returns
-------
(n, 8) ndarray of int
Tree structure.
(n,) ndarray of int
Nodes in preorder.
(n,) ndarray of int
Nodes in postorder.
Raises
------
ValueError
If tree is not strictly bifurcating.
See Also
--------
_from_treenode
TreeNode.unrooted_move
Notes
-----
This function locates the first taxon in the tree, walks from it to the root, and
rotate nodes along the path such that the first taxon becomes the new root in the
generated tree array. For example (p: parent, c: clade):
root taxon
/ | \ / \
c3 p2 c4 c1 p2
/ \ => / \
c2 p1 c2 root
/ \ / \
taxon c1 c3 c4
Note that the original parent node always becomes the right child of the current
node. The first parent (p1) is gone and replaced by the taxon. The output array is
always preordered.
"""
errmsg = "Tree is not strictly bifurcating."
taxmap = {taxon: i for i, taxon in enumerate(taxa)}
m = len(taxa) # number of taxa
n = m * 2 - 3 # number of nodes
# allocate tree arrays
tree, preodr, postodr = _allocate_tree(n)
# position of the current node
pos = 0
# depth of the current node
depth = 0
# position of the previous node
prev_pos = 0
# position of the other child of the previous node in the path;
# it will become the sibling of the current node
sib_pos = 0
# number of tips under the current node
size = m - 1
n_1 = n - 1
# helper to add the current node to the array
def _add_current():
tree[pos, 2] = prev_pos
tree[pos, 4] = size
tree[pos, 5] = depth
tree[pos, 6] = pos
preodr[pos] = pos
tree[pos, 7] = (post_pos := n_1 - depth)
postodr[post_pos] = pos
tree[prev_pos, 1] = pos
tree[sib_pos, 3] = pos
tree[pos, 3] = sib_pos
# iterate over ancestors of the first taxon
curr = obj.find(taxa[0])
parent = None
while True:
prev = curr
curr = curr.parent
parent = curr.parent
siblings = [x for x in curr.children if x is not prev]
if not siblings: # singleton branch
raise ValueError(errmsg)
n_sibs = len(siblings)
if n_sibs == 1:
other = siblings[0]
# Current node is a regular internal node of the tree (the typical case):
# Add the current node, then add the other child of it.
# parent prev
# | |
# curr => curr
# / \ / \
# other prev other parent
if parent is not None:
_add_current()
prev_pos = pos
pos += 1
# add the other child clade
_from_treenode(other, taxmap, tree, preodr, postodr, pos, depth + 1)
tree[pos - 1, 0] = pos # curr's left child
tree[pos, 2] = pos - 1 # parent (now missing sibling)
sib_pos = pos
size -= (k := tree[pos, 4])
pos += k * 2 - 1
# Current node is the root of a rooted tree (i.e., it has two children):
# Don't add the current node, instead add the other child.
# curr prev
# / \ => /
# other prev other
else:
_from_treenode(other, taxmap, tree, preodr, postodr, pos, depth)
tree[pos, 2] = prev_pos
tree[prev_pos, 1] = pos
tree[sib_pos, 3] = pos
tree[pos, 3] = sib_pos
break
elif n_sibs == 2:
# Current node is the root of an unrooted tree (i.e., it has three
# children): Add the current node, then add the other two children of it.
# prev
# curr |
# / | \ => curr
# left right prev / \
# left right
if parent is None:
_add_current()
curr_pos = pos
pos += 1
left, right = siblings
_from_treenode(left, taxmap, tree, preodr, postodr, pos, depth + 1)
tree[pos, 2] = curr_pos
left_pos = pos
tree[curr_pos, 0] = pos
pos += tree[pos, 4] * 2 - 1
_from_treenode(right, taxmap, tree, preodr, postodr, pos, depth + 1)
tree[pos, 2] = curr_pos
tree[curr_pos, 1] = pos
tree[left_pos, 3] = pos
tree[pos, 3] = left_pos
break
else:
raise ValueError(errmsg)
else:
raise ValueError(errmsg)
# move up one level
depth += 1
return tree, preodr, postodr
def _init_tree(dm, tree, preodr, postodr, ads, matrix=False):
"""Initialize tree (triplet with taxa 0, 1 and 2)."""
# triplet tree
tree[:3] = [
[1, 2, 0, 0, 2, 0, 0, 2], # 0: root
[0, 1, 0, 2, 1, 1, 1, 0], # 1: left child
[0, 2, 0, 1, 1, 1, 2, 1], # 2: right child
]
# nodes in pre- and postorder
preodr[:3] = [0, 1, 2]
postodr[:3] = [1, 2, 0]
# average distance matrix between all subtrees
if matrix:
ads[0, 1] = ads[1, 0] = dm[0, 1]
ads[0, 2] = ads[2, 0] = dm[0, 2]
ads[1, 2] = ads[2, 1] = dm[1, 2]
# average distances between distant-2 subtrees
else:
ads[1, 0] = dm[0, 1]
ads[2, 0] = dm[0, 2]
ads[1, 1] = ads[2, 1] = dm[1, 2]
ads[0, 0] = ads[0, 1] = 0
def _insert_taxon_treenode(taxon, target, tree):
r"""Insert a taxon between a target node and its parent.
This function resembles :func:`_insert_taxon` but operates on a TreeNode object. It
is for test purpose. It is not used in the actual algorithms.
"""
link = TreeNode()
tip = TreeNode(taxon)
parent = target.parent
if parent is None: # root branch
link.extend(tree.children)
tree.append(link)
tree.append(tip)
else: # other branch
is_left = target is parent.children[0]
link.append(target)
link.append(tip)
parent.append(link)
if is_left:
parent.children = parent.children[::-1]
def _avgdist_matrix_naive(adm, dm, tree, postodr):
r"""Calculate a matrix of average distances between all pairs of subtrees.
This function produces the same result as :func:`_avgdist_matrix`. However, it
calculates all subtree-to-subtree distances based on the original taxon-to-taxon
distances, as discussed in Eq. 1 of Desper and Gascuel (2002). instead of adopting
a recursive strategy (Eq. 2). Therefore, it is significantly slower.
d(A, B) = \frac{1}{|A||B|} \sum_{i \in A, j \in B} d(i, j)
This algorithm is implemented as a reference and for comparison purpose. It is not
used in the actual GME algorithm.
"""
n = tree[0, 4] * 2 - 1
taxas = {}
for node in postodr[:n]:
left, right = tree[node, :2]
if not left:
taxas[node] = frozenset([right])
else:
taxas[node] = taxas[left] | taxas[right]
full = taxas[0] | frozenset([0])
for a in range(n):
a_taxa = taxas[a]
a_taxa_r = full - a_taxa
# adm[a, a] = dm[list(a_taxa)][:, list(a_taxa_r)].mean() # self distance
for b in range(a + 1, n):
# If a is an ancestor (proper superset) of b, flip a's taxon set as the
# the upper subtree of a will be considered.
a_taxa_ = a_taxa_r if a_taxa > (b_taxa := taxas[b]) else a_taxa
adm[a, b] = adm[b, a] = dm[list(a_taxa_)][:, list(b_taxa)].mean()
# Because this is postorder traversal, a cannot be a descendant (proper
# subset) of b.
def _avgdist_taxon_naive(adk, taxon, dm, tree, postodr):
"""Calculate average distances between a new taxon and existing subtrees.
This function produces the same result as :func:`_avgdist_taxon`, but it
calculates all taxon-to-subtree distances based on the original taxon-to-taxon
distances, as discussed in Eq. 1 of Desper and Gascuel (2002), instead of
adopting a recursive strategy (Eq. 2). Therefore, it is significantly slower.
This algorithm is implemented as a reference and for comparison purpose, but not
used in the actual GME algorithm.
"""
n = tree[0, 4] * 2 - 1
taxas = {}
for node in postodr[:n]:
left, right = tree[node, :2]
if not left:
taxas[node] = frozenset([right])
else:
taxas[node] = taxas[left] | taxas[right]
full = taxas[0] | frozenset([0])
dk = dm[taxon]
for node in range(n):
taxa_lower = taxas[node]
adk[node, 0] = dk[list(taxa_lower)].mean()
taxa_upper = full - taxa_lower
adk[node, 1] = dk[list(taxa_upper)].mean()
def _init_swaps(tree):
"""Initialize branch swapping information.
It will create three 1-D arrays to store information of all internal branches of
the tree:
- `gains`: Overall tree length reduction (larger is better).
- `sides`: Which side (left: 0, right: 1) of the target node should be swapped.
- `nodes`: Corresponding node index of the branch.
Meanwhile, column 7 of the tree array will be filled with the branch index of the
each node, if it corresponds to one. This column was previous used to store
postorder index, but that information is not needed during swapping.
For a tree with n taxa, there should be n - 3 internal branches. The association
between nodes and internal branches are fixed, no matter how tree is swapped.
"""
# number of internal branches
n = tree[0, 4] - 2
gains = np.zeros((n,), dtype=float)
sides = np.empty((n,), dtype=int)
nodes = np.empty((n,), dtype=int)
# identify all internal branches
branch = 0
for node in range(1, tree.shape[0]):
if tree[node, 0]:
tree[node, 7] = branch
nodes[branch] = node
branch += 1
return gains, sides, nodes
def _swap_branches_treenode(node1, node2):
"""Swap two nodes in a TreeNode object.
This function is for testing purpose.
"""
parent1, parent2 = node1.parent, node2.parent
parent1.append(node2, False)
parent2.append(node1, False)
def _swap_branches(target, side, tree, preodr, stack, use_depth=True):
r"""Swap one child of the target node with its sibling.
| |
parent parent
/ \ / \
target sibling => target child
/ \ / \
other child other sibling
Target must be an internal node. Root and tips are not allowed.
This function currently doesn't handle postorder, as subsequent algorithms don't
need this information.
This function is specifically designed for nearest neighbor interchange (NNI). It
may be generalized to swapping non-neighbor branches, but that is not currently
implemented.
"""
# This function can potentially optimized using Cython. See _insert_taxon.
child = tree[target, side]
other = tree[target, 1 - side] # other child
parent = tree[target, 2]
sibling = tree[target, 3]
c_size = tree[child, 4]
o_size = tree[other, 4]
s_size = tree[sibling, 4]
# update connections
tree[target, side] = sibling
tree[target, 3] = child
tree[target, 4] += s_size - c_size
p_side = int(tree[parent, 0] == target) # sibling side of parent
tree[parent, p_side] = child
tree[sibling, 2] = target
tree[sibling, 3] = other
tree[child, 2] = parent
tree[child, 3] = target
tree[other, 3] = sibling
# locate the clades under the relevant nodes
c_start = tree[child, 6]
c_width = c_size * 2 - 1
c_end = c_start + c_width
c_clade = preodr[c_start:c_end]
s_start = tree[sibling, 6]
s_width = s_size * 2 - 1
s_end = s_start + s_width
s_clade = preodr[s_start:s_end]
o_start = tree[other, 6]
o_width = o_size * 2 - 1
o_end = o_start + o_width
o_clade = preodr[o_start:o_end]
# update depth (if needed)
if use_depth:
tree[c_clade, 5] -= 1
tree[s_clade, 5] += 1
# update preorder (naive)
# _preorder(preodr, tree, stack)
# tree[:n, 6] = np.argsort(preodr[:n])
# update postorder (naive)
# _postorder(postodr, tree, stack)
# tree[:n, 7] = np.argsort(postodr[:n])
# update preorder
# sibling is the left child of parent
if p_side == 0:
tree[target, 6] += c_width - s_width
stack[:c_width] = c_clade
stack[c_width] = target
c1_width = c_width + 1
# sibling_clade, target, child_clade, other_clade =>
# child_clade, target, sibling_clade, other_clade
if side == 0:
tree[s_clade, 6] += c_width + 1
tree[c_clade, 6] -= s_width + 1
preodr[(sc1_start := s_start + c1_width) : c_end] = s_clade
preodr[s_start:sc1_start] = stack[:c1_width]
# sibling_clade, target, other_clade, child_clade =>
# child_clade, target, other_clade, sibling_clade
else:
tree[s_clade, 6] += c_width + o_width + 1
tree[c_clade, 6] -= s_width + o_width + 1
tree[o_clade, 6] += c_width - s_width
stack[c1_width : (c1o_width := c1_width + o_width)] = o_clade
preodr[(sc1o_start := s_start + c1o_width) : c_end] = s_clade
preodr[s_start:sc1o_start] = stack[:c1o_width]
# sibling is the right child of parent
else:
stack[:s_width] = s_clade
# target, child_clade, other_clade, sibling_clade =>
# target, sibling_clade, other_clade, child_clade
if side == 0:
tree[c_clade, 6] += (so_width := s_width + o_width)
tree[s_clade, 6] -= c_width + o_width
tree[o_clade, 6] += s_width - c_width
stack[s_width:so_width] = o_clade
preodr[(cso_start := c_start + so_width) : s_end] = c_clade
preodr[c_start:cso_start] = stack[:so_width]
# target, other_clade, child_clade, sibling_clade =>
# target, other_clade, sibling_clade, child_clade
else:
tree[c_clade, 6] += s_width
tree[s_clade, 6] -= c_width
preodr[(cs_start := c_start + s_width) : s_end] = c_clade
preodr[c_start:cs_start] = stack[:s_width]
|