1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------
from warnings import warn, simplefilter
from operator import ne, gt, itemgetter
from copy import copy, deepcopy
from itertools import chain, combinations
from collections import defaultdict, deque
import numpy as np
import pandas as pd
from skbio._base import SkbioObject
from skbio.stats.distance import DistanceMatrix
from skbio.tree._exception import (
NoLengthError,
DuplicateNodeError,
NoParentError,
MissingNodeError,
TreeError,
)
from skbio.util._decorator import (
classonlymethod,
deprecated,
register_aliases,
aliased,
params_aliased,
)
from skbio.util._warning import _warn_once
from skbio.io.registry import Read, Write
from ._compare import (
_check_dist_metric,
_check_shuffler,
_topo_dists,
_path_dists,
)
# ----------------------------------------------------------------------------
# Important note: The TreeNode class has a large number of methods. They are
# organized under several categories, which are defined in this script as well
# as in `doc/source/_templates/TreeNode.rst`, which is a template file for the
# documentation. When methods are added, removed or re-organized, one needs to
# edit the template file to reflect the changes.
# ----------------------------------------------------------------------------
@register_aliases
class TreeNode(SkbioObject):
r"""Represent a node within a tree.
A ``TreeNode`` instance stores links from a node to its parent node and optionally
child nodes. In addition, it can represent the length of the branch connecting
itself and its parent, and the support of this branch.
Parameters
----------
name : str or None
Name of the node. It is common for tips in particular to have names, for
instance, in a phylogenetic tree where the tips correspond to taxa. Internal
nodes and the root may also have names.
length : float, int, or None
Length of the branch connecting this node to its parent. Can represent
ellapsed time, amount of mutations, or other measures of evolutionary
distance.
support : float, int, or None
Support value of the branch connecting this node to its parent. Can be
bootstrap value, posterior probability, or other measures of the confidence or
frequency of this branch.
parent : TreeNode or None
Parent node to which this node is connected. A node without a parent is the
root of the tree.
children : list of TreeNode or None
Child nodes to which this node is connected. A node without any children is a
tip (leaf) of the tree.
Notes
-----
A tree is a graph in which any two nodes (vertices) are connected by exactly one
path. The ``TreeNode`` class is capable of representing various tree structures,
including binary trees, phylogenetic trees, and other hierarchical systems such as
taxonomies and ontologies. While the class is versatile, many of its terms and
methods are specifically designed for phylogenetic analysis.
In scikit-bio, trees are modeled as a collection of interconnected ``TreeNode``
objects, each representing a single node in the tree. There is no explicit class
for the entire tree, a clade, or a branch (edge). Instead, a tree is implicitly
defined by its root node, from which the entire tree can be traversed. Starting
from any node, one can navigate up to its parent and ancestors, down to its
children and descendants, or sideways to its siblings.
The underlying data structure of a tree composed of ``TreeNode`` objects is an
ordered, rooted tree. However, the ``TreeNode`` class has the flexibility to handle
unrooted and unordered trees as well, which are common in phylogenetics.
"""
default_write_format = "newick"
read = Read()
write = Write()
def __init__(
self, name=None, length=None, support=None, parent=None, children=None
):
self.name = name
self.length = length
self.support = support
self.parent = parent
self.children = []
# TODO: `id` doesn't need to be a default attribute.
self.id = None
# TODO: This could skip cache clearing.
if children is not None:
self.extend(children)
def __repr__(self):
r"""Return summary of the tree.
Returns
-------
str
A summary of this node and all descendants
Notes
-----
This method returns the name of the node and a count of tips and the
number of internal nodes in the tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c, d)root;"])
>>> repr(tree)
'<TreeNode, name: root, internal node count: 1, tips count: 3>'
"""
nodes = [n for n in self.traverse(include_self=False)]
n_tips = sum([n.is_tip() for n in nodes])
n_nontips = len(nodes) - n_tips
classname = self.__class__.__name__
name = self.name if self.name is not None else "unnamed"
return "<%s, name: %s, internal node count: %d, tips count: %d>" % (
classname,
name,
n_nontips,
n_tips,
)
def __str__(self):
r"""Return a Newick string of self, with names and distances."""
return str("".join(self.write([])))
def __iter__(self):
r"""Iterate over the children of self."""
return iter(self.children)
def __len__(self):
"""Return the number of children of self."""
return len(self.children)
def __getitem__(self, i):
r"""Slice the children of self."""
return self.children[i]
# ------------------------------------------------
# Tree copying
# ------------------------------------------------
# node attributes that should not be copied
_exclude_from_copy = {
"name",
"length",
"support",
"parent",
"children",
"id",
"_tip_cache",
"_non_tip_cache",
"_registered_caches",
}
def _copy(self, deep, memo):
"""Return a copy of self."""
# decide deep or shallow copy
_copy = deepcopy if deep else copy
_args = [memo] if deep else []
# node attributes to exclude during copying
# add any custom attributes that were registered as caches
exclude_attrs = self._exclude_from_copy
if hasattr((root := self.root()), "_registered_caches"):
exclude_attrs = exclude_attrs | root._registered_caches
# exclude dynamically generated methods
exclude_attrs = exclude_attrs | {"_write_method"}
# tree node class (default is TreeNode)
# this is _possibly_ dangerous, we're assuming the node to copy is
# of the same class as self, and has the same exclusion criteria.
# however, it is potentially dangerous to mix TreeNode subclasses
# within a tree, so...
treenode = self.__class__
def __copy_node(node, parent=None):
"""Copy a node."""
# create a new instance by transferring built-in attributes, which can be
# directly assigned
res = treenode(
name=node.name,
length=node.length,
support=node.support,
parent=parent,
children=None,
)
res.id = node.id
# copy custom attributes, which may be compound objects therefore need to
# be copied
# this method of iteration is slightly faster than
# `for key in node.__dict__.keys() - exclude_attrs:`
for key in node.__dict__:
if key not in exclude_attrs:
res.__dict__[key] = _copy(node.__dict__[key], *_args)
return res
# start with a copy of self, which will become the root (no parent)
root = __copy_node(self)
stack = [[root, self, len(self.children)]]
stack_append = stack.append
while stack:
# check the top node, any children left unvisited?
top = stack[-1]
new_top_node, old_top_node, unvisited_children = top
if unvisited_children:
top[2] -= 1
old_child = old_top_node.children[-unvisited_children]
new_child = __copy_node(old_child, new_top_node)
new_top_node.children.append(new_child)
stack_append([new_child, old_child, len(old_child.children)])
else:
del stack[-1]
return root
def __copy__(self):
"""Return a shallow copy."""
return self._copy(False, {})
def __deepcopy__(self, memo):
"""Return a deep copy."""
return self._copy(True, memo)
def copy(self, deep=True):
r"""Return a copy of self using an iterative approach.
Parameters
----------
deep : bool, optional
Whether to perform a deep (True, default) or shallow (False) copy of node
attributes.
.. versionadded:: 0.6.2
.. note:: The default value will be changed to False in 0.7.0.
Returns
-------
TreeNode
A new copy of self.
.. versionchanged:: 0.6.3
Node attribute caches will not be copied.
See Also
--------
unrooted_copy
Notes
-----
This method iteratively copies the current node and its descendants. That is,
if the current node is not the root of the tree, only the subtree below the
node, instead of the entire tree, will be copied.
All nodes and their attributes except for caches will be copied. The copies are
new objects rather than references to the original objects. The distinction
between deep and shallow copies only applies to each node attribute.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> tree_copy = tree.copy()
>>> tree_nodes = set([id(n) for n in tree.traverse()])
>>> tree_copy_nodes = set([id(n) for n in tree_copy.traverse()])
>>> print(len(tree_nodes.intersection(tree_copy_nodes)))
0
"""
return self._copy(deep, {})
@deprecated("0.6.2", msg="Use `copy` instead.")
def deepcopy(self):
r"""Return a deep copy of self using an iterative approach.
Returns
-------
TreeNode
A new deep copy of self.
See Also
--------
copy
Notes
-----
``deepcopy`` is equivalent to ``copy`` with ``deep=True``, which is
currently the default behavior of the latter.
"""
return self._copy(True, {})
def subtree(self, tip_list=None):
r"""Make a copy of the subtree.
.. deprecated:: 0.6.3
This method will be removed in version 0.7.0. It was never implemented, and
its goal can be achieved by :meth:`copy`.
"""
raise NotImplementedError()
# ------------------------------------------------
# Tree navigation
# ------------------------------------------------
def is_tip(self):
r"""Check if the current node is a tip of a tree.
Returns
-------
bool
Whether the node is a tip.
See Also
--------
is_root
has_children
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.is_tip())
False
>>> print(tree.find('a').is_tip())
True
"""
return not self.children
def is_root(self):
r"""Check if the current node is the root of a tree.
Returns
-------
bool
Whether the node is the root.
See Also
--------
is_tip
has_children
Notes
-----
A root is defined as a node that has no ``parent``. A tree has exactly one
root.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.is_root())
True
>>> print(tree.find('a').is_root())
False
"""
return self.parent is None
def has_children(self):
r"""Check if the current node has any children.
Returns
-------
bool
Whether the node has at least one child.
See Also
--------
is_tip
is_root
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c);"])
>>> print(tree.has_children())
True
>>> print(tree.find('a').has_children())
False
"""
return not self.is_tip()
def root(self):
r"""Return root of the tree which contains `self`.
Returns
-------
TreeNode
The root of the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> tip_a = tree.find('a')
>>> root = tip_a.root()
>>> root == tree
True
"""
curr = self
while not curr.is_root():
curr = curr.parent
return curr
def ancestors(self, include_self=False):
r"""Return all ancestral nodes from self back to the root.
Parameters
----------
include_self : bool, optional
Whether to include the initial node in the path (default: False).
Returns
-------
list of TreeNode
The path from self toward the root.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-g-------|
| /-d
\f-------|
\-e
>>> tip = tree.find('a')
>>> [node.name for node in tip.ancestors()]
['c', 'g']
>>> [node.name for node in tip.ancestors(include_self=True)]
['a', 'c', 'g']
"""
curr = self
result = [curr] if include_self else []
result_append = result.append
while (curr := curr.parent) is not None:
result_append(curr)
return result
def siblings(self):
r"""Return all nodes that are siblings of the current node.
Siblings are nodes that are children of the current node's parent, except for
the current node itself.
Returns
-------
list of TreeNode
The list of sibling nodes relative to self.
See Also
--------
neighbors
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e,f)g)root;"])
>>> tip_e = tree.find('e')
>>> [n.name for n in tip_e.siblings()]
['d', 'f']
"""
try:
return [x for x in self.parent.children if x is not self]
except AttributeError:
return []
def neighbors(self, ignore=None):
r"""Return all nodes that are neighbors of the current node.
Neighbors are nodes that are directly connected to the current node by one
branch. They usually include parent and children of the current node, if
present. One may optionally ignore one node from the result.
Parameters
----------
ignore : TreeNode, optional
A node to ignore.
Returns
-------
list of TreeNode
The list of all nodes that are connected to self.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> node_c = tree.find('c')
>>> [n.name for n in node_c.neighbors()]
['a', 'b', 'root']
"""
if (parent := self.parent) is not None:
nodes = self.children + [parent]
else:
nodes = self.children[:]
if ignore is None:
return nodes
else:
return [n for n in nodes if n is not ignore]
@aliased("lowest_common_ancestor")
@params_aliased([("nodes", "tipnames", "0.6.3", True)])
def lca(self, nodes=None):
r"""Find the lowest common ancestor of a list of nodes.
Parameters
----------
nodes : iterable of TreeNode or str
Instances or names of the nodes of interest.
Returns
-------
TreeNode
The lowest common ancestor of the nodes.
Raises
------
MissingNodeError
If some nodes cannot be found in the tree.
Notes
-----
Both tips and internal nodes may be provided in ``nodes``. If internal node
names are provided, it is the user's responsibility to ensure that they are
unique in the tree.
This method considers the entire tree rather than the subtree below self.
Therefore, if some nodes are not descendants of self, the LCA of nodes will be
ancestral to self.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> nodes = [tree.find('a'), tree.find('b')]
>>> lca = tree.lca(nodes)
>>> print(lca.name)
c
>>> nodes = [tree.find('a'), tree.find('e')]
>>> lca = tree.lca(nodes) # lca is an alias for convience
>>> print(lca.name)
root
"""
if not nodes:
raise ValueError("No node is specified.")
nodes = [self.find(x) for x in nodes]
if len(nodes) == 1:
return nodes[0]
# Keep a record of visited nodes, such that the temporary attribute assigned
# to each node can be cleared after getting LCA.
visited = []
visited_append = visited.append
# Path of the first node to root. LCA must be in this path.
# A temporary attribute "prev" will be assigned to visited nodes. It represents
# the previous node in the upward path.
curr = next(nodes := iter(nodes))
prev = None
while curr is not None:
visited_append(curr)
curr._prev = prev
prev = curr
curr = curr.parent
# Paths of other nodes to root.
# The prev attribute no longer needs to record the previous node. It is
# uniformly set as None. When the path hits a previously visited node, it will
# stop. If the node is in the first path, its prev becomes None, indicating
# that it has been visited more than once.
for curr in nodes:
while not hasattr(curr, "_prev"):
visited_append(curr)
curr._prev = None
curr = curr.parent
curr._prev = None
# walk down from root until a node with prev as None
curr = prev
while (prev := curr._prev) is not None:
curr = prev
# clear temporary attribute
for node in visited:
del node._prev
return curr
def _path(self, other):
r"""Return the path from self to other.
Parameters
----------
other : TreeNode
Target node.
Returns
-------
TreeNode
LCA of self and other.
list of TreeNode
self (inclusive) to LCA (exclusive).
list of TreeNode
other (inclusive) to LCA (exclusive).
Notes
-----
This algorithm is optimized for finding the LCA of two nodes. Instead,
:meth:`lca` is optimized for finding the LCA of multiple nodes.
"""
anc1 = self.ancestors(include_self=True)
anc2 = other.ancestors(include_self=True)
# find lowest common ancestor of the two by iterating down from root and
# stopping at divergence
# pos is lca's index from root + 1
lca, pos = None, None
for i, (n1, n2) in enumerate(zip(reversed(anc1), reversed(anc2))):
if n1 is n2:
lca = n1
else:
pos = i
break
if lca is None:
raise TreeError("Could not find a path between self and other.")
if pos is None:
pos = i + 1
return lca, anc1[: len(anc1) - pos], anc2[: len(anc2) - pos]
def path(self, other, include_ends=False):
r"""Return the list of nodes in the path from self to another node.
.. versionadded:: 0.6.3
Parameters
----------
other : TreeNode
Final node of path.
include_ends: bool, optional
Whether to include the initial (self) and final (other) nodes in the list.
Default is False.
Returns
-------
list
List of TreeNode objects.
See Also
--------
distance
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-root----|
| /-d
\f-------|
\-e
>>> node_1, node_2 = tree.find('a'), tree.find('d')
>>> path = node_1.path(node_2)
>>> print(len(path))
3
>>> print('-'.join(x.name for x in path))
c-root-f
>>> path_2 = node_1.path(node_2, include_ends=True)
>>> print(len(path_2))
5
>>> print('-'.join(x.name for x in path_2))
a-c-root-f-d
"""
lca, self_path, other_path = self._path(other)
path = self_path + [lca] + other_path[::-1]
# remove initial and final nodes if desired
if include_ends is False:
path = path[1:-1]
return path
# ------------------------------------------------
# Tree traversal
# ------------------------------------------------
def traverse(self, self_before=True, self_after=False, include_self=True):
r"""Traverse over tree.
Parameters
----------
self_before : bool, optional
Whether to include each node before its descendants (default: True).
self_after : bool, optional
Whether to include each node after its descendants (default: False).
include_self : bool, optional
Include the initial node if True (default).
Yields
------
TreeNode
Visited node.
See Also
--------
preorder
postorder
pre_and_postorder
levelorder
tips
non_tips
Notes
-----
This is a depth-first search (DFS). ``self_before`` and ``self_after``
determine whether a node should be visited before and after traversing its
children. They are independent. If both True, each internal node (and root)
will be visited twice. If neither is True, only tips will be returned.
This method is a generalization of :meth:`preorder`, :meth:`postorder`,
:meth:`pre_and_postorder` and :meth:`tips`. The default mode
(``self_before=True, self_after=False``) is equivalent to preorder
traversal.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-g-------|
| /-d
\f-------|
\-e
>>> for node in tree.traverse():
... print(node.name)
g
c
a
b
f
d
e
"""
if self_before:
if self_after:
return self.pre_and_postorder(include_self=include_self)
else:
return self.preorder(include_self=include_self)
else:
if self_after:
return self.postorder(include_self=include_self)
else:
return self.tips(include_self=include_self)
def preorder(self, include_self=True):
r"""Perform preorder traversal over tree.
Parameters
----------
include_self : bool, optional
Include the initial node if True (default).
Yields
------
TreeNode
Visited node.
See Also
--------
traverse
postorder
pre_and_postorder
levelorder
Notes
-----
Preorder traversal visits each node followed by traversing each of its
children in order. It is also known as NLR (node - left - right). It is
a depth-first search (DFS). The overall direction of traversal is from
root to tips.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-g-------|
| /-d
\f-------|
\-e
>>> for node in tree.preorder():
... print(node.name)
g
c
a
b
f
d
e
"""
stack = [self] if include_self else self.children[::-1]
stack_pop = stack.pop
stack_extend = stack.extend
while stack:
yield (curr := stack_pop())
if curr.children:
stack_extend(curr.children[::-1])
def postorder(self, include_self=True):
r"""Perform postorder traversal over tree.
Parameters
----------
include_self : bool, optional
Include the initial node if True (default).
Yields
------
TreeNode
Visited node.
See Also
--------
traverse
preorder
pre_and_postorder
levelorder
Notes
-----
Postorder traversal traverses all children of a node in order before
visiting the parent node. It is also known as LRN (left - right -
node). It is a depth-first search (DFS). The overall direction of
traversal is from tips to root.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-g-------|
| /-d
\f-------|
\-e
>>> for node in tree.postorder():
... print(node.name)
a
b
c
d
e
f
g
"""
# This is somewhat inelegant compared to saving the node and its index
# on the stack, but is 30% faster in the average case and 3x faster in
# the worst case (for a comb tree).
child_index_stack = [0]
child_index_stack_append = child_index_stack.append
child_index_stack_pop = child_index_stack.pop
curr = self
curr_children = self.children
curr_children_len = len(curr_children)
while True:
curr_index = child_index_stack[-1]
# if there are children left, process them
if curr_index < curr_children_len:
curr_child = curr_children[curr_index]
# if the current child has children, go there
if curr_child.children:
child_index_stack_append(0)
curr = curr_child
curr_children = curr.children
curr_children_len = len(curr_children)
curr_index = 0
# otherwise, yield that child
else:
yield curr_child
child_index_stack[-1] += 1
# if there are no children left, return self, and move to
# self's parent
else:
if include_self or (curr is not self):
yield curr
if curr is self:
break
curr = curr.parent
curr_children = curr.children
curr_children_len = len(curr_children)
child_index_stack_pop()
child_index_stack[-1] += 1
def pre_and_postorder(self, include_self=True):
r"""Perform traversal over tree, visiting nodes before and after.
Parameters
----------
include_self : bool, optional
Include the initial node if True (default).
Yields
------
TreeNode
Visited node.
See Also
--------
traverse
postorder
preorder
levelorder
Notes
-----
Pre- and post-order traversal visits each node before and after
traversing all children of the node. Therefore, each internal node (and
root) is visited twice. It is a depth-first search (DFS). The overall
direction of traversal is from root to tips then back to root.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-g-------|
| /-d
\f-------|
\-e
>>> for node in tree.pre_and_postorder():
... print(node.name)
g
c
a
b
c
f
d
e
f
g
"""
# handle simple case first
if not self.children:
if include_self:
yield self
return
child_index_stack = [0]
child_index_stack_append = child_index_stack.append
child_index_stack_pop = child_index_stack.pop
curr = self
curr_children = self.children
while True:
curr_index = child_index_stack[-1]
if not curr_index:
if include_self or (curr is not self):
yield curr
# if there are children left, process them
if curr_index < len(curr_children):
curr_child = curr_children[curr_index]
# if the current child has children, go there
if curr_child.children:
child_index_stack_append(0)
curr = curr_child
curr_children = curr.children
curr_index = 0
# otherwise, yield that child
else:
yield curr_child
child_index_stack[-1] += 1
# if there are no children left, return self, and move to
# self's parent
else:
if include_self or (curr is not self):
yield curr
if curr is self:
break
curr = curr.parent
curr_children = curr.children
child_index_stack_pop()
child_index_stack[-1] += 1
def levelorder(self, include_self=True):
r"""Perform level order traversal over tree.
Parameters
----------
include_self : bool, optional
Include the initial node if True (default).
Yields
------
TreeNode
Visited node.
See Also
--------
postorder
preorder
pre_and_postorder
traverse
Notes
-----
Level order traversal visits all nodes at each depth from the root
before visiting nodes at the next depth. It is a breadth-first search
(BFS). The overall direction of traversal is from root to tips.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-g-------|
| /-d
\f-------|
\-e
>>> for node in tree.levelorder():
... print(node.name)
g
c
f
a
b
d
e
"""
queue = deque([self]) if include_self else deque(self.children)
queue_popleft = queue.popleft
queue_extend = queue.extend
while queue:
yield (curr := queue_popleft())
if curr.children:
queue_extend(curr.children)
def tips(self, include_self=False):
r"""Iterate over tips descended from the current node.
Parameters
----------
include_self : bool, optional
Whether to include the initial node if it is a tip (default: False).
Yields
------
TreeNode
Visited tip.
See Also
--------
non_tips
postorder
Notes
-----
Nodes are ordered by a postorder traversal of the tree. The order is
consistent between calls.
If self is a tip, it won't be yieled unless `include_self` is True.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
---------|
| /-d
\f-------|
\-e
>>> for node in tree.tips():
... print(node.name)
a
b
d
e
"""
for node in self.postorder(include_self=include_self):
if not node.children:
yield node
def non_tips(self, include_self=False):
r"""Iterate over non-tip nodes descended from the current node.
Parameters
----------
include_self : bool, optional
Whether to include the initial node if it is not a tip (default: False).
Yields
------
TreeNode
Visited non-tip node.
See Also
--------
tips
postorder
Notes
-----
Nodes are ordered by a postorder traversal of the tree. The order is
consistent between calls.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
---------|
| /-d
\f-------|
\-e
>>> for node in tree.non_tips():
... print(node.name)
c
f
"""
for node in self.postorder(include_self):
if node.children:
yield node
# ------------------------------------------------
# Tree manipulation
# ------------------------------------------------
def append(self, node, uncache=True):
r"""Add a node to self's children.
Parameters
----------
node : TreeNode
Node to add as a child.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
extend
Notes
-----
This method will add the node to the end of self's children. If the incoming
node is within another tree, it will be disconnected from its original parent,
if any, but its children will be preserved. Therefore, this method is able to
move an entire clade.
The ``uncache`` parameter applies to both donor and recipient trees.
Examples
--------
>>> from skbio import TreeNode
>>> root = TreeNode(name="root")
>>> child1 = TreeNode(name="child1")
>>> child2 = TreeNode(name="child2")
>>> root.append(child1)
>>> root.append(child2)
>>> print(root)
(child1,child2)root;
<BLANKLINE>
"""
if uncache:
self.clear_caches()
node.clear_caches()
# reconnect the node from its original parent to self
# this code is similar to `remove`, but it does not return a value
if node.parent is not None:
for i, curr_node in enumerate((children := node.parent.children)):
if curr_node is node:
del children[i]
break
node.parent = self
self.children.append(node)
def extend(self, nodes, uncache=True):
r"""Add a list of nodes to self's children.
Parameters
----------
nodes : iterable of TreeNode
Nodes to add as children.
.. versionchanged:: 0.6.2
Can accept any iterable type in addition to list as input.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
append
Notes
-----
This method will remove existing parents of the nodes if they have any, set
their parents to self, and add the nodes to the end of self's children.
The ``uncache`` parameter applies to both donor and recipient trees.
Examples
--------
>>> from skbio import TreeNode
>>> root = TreeNode(name="root")
>>> root.extend([TreeNode(name="child1"), TreeNode(name="child2")])
>>> print(root)
(child1,child2)root;
<BLANKLINE>
"""
# make a shallow copy of nodes, which is necessary for working with iterators
# and containers that are mutable during reconnection (like `children`)
nodes = list(nodes)
if uncache:
self.clear_caches()
for node in nodes:
node.clear_caches()
# reconnect each node from original parent to self; see `append`
for node in nodes:
if node.parent is not None:
for i, curr_node in enumerate((children := node.parent.children)):
if curr_node is node:
del children[i]
break
node.parent = self
self.children.extend(nodes)
def insert(self, node, distance=None, branch_attrs=[], uncache=True):
r"""Insert a node into the branch connecting self and its parent.
.. versionadded:: 0.6.2
Parameters
----------
node : TreeNode
Node to insert.
distance : float, int or None, optional
Distance between self and the insertion point. Must not exceed ``length``
of self. If None whereas ``length`` is not None, will insert at the
midpoint of the branch.
branch_attrs : iterable of str, optional
Attributes of self that should be transferred to the inserted node
as they are considered as attributes of the branch. ``support``
will be automatically included as it is always a branch attribute.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
Raises
------
NoParentError
If self has no parent.
ValueError
If distance is specified but branch has no length.
ValueError
If distance exceeds branch length.
See Also
--------
append
Notes
-----
This method will remove the existing parent of the node if any, set its parent
as self's parent, and set self's parent as the incoming node. The node's index
position in the parent's children is consistent with that of self prior to
insertion.
The ``uncache`` parameter applies to both donor and recipient trees.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:4,d:5)e;"])
>>> print(tree.ascii_art())
/-a
/c-------|
-e-------| \-b
|
\-d
>>> tree.find("c").insert(TreeNode("x"))
>>> print(tree.ascii_art())
/-a
/x------- /c-------|
-e-------| \-b
|
\-d
>>> tree.find("c").length
2.0
>>> tree.find("x").length
2.0
"""
if (parent := self.parent) is None:
raise NoParentError("Self has no parent.")
if uncache:
self.clear_caches()
# detach node from original tree if applicable
if node.parent is not None:
node.parent.remove(node, uncache)
# replace self with node in the parent's list of children
node.parent = parent
for i, curr_node in enumerate(parent.children):
if curr_node is self:
parent.children[i] = node
# add self to the beginning of the node's list of children
self.parent = node
node.children.insert(0, self)
# transfer branch attributes to new node
branch_attrs = set(branch_attrs)
branch_attrs.add("support")
branch_attrs.discard("length")
for attr in branch_attrs:
setattr(node, attr, getattr(self, attr, None))
# determine insertion point
if distance is None:
if self.length is None:
node.length = None
else:
self.length *= 0.5
node.length = self.length
else:
if self.length is None:
raise ValueError("Distance is provided but branch has no length.")
elif distance > self.length:
raise ValueError("Distance cannot exceed branch length.")
node.length = self.length - distance
self.length = distance
def pop(self, index=-1, uncache=True):
r"""Remove and return a child node by index position from self.
Parameters
----------
index : int, optional
The index position in ``children`` to pop.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
Returns
-------
TreeNode
The popped child node.
Raises
------
IndexError
If the index position does not exist.
See Also
--------
remove
remove_by_func
Notes
-----
The parent of the popped node will be set to ``None``.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> print(tree.pop(0))
a;
<BLANKLINE>
"""
if uncache:
self.clear_caches()
node = self.children.pop(index)
node.parent = None
return node
def remove(self, node, uncache=True):
r"""Remove a child node by identity from self.
Parameters
----------
node : TreeNode
The node to remove from self's children.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
Returns
-------
bool
True if the node was removed. False if the node is not a child of self.
See Also
--------
pop
remove_by_func
Notes
-----
The parent of the removed node will be set to None. The removed node and its
children (if any) still exist, but are disconnected from the tree. Therefore,
this method is useful for detaching a clade from a tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> tree.remove(tree.children[0])
True
"""
if uncache:
self.clear_caches()
# it is necessary to perform removal by identity (`is`), instead of removal by
# equality (e.g., `self.children.remove(node)`), therefore:
for i, curr_node in enumerate(self.children):
if curr_node is node:
curr_node.parent = None
del self.children[i]
return True
return False
@aliased("remove_deleted", "0.6.3", True)
def remove_by_func(self, func, uncache=True):
r"""Remove nodes of a tree that meet certain criteria.
Parameters
----------
func : callable
A function that accepts a ``TreeNode`` and returns True or False, where
True indicates the node is to be deleted.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
pop
remove
Notes
-----
This method has the potential to drop entire clades. That is, if an internal
node is removed, all its descendants are no longer connected to the tree, even
if they are not explicitly removed.
This method has the potential to leave single-child internal nodes in the tree,
which can be further collapsed by :meth:`prune`.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(a,b)c;"])
>>> tree.remove_by_func(lambda x: x.name == 'b')
>>> print(tree)
(a)c;
<BLANKLINE>
"""
if uncache:
self.clear_caches()
for node in self.traverse(include_self=False):
if func(node):
node.parent.remove(node, uncache=False)
def prune(self, uncache=True):
r"""Collapse single-child nodes in the tree.
Internal nodes with only one child will be removed, and direct connections will
be made from the parent to the child. The branch length of the node will be
added to the child. The name and properties of the child will override those of
the parent following the operation.
Parameters
----------
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
shear
pop
remove
remove_by_func
Notes
-----
This method is useful for cleaning up single-child nodes after some nodes were
removed from a tree.
If called from an internal node of the tree, only the clade below the node will
be pruned.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,b)c,(d)e)g,((h,i)j)k)root;"])
>>> print(tree.ascii_art())
/-a
/c-------|
/g-------| \-b
| |
-root----| \e------- /-d
|
| /-h
\k------- /j-------|
\-i
>>> tree.prune()
>>> print(tree.ascii_art())
/-a
/c-------|
/g-------| \-b
| |
-root----| \-d
|
| /-h
\j-------|
\-i
"""
if uncache:
self.clear_caches()
# build up the list of nodes to remove so the topology is not altered
# while traversing
nodes_to_remove = []
nodes_to_remove_append = nodes_to_remove.append
for node in self.traverse(include_self=False):
if len(node.children) == 1:
nodes_to_remove_append(node)
# clean up the single children nodes
for node in nodes_to_remove:
child = node.children[0]
if child.length is None or node.length is None:
child.length = child.length or node.length
else:
child.length += node.length
if (parent := node.parent) is not None:
# TODO: replace the original node's index position, rather than append
# to the end.
parent.append(child, uncache=False)
parent.remove(node, uncache=False)
# If there is a single descendent from the root, the root will adopt the
# child's properties. We can't "delete" the root as that would be deleting
# self.
if len(self.children) == 1:
child = self.children[0]
if child.length is None or self.length is None:
self.length = self.length or child.length
else:
self.length += child.length
for key, value in child.__dict__.items():
if key not in ("length", "parent", "children"):
self.__dict__[key] = value
self.remove(child, uncache=False)
self.extend(child.children, uncache=False)
def shear(self, names, strict=True, prune=True, inplace=False, uncache=True):
r"""Refine a tree such that it just has the desired tip names.
Parameters
----------
names : iterable of str
The tip names on the tree to keep.
strict : bool, optional
In case some names are not found in the tree, whether to raise an error
(True, default) or to refine the tree to the found names only (False).
.. versionadded:: 0.6.3
prune : bool, optional
Whether to collapse single-child nodes after shearing by calling
:meth:`prune` (default: True).
.. versionadded:: 0.6.3
inplace : bool, optional
Whether to modify the tree in place (True) or to create a modified copy of
the tree (False, default).
.. versionadded:: 0.6.3
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`. Only applicable when ``inplace`` is True.
.. versionadded:: 0.6.3
Returns
-------
TreeNode, optional
The resulting tree (if ``inplace`` is False).
Raises
------
ValueError
If one or more names do not exist in the tree and ``strict`` is True.
See Also
--------
prune
remove
remove_by_func
Notes
-----
This method is useful for reducing a large tree to a relevant subset of taxa.
If called from an internal node of the tree, only the clade below the node will
be refined, and the copy of the tree (when ``inplace`` is False) will only
include the clade.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,b)c,(d,e)f)g,(h,i)j)root;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
/g-------|
| | /-d
| \f-------|
-root----| \-e
|
| /-h
\j-------|
\-i
>>> sheared = tree.shear(['a', 'd', 'h'])
>>> print(sheared.ascii_art())
/-a
/g-------|
-root----| \-d
|
\-h
"""
names = set(names)
if strict and not names.issubset(self.subset()):
raise ValueError("Names are not a subset of the tree.")
# modify (sub)tree in place
if inplace:
tree = self
if uncache:
tree.clear_caches()
# temporarily disconnect subtree from parent
curr_parent = tree.parent
tree.parent = None
# make a copy of (sub)tree
else:
tree = self.copy()
# mark desired tips and their ancestors
marked = set()
marked_add = marked.add
for tip in tree.tips():
if tip.name in names:
marked_add(tip)
# see also `tip.ancestors`, but the following code stops early if it
# doesn't need to reach root
anc = tip.parent
while anc is not None:
if anc in marked:
break
marked_add(anc)
anc = anc.parent
# TODO: This `list` can potentially be removed to save unnecessary removals
# within clades that are already removed
for node in list(tree.traverse()):
if node not in marked:
node.parent.remove(node, uncache=False)
# remove single-child nodes
if prune:
tree.prune(uncache=False)
# reconnect subtree to parent
if inplace:
tree.parent = curr_parent
else:
return tree
def unpack(self, uncache=True):
"""Unpack an internal node in place.
Parameters
----------
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
Notes
-----
This method sequentially: 1) elongates child nodes by branch length
of self (omit if there is no branch length), 2) removes self from
parent node, and 3) grafts child nodes to parent node.
Raises
------
ValueError
If input node is root or tip.
See Also
--------
unpack_by_func
prune
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['((c:2.0,d:3.0)a:1.0,(e:2.0,f:1.0)b:2.0);'])
>>> tree.find('b').unpack()
>>> print(tree)
((c:2.0,d:3.0)a:1.0,e:4.0,f:3.0);
<BLANKLINE>
"""
if self.is_root():
raise TreeError("Cannot unpack root.")
if self.is_tip():
raise TreeError("Cannot unpack tip.")
if uncache:
self.clear_caches()
parent = self.parent
blen = self.length or 0.0
for child in self.children:
clen = child.length or 0.0
child.length = clen + blen or None
parent.remove(self, uncache=False)
parent.extend(self.children, uncache=False)
def unpack_by_func(self, func, uncache=True):
"""Unpack internal nodes of a tree that meet certain criteria.
Parameters
----------
func : callable
A function that accepts a ``TreeNode`` and returns True or False, where
True indicates the node is to be unpacked.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
unpack
prune
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['((c:2,d:3)a:1,(e:1,f:2)b:2);'])
>>> tree.unpack_by_func(lambda x: x.length <= 1)
>>> print(tree)
((e:1.0,f:2.0)b:2.0,c:3.0,d:4.0);
<BLANKLINE>
>>> tree = TreeNode.read(['(((a,b)85,(c,d)78)75,(e,(f,g)64)80);'])
>>> tree.assign_supports()
>>> tree.unpack_by_func(lambda x: x.support < 75)
>>> print(tree)
(((a,b)85,(c,d)78)75,(e,f,g)80);
<BLANKLINE>
"""
if uncache:
self.clear_caches()
nodes_to_unpack = []
nodes_to_unpack_append = nodes_to_unpack.append
for node in self.non_tips(include_self=False):
if func(node):
nodes_to_unpack_append(node)
for node in nodes_to_unpack:
node.unpack(uncache=False)
def bifurcate(self, insert_length=None, include_self=True, uncache=True):
r"""Convert the tree into a bifurcating tree.
All nodes that have more than two children will have additional intermediate
nodes inserted to ensure that every node has only two children.
Parameters
----------
insert_length : int, optional
The branch length assigned to all inserted nodes.
include_self : bool, optional
If False, will not convert the current node. This is useful for keeping an
unrooted tree unrooted. Default is True.
.. versionadded:: 0.6.3
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
prune
is_bifurcating
Notes
-----
This method does not modify single-child nodes. These nodes can be collapsed
using :meth:`prune` prior to this method to create a strictly bifurcating tree.
This method modifies the subtree under the current node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b,g,h)c,(d,e)f)root;"])
>>> print(tree.ascii_art())
/-a
|
|--b
/c-------|
| |--g
| |
-root----| \-h
|
| /-d
\f-------|
\-e
>>> tree.bifurcate()
>>> print(tree.ascii_art())
/-h
/c-------|
| | /-g
| \--------|
| | /-a
-root----| \--------|
| \-b
|
| /-d
\f-------|
\-e
"""
if uncache:
self.clear_caches()
treenode = self.__class__
for node in self.traverse(include_self=include_self):
if len(node.children) > 2:
stack = node.children
while len(stack) > 2:
ind = stack.pop()
interm = treenode(length=insert_length, children=stack[:])
node.append(interm, uncache=False)
for child in stack:
node.remove(child, uncache=False)
node.extend([ind, interm], uncache=False)
@params_aliased([("shuffler", "shuffle_f", "0.6.3", True)])
def shuffle(self, k=None, names=None, shuffler=None, n=1):
r"""Randomly shuffle tip names of the tree.
Parameters
----------
k : int, optional
The number of tips to shuffle. If provided, this number of tips will be
randomly selected by ``shuffle_f``, and only those names will be shuffled.
Conflicts with ``names``.
names : list, optional
The specific tip names to shuffle. Conflicts with ``k``.
shuffler : int, np.random.Generator or callable, optional
Shuffling function, which must accept a list and modify in place. Default
is the :meth:`shuffle <numpy.random.Generator.shuffle>` method of a NumPy
random generator. If an integer is provided, a random generator will be
constructed using this number as the seed.
.. versionchanged:: 0.6.3
Switched to NumPy's new random generator. Can accept a random seed or
random generator instance.
n : int, optional
The number of iterations to perform. Must be a positive integer. Default
is 1. If None or ``np.inf``, iterations will be infinite.
.. versionchanged:: 0.6.3
Can accept None.
Yields
------
TreeNode
Tree with shuffled tip names.
Raises
------
ValueError
If ``k`` < 2 or ``n`` < 1.
ValueError
If both ``k`` and ``names`` are specified.
MissingNodeError
If ``names`` is specified but one of the names cannot be found.
See Also
--------
numpy.random.Generator.shuffle
Notes
-----
This method does not create copies of the tree. Instead, tip names are shuffled
in place in the original tree and the tree is yielded prior to the next round
of shuffling. Tree caches will be cleared prior to shuffling.
``k`` and ``names`` cannot be specified at the same time. If neither ``k`` nor
``names`` are provided, all tips will be shuffled.
Examples
--------
Shuffle the names of a 4-tip tree for 5 times:
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b),(c,d));"])
>>> for shuffled in tree.shuffle(shuffler=42, n=5):
... print(shuffled)
((d,c),(b,a));
<BLANKLINE>
((a,b),(d,c));
<BLANKLINE>
((a,c),(d,b));
<BLANKLINE>
((d,b),(a,c));
<BLANKLINE>
((a,c),(d,b));
<BLANKLINE>
"""
if k is not None:
if k < 2:
raise ValueError("k must be None or >= 2.")
if names is not None:
raise ValueError("k and names cannot be specified at the same time.")
if n is None:
n = np.inf
elif n < 1:
raise ValueError("n must be > 0.")
# determine shuffling function
shuffler = _check_shuffler(shuffler)
# determine tip names to shuffle
if names is not None:
tips = [self.find(x) for x in names]
else:
tips = list(self.tips())
if k is not None:
shuffler(tips)
tips = tips[:k]
names = [x.name for x in tips]
# since the names are being shuffled, the caches are no longer reliable
self.clear_caches()
# iteratively shuffle tip names and yield tree
counter = 0
while counter < n:
shuffler(names)
for tip, name in zip(tips, names):
tip.name = name
yield self
counter += 1
# ------------------------------------------------
# Tree rerooting
# ------------------------------------------------
def unroot(self, side=None, uncache=True):
r"""Convert a rooted tree into unrooted.
.. versionadded:: 0.6.2
Parameters
----------
side : int, optional
Which basal node (i.e., children of root) will be elevated to root. Must be
0 or 1. If not provided, will elevate the first basal node that is not a
tip. The choice won't impact tree topology.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
root
root_at
Notes
-----
In scikit-bio, every tree has a root node. A tree is considered as
"rooted" if its root node has exactly two children. In contrast, an
"unrooted" tree may have three (the most common case), one, or more
than three children attached to its root node. This method will not
modify the tree if it is already unrooted.
This method unroots a tree by trifucating its root. Specifically, it
removes one of the two basal nodes of the tree (i.e., children of the
root), transfers the name of the removed node to the root, and
re-attaches the removed node's children to the root. Additionally, the
removed node's branch length, if available, will be added to the other
basal node's branch. The outcome appears as if the root is removed
and the two basal nodes are directly connected.
The choice of the basal node to be elevated affects the positioning of
the resulting tree, but does not affect its topology from a
phylogenetic perspective, as it is considered as unrooted.
This method manipulates the tree in place. There is no return value.
.. note:: In the case where the basal node has just one child, the
resulting tree will still appear rooted as it has two basal nodes.
To avoid this scenario, call :meth:`prune` to remove all one-child
internal nodes.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['(((a,b)c,(d,e)f)g,(h,i)j)k;'])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
/g-------|
| | /-d
| \f-------|
-k-------| \-e
|
| /-h
\j-------|
\-i
>>> tree.unroot()
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
|
| /-d
-g-------|-f-------|
| \-e
|
| /-h
\j-------|
\-i
"""
# return original tree if already unrooted
root = self.root()
if len(bases := root.children) != 2:
return root
if uncache:
root.clear_caches()
# choose a basal node to elevate
if side is None:
side = 1 if (bases[0].is_tip() and not bases[1].is_tip()) else 0
chosen, other = bases[side], bases[1 - side]
# remove chosen node and re-attach its children to root
chosen.parent = None
for child in chosen.children:
child.parent = root
if side:
root.children = [other] + chosen.children
else:
root.children = chosen.children + [other]
# transfer basal node's attributes to root
for key, value in chosen.__dict__.items():
if key not in ("length", "support", "parent", "children"):
root.__dict__[key] = value
# add branch length to the other basal node
if (L := chosen.length) is not None:
if other.length is not None:
other.length += L
else:
other.length = L
def unrooted_copy(
self,
parent=None,
branch_attrs={"name", "length", "support"},
root_name="root",
deep=False,
exclude_attrs=None,
):
r"""Walk the tree unrooted-style and return a copy.
Parameters
----------
parent : TreeNode or None
Direction of walking (from parent to self). If specified, walking to the
parent will be prohibited.
branch_attrs : set of str, optional
Attributes of ``TreeNode`` objects that should be considered as branch
attributes during the operation.
.. versionadded:: 0.6.2
.. note:: ``name`` will be removed from the default in 0.7.0, as it is
usually considered as an attribute of the node instead of the branch.
root_name : str or None, optional
Name for the new root node, if it doesn't have one.
.. versionadded:: 0.6.2
.. note:: This parameter will be removed in 0.7.0, and the root node will
not be renamed.
deep : bool, optional
Whether to perform a shallow (False, default) or deep (True) copy of node
attributes.
.. versionadded:: 0.6.2
exclude_attrs : set, optional
Node attributes that should not be copied. If None (default), the caches
will be excluded. This parameter keeps a memo during recursive copying for
efficiency. It should not be customized by the user unless absolutely
needed.
.. versionadded:: 0.6.3
Returns
-------
TreeNode
A new copy of the tree rooted at the given node.
.. versionchanged:: 0.6.2
Node attributes other than name and length will also be copied.
Warnings
--------
The default behavior of ``unrooted_copy`` is subject to change in 0.7.0. The
new default behavior can be achieved by specifying
``branch_attrs={"length", "support"}, root_name=None``.
See Also
--------
copy
unrooted_move
Notes
-----
This method recursively walks a tree from a given node in an unrooted style
(i.e., directions of branches are not assumed), and copies each node it
visits, such that the copy of the given node becomes the root node of a new
tree and the copies of all other nodes are re-positioned accordingly, whereas
the topology of the new tree will be identical to the existing one.
Nodes attributes except for caches will be copied to the new tree. Attributes
in ``branch_attrs`` will be transferred to the node at the other end of a
branch if the branch is flipped in the new tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> new_tree = tree.find('d').unrooted_copy()
>>> print(new_tree)
(b,c,(a,((f,g)h)e)d)root;
<BLANKLINE>
"""
# future warning
if branch_attrs == {"name", "length", "support"} and root_name == "root":
_warn_once(
self.__class__.unrooted_copy,
FutureWarning,
"The default behavior of `unrooted_copy` is subject to change in "
"0.7.0. The new default behavior can be achieved by specifying "
'`branch_attrs={"length", "support"}, root_name=None`.',
)
# determine copy mode
_copy = deepcopy if deep else copy
# determine node attributes to exclude
if exclude_attrs is None:
exclude_attrs = self._exclude_from_copy
if hasattr((root := self.root()), "_registered_caches"):
exclude_attrs = exclude_attrs | root._registered_caches
# identify neighbors (adjacent nodes) of self, excluding the incoming node
neighbors = self.neighbors(ignore=parent)
# recursively copy each neighbor; they will become outgoing nodes (children)
children = [
c.unrooted_copy(
parent=self,
branch_attrs=branch_attrs,
root_name=root_name,
deep=deep,
exclude_attrs=exclude_attrs,
)
for c in neighbors
]
# identify node from which branch attributes should be transferred
# 1. starting point (becomes root)
if parent is None:
other = None
# 2. walk up (parent becomes child)
elif parent.parent is self:
other = parent
# 3. walk down (retain the same order)
else:
other = self
# create a new node and attach children to it, see also `copy`
attrs = {
x: (
(None if other is None else getattr(other, x))
if x in branch_attrs
else getattr(self, x)
)
for x in ("name", "length", "support")
}
result = self.__class__(**attrs, children=children)
# transfer attributes to the new node, see also `copy`
for key in self.__dict__:
if key not in exclude_attrs:
source = other if key in branch_attrs else self
if source is not None and key in source.__dict__:
result.__dict__[key] = _copy(source.__dict__[key])
# name the new root
if root_name and parent is None and result.name is None:
result.name = root_name
return result
@deprecated(
"0.6.2",
msg="Because it generates a redundant copy of the tree. Use `unrooted_copy` "
"instead.",
)
def unrooted_deepcopy(self, parent=None):
r"""Walk the tree unrooted-style and returns a new deepcopy.
Parameters
----------
parent : TreeNode or None
Direction of walking (from parent to self). If specified, walking
to the parent will be prohibited.
Returns
-------
TreeNode
A new copy of the tree rooted at the given node.
See Also
--------
copy
unrooted_copy
root_at
Notes
-----
Perform a deepcopy of self and return a new copy of the tree as an
unrooted copy. This is useful for defining a new root of the tree.
This method calls :meth:`unrooted_copy` which is recursive.
"""
root = self.root()
root.assign_ids()
new_tree = root.copy()
new_tree.assign_ids()
new_tree_self = new_tree.find_by_id(self.id)
return new_tree_self.unrooted_copy(parent, deep=True)
def unrooted_move(
self,
branch_attrs={"length", "support"},
uncache=True,
):
r"""Walk the tree unrooted-style and rearrange it.
.. versionadded:: 0.6.2
.. versionchanged:: 0.6.3
The underlying algorithm is now iterative instead of recursive, therefore
won't be constrained by Python's maximum recursion limit when working with
large trees. Parameter ``parent`` was removed as it is no longer needed.
Parameters
----------
parent : TreeNode or None
Direction of walking (from parent to self). If specified, walking
to the parent will be prohibited.
branch_attrs : set of str, optional
Attributes of ``TreeNode`` objects that should be considered as
branch attributes during the operation.
uncache : bool, optional
Whether to clear caches of the tree if present (default: True). See
:meth:`details <has_caches>`.
.. versionadded:: 0.6.3
See Also
--------
root_at
unrooted_copy
Notes
-----
This method walks a tree from a given node in an unrooted style (i.e.,
directions of branches are not assumed). It rerranges the tree such that
the given node becomes the root node and all other nodes are re-positioned
accordingly, whereas the topology remains the same.
This method manipulates the tree in place. There is no return value.
The new tree should be referred to by the node where the operation
started, as it has become the new root node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> new_root = tree.find('d')
>>> new_root.unrooted_move()
>>> print(new_root)
(b,c,(a,((f,g)h)i)e)d;
<BLANKLINE>
"""
if uncache:
self.clear_caches()
# This algorithm uses an iterative approach to avoid the maximum recursion
# limit imposed by Python. Two rounds of iterations are involved to 1) flip
# the tree and to 2) reconstruct the upward branches.
self.old_child = None
curr = self
parent = None
# move up in the original tree and move parent to children
while (old_parent := curr.parent) is not None:
for i, child in enumerate(old_parent.children):
if child is curr:
old_parent.children.pop(i)
break
curr.children.append(old_parent)
old_parent.old_child = curr
curr.parent = parent
parent = curr
curr = old_parent
# move up in the new tree and rebuild parent connection
while curr.old_child is not None:
child = curr.old_child
curr.parent = child
for attr in branch_attrs:
setattr(curr, attr, getattr(child, attr, None))
del curr.old_child
curr = child
del self.old_child
for attr in branch_attrs:
setattr(self, attr, None)
def root_at(
self,
node=None,
above=False,
reset=False,
branch_attrs=["name"],
root_name="root",
inplace=False,
):
r"""Reroot the tree at the provided node.
This is useful for positioning a tree with an orientation that reflects
knowledge of the true root location.
Parameters
----------
node : TreeNode or str, optional
The node to root at. Can either be a node object or the name of the node.
If not provided, will root at self. If a root node provided, will return
the original tree.
.. versionchanged:: 0.6.2
Becomes optional.
above : bool, float, or int, optional
Whether and where to insert a new root node. If False (default), the target
node will serve as the root node. If True, a new root node will be created
and inserted at the midpoint of the branch connecting the target node and
its parent. If a number, the new root will be inserted at this distance
from the target node. The number ranges between 0 and branch length.
.. versionadded:: 0.6.2
reset : bool, optional
Whether to remove the original root of a rooted tree before performing the
rerooting operation. Default is False.
.. versionadded:: 0.6.2
.. note:: The default value will be set as True in 0.7.0.
branch_attrs : iterable of str, optional
Attributes of each node that should be considered as attributes of the
branch connecting the node to its parent. This is important for the correct
rerooting operation. "length" and "support" will be automatically included
as they are always branch attributes.
.. versionadded:: 0.6.2
.. note:: ``name`` will be removed from the default in 0.7.0, as it is
usually considered as an attribute of the node instead of the branch.
root_name : str or None, optional
Name for the root node, if it doesn't already have one.
.. versionadded:: 0.6.2
.. note:: The default value will be set as ``None`` in 0.7.0.
inplace : bool, optional
Whether to reroot the tree in place (True) or to create a rerooted copy of
the tree (False, default).
.. versionadded:: 0.6.3
Returns
-------
TreeNode
A tree rooted at the give node.
Warnings
--------
The default behavior of ``root_at`` is subject to change in 0.7.0. The
new default behavior can be achieved by specifying ``reset=True,
branch_attrs=[], root_name=None``.
See Also
--------
unrooted_copy
unrooted_move
unroot
Notes
-----
The specified node will be come the root of the new tree.
Tree caches (see :meth:`details <has_caches>`) will not be retained in the
returned tree. In in-place mode, they will be cleared prior to rerooting. In
copying mode, they will not be copied to the new tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,b)c,(d,e)f)g,h)i;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
/g-------|
| | /-d
-i-------| \f-------|
| \-e
|
\-h
Use the given node as the root node. This will typically create an
unrooted tree (i.e., root node has three children).
>>> t1 = tree.root_at("c", branch_attrs=[])
>>> print(t1)
(a,b,((d,e)f,(h)i)g)c;
<BLANKLINE>
>>> print(t1.ascii_art())
/-a
|
|--b
-c-------|
| /-d
| /f-------|
\g-------| \-e
|
\i------- /-h
Insert a new root node into the branch above the given node. This will
create a rooted tree (i.e., root node has two children).
>>> t2 = tree.root_at("c", above=True, branch_attrs=[])
>>> print(t2)
((a,b)c,((d,e)f,(h)i)g)root;
<BLANKLINE>
>>> print(t2.ascii_art())
/-a
/c-------|
| \-b
-root----|
| /-d
| /f-------|
\g-------| \-e
|
\i------- /-h
"""
# future warning
if reset is False and branch_attrs == ["name"] and root_name == "root":
_warn_once(
self.__class__.root_at,
FutureWarning,
"The default behavior of `root_at` is subject to change in 0.7.0. "
"The new default behavior can be achieved by specifying "
"`reset=True, branch_attrs=[], root_name=None`.",
)
# locate to-be root node
tree = self.root()
if node is None:
node = self
elif isinstance(node, str):
node = tree.find(node)
# return if already rooted
if node.is_root():
return node.copy()
# check if tree is rooted
if reset and len(tree.children) != 2:
reset = False
# Prior to rerooting, the tree may need to be manipulated to remove the
# original root and/or to insert a new root node
# For optimal performance (copying the tree only once), the following code
# considers three scenarios:
# 1. In-place mode: Just manipulate the tree if needed, then call
# `unrooted_move`.
# 2. Copying mode, tree doesn't need to be manipulated: directly call
# `unrooted_copy`
# 3. Copying mode, tree needs to be manipulated: Make a copy of the
# tree, manipulate, then call `unrooted_move`.
to_copy = False
if not inplace:
if reset or above is not False:
tree.assign_ids()
new_tree = tree.copy()
new_tree.assign_ids()
node = new_tree.find_by_id(node.id)
tree = new_tree
else:
to_copy = True
# Clear caches, since root node will be different and caches are going to be
# useless regardless.
else:
tree.clear_caches()
# Remove original root. We need to make sure the node itself is not the basal
# node that gets removed.
if reset:
side = None
for i, base in enumerate(tree.children):
if node is base:
side = 1 - i
break
tree.unroot(side)
# insert a new root node into the branch above
if above is not False:
to_insert = node.__class__()
distance = None if above is True else above
node.insert(to_insert, distance, branch_attrs, uncache=False)
node = to_insert
branch_attrs = set(branch_attrs)
branch_attrs.update(["length", "support"])
# rotate the tree to position the new root
if to_copy:
return node.unrooted_copy(branch_attrs=branch_attrs, root_name=root_name)
else:
node.unrooted_move(branch_attrs=branch_attrs, uncache=False)
if root_name and node.name is None:
node.name = root_name
return node
def root_at_midpoint(
self, reset=False, branch_attrs=["name"], root_name="root", inplace=False
):
r"""Reroot the tree at the midpoint of the two tips farthest apart.
Parameters
----------
reset : bool, optional
Whether to remove the original root of a rooted tree before performing
the rerooting operation. Default is False.
.. versionadded:: 0.6.2
.. note:: The default value will be set as True in 0.7.0.
branch_attrs : iterable of str, optional
Attributes of each node that should be considered as attributes of
the branch connecting the node to its parent. This is important for
the correct rerooting operation. "length" and "support" will be
automatically included as they are always branch attributes.
.. versionadded:: 0.6.2
.. note:: ``name`` will be removed from the default in 0.7.0, as
it is usually considered as an attribute of the node instead of
the branch.
root_name : str or None, optional
Name for the new root node, if it doesn't have one.
.. versionadded:: 0.6.2
.. note:: The default value will be set as ``None`` in 0.7.0.
inplace : bool, optional
Whether to reroot the tree in place (True) or to create a rerooted copy of
the tree (False, default).
.. versionadded:: 0.6.3
Returns
-------
TreeNode
A tree rooted at its midpoint.
Raises
------
TreeError
If a tip ends up being the mid point.
LengthError
Midpoint rooting requires `length` and will raise (indirectly) if
evaluated nodes don't have length.
Warnings
--------
The default behavior of ``root_at_midpoint`` is subject to change in
0.7.0. The new default behavior can be achieved by specifying
``reset=True, branch_attrs=[], root_name=None``.
See Also
--------
root_at
unrooted_copy
Notes
-----
The midpoint rooting (MPR) method was originally described in [1]_.
Tree caches (see :meth:`details <has_caches>`) will not be retained in the
returned tree. In in-place mode, they will be cleared prior to rerooting. In
copying mode, they will not be copied to the new tree.
References
----------
.. [1] Farris, J. S. (1972). Estimating phylogenetic trees from
distance matrices. The American Naturalist, 106(951), 645-668.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:1)c:2,(d:3,e:4)f:5,g:1)h;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
|
-h-------| /-d
|-f-------|
| \-e
|
\-g
>>> t = tree.root_at_midpoint(branch_attrs=[])
>>> print(t)
((d:3.0,e:4.0)f:2.0,((a:1.0,b:1.0)c:2.0,g:1.0)h:3.0)root;
<BLANKLINE>
>>> print(t.ascii_art())
/-d
/f-------|
| \-e
-root----|
| /-a
| /c-------|
\h-------| \-b
|
\-g
"""
# future warning
if reset is False and branch_attrs == ["name"] and root_name == "root":
_warn_once(
self.__class__.root_at_midpoint,
FutureWarning,
"The default behavior of `root_at_midpoint` is subject to change in "
"0.7.0. The new default behavior can be achieved by specifying "
"`reset=True, branch_attrs=[], root_name=None`.",
)
tree = self.root()
if inplace:
tree.clear_caches()
else:
tree = tree.copy()
if reset:
tree.unroot(uncache=False)
max_dist, tips = tree.maxdist()
half_max_dist = max_dist / 2.0
if max_dist == 0.0:
return tree
tip1 = tree.find(tips[0])
tip2 = tree.find(tips[1])
lca = tree.lca([tip1, tip2])
if tip1.depth(lca) > half_max_dist:
climb_node = tip1
else:
climb_node = tip2
dist_climbed = 0.0
while dist_climbed + climb_node.length < half_max_dist:
dist_climbed += climb_node.length
climb_node = climb_node.parent
# case 1: midpoint is at the climb node's parent
# make the parent node as the new root
if dist_climbed + climb_node.length == half_max_dist:
new_root = climb_node.parent
# case 2: midpoint is on the climb node's branch to its parent
# insert a new root node into the branch
else:
new_root = tree.__class__()
climb_node.insert(new_root, half_max_dist - dist_climbed, uncache=False)
# TODO: Here, `branch_attrs` should be added to `insert`. However, this
# will cause a backward-incompatible behavior. This change will be made
# in version 0.7.0, along with the removal of `name` from the default of
# `branch_attrs`.
branch_attrs = set(branch_attrs)
branch_attrs.update(["length", "support"])
new_root.unrooted_move(branch_attrs=branch_attrs, uncache=False)
if root_name and new_root.name is None:
new_root.name = root_name
return new_root
def root_by_outgroup(
self,
outgroup,
above=True,
reset=True,
branch_attrs=[],
root_name=None,
inplace=False,
):
r"""Reroot the tree with a given set of taxa as outgroup.
.. versionadded:: 0.6.2
Parameters
----------
outgroup : iterable of str
Taxon set to serve as outgroup. Must be a proper subset of taxa in the
tree. The tree will be rooted at the lowest common ancestor (LCA) of the
outgroup.
above : bool, float, or int, optional
Whether and where to insert a new root node. If False, the LCA will serve
as the root node. If True (default), a new root node will be created and
inserted at the midpoint of the branch connecting the LCA and its parent
(i.e., the midpoint between outgroup and ingroup). If a number between 0
and branch length, the new root will be inserted at this distance from the
LCA.
reset : bool, optional
Whether to remove the original root of a rooted tree before performing the
rerooting operation. Default is True.
branch_attrs : iterable of str, optional
Attributes of each node that should be considered as attributes of the
branch connecting the node to its parent. This is important for the correct
rerooting operation. "length" and "support" will be automatically included
as they are always branch attributes.
root_name : str or None, optional
Name for the root node, if it doesn't already have one.
inplace : bool, optional
Whether to reroot the tree in place (True) or to create a rerooted copy of
the tree (False, default).
.. versionadded:: 0.6.3
Returns
-------
TreeNode
A tree rooted by the outgroup.
Raises
------
TreeError
Outgroup is not a proper subset of taxa in the tree.
TreeError
Outgroup is not monophyletic in the tree.
Notes
-----
An outgroup is a subset of taxa that are usually distantly related from
the remaining taxa (ingroup). The outgroup helps with locating the root
of the ingroup, which are of interest in the study.
This method reroots the tree at the lowest common ancestor (LCA) of the
outgroup. By default, a new root will be placed at the midpoint between
the LCA of outgroup and that of ingroup. But this behavior can be
customized.
This method requires the outgroup to be monophyletic, i.e., it forms a
single clade in the tree. If the outgroup spans across the root of the
tree, the method will reroot the tree within the ingroup such that the
outgroup can form a clade in the rerooted tree, prior to rooting by
outgroup.
Tree caches (see :meth:`details <has_caches>`) will not be retained in the
returned tree. In in-place mode, they will be cleared prior to rerooting. In
copying mode, they will not be copied to the new tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(['((((a,b),(c,d)),(e,f)),g);'])
>>> print(tree.ascii_art())
/-a
/--------|
| \-b
/--------|
| | /-c
| \--------|
/--------| \-d
| |
| | /-e
---------| \--------|
| \-f
|
\-g
>>> rooted = tree.root_by_outgroup(['a', 'b'])
>>> print(rooted.ascii_art())
/-a
/--------|
| \-b
|
---------| /-c
| /--------|
| | \-d
\--------|
| /-e
| /--------|
\--------| \-f
|
\-g
>>> rooted = tree.root_by_outgroup(['e', 'f', 'g'])
>>> print(rooted.ascii_art())
/-e
/--------|
/--------| \-f
| |
| \-g
---------|
| /-c
| /--------|
| | \-d
\--------|
| /-b
\--------|
\-a
"""
outgroup = set(outgroup)
if not outgroup < self.subset():
raise TreeError("Outgroup is not a proper subset of taxa in the tree.")
# locate the lowest common ancestor (LCA) of outgroup in the tree
lca = self.lca(outgroup)
# if LCA is root (i.e., outgroup is split across basal clades), root
# the tree at a tip within the ingroup and locate LCA again
if lca is self:
for tip in self.tips():
if tip.name not in outgroup:
tree = self.root_at(
tip, reset=reset, branch_attrs=branch_attrs, inplace=inplace
)
inplace = False # no need to make copy again
break
lca = tree.lca(outgroup)
else:
tree = self
# test if outgroup is monophyletic
if lca.count(tips=True) > len(outgroup):
raise TreeError("Outgroup is not monophyletic in the tree.")
# reroot the tree at LCA
return tree.root_at(
lca,
above=above,
reset=reset,
branch_attrs=branch_attrs,
root_name=root_name,
inplace=inplace,
)
# ------------------------------------------------
# Tree metrics
# ------------------------------------------------
def count(self, tips=False):
r"""Get the count of nodes in the tree.
Parameters
----------
tips : bool, optional
If True, only return the count of tips (default: False).
Returns
-------
int
The number of nodes.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> print(tree.count())
9
>>> print(tree.count(tips=True))
5
"""
if tips:
return len(list(self.tips()))
else:
return len(list(self.traverse(include_self=True)))
def subset(self, include_self=False):
r"""Return a subset of taxa descending from self.
A subset can be considered as taxa (tip names) within a clade defined by the
current node (branch), selected from all taxa within the tree.
Parameters
----------
include_self : bool, optional
Whether to include the current node if it is a tip (default: False).
.. versionadded:: 0.6.3
Returns
-------
frozenset of str
The set of names at the tips of the clade that descends from self.
See Also
--------
tips
subsets
bipart
Notes
-----
This is a convenient method to return all taxa (tip names) rather than the tip
nodes themselves. Internal node names will not be included.
The returned value (a frozenset) is unordered and hashable, therefore can be
used to define clades, lineages and taxon groups for efficient lookup. For
example, one can check whether a taxon exists in the current tree or clade.
By default, if this method is applied to a tip, an empty set will be returned,
because a tip does not have descendants. If `include_self` is True, a single-
element set containing the name of the tip will be returned. This behavior can
be considered as returning taxa descending from the branch connecting self
and its parent.
Applying this method to the root node of a tree will return all taxa in the
tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> print(tree.ascii_art())
/-a
/e-------|
| | /-b
| \d-------|
-i-------| \-c
|
| /-f
\h-------|
\-g
>>> sorted(tree.subset())
['a', 'b', 'c', 'f', 'g']
>>> subset = tree.find('e').subset()
>>> sorted(subset)
['a', 'b', 'c']
>>> 'a' in subset
True
>>> 'f' in subset
False
"""
return frozenset({i.name for i in self.tips(include_self=include_self)})
def subsets(
self,
within=None,
include_full=False,
include_tips=False,
map_to_length=False,
):
r"""Return all subsets of taxa defined by nodes descending from self.
Parameters
----------
within : iterable of str, optional
A custom set of taxa to refine the result. Only taxa within it will be
considered. If None (default), all taxa in the tree will be considered.
.. versionadded:: 0.6.3
include_full : bool, optional
Whether to include a set of all taxa in the result. Default is False, as
such a set provides no topological information.
.. versionadded:: 0.6.3
include_tips : bool, optional
Whether to include subsets with only one taxon in the result. Default is
False, as such sets provide no topological information.
.. versionadded:: 0.6.3
map_to_length : bool, optional
If True, return a mapping of subsets to their branch lengths. Missing
branch lengths will be replaced with 0. Default is False.
.. versionadded:: 0.6.3
Returns
-------
frozenset of frozenset of str, or
All subsets of taxa defined by nodes descending from self. Returned if
`map_to_length` is False.
dict of {frozenset of str: float}
Mapping of all subsets of taxa to their branch lengths. Returned if
`map_to_length` is True.
See Also
--------
subset
compare_subsets
biparts
Notes
-----
The returned value represents the tree as a set of nested sets, each of which
representing a clade in the tree. It is useful for assessing topological
patterns of a tree.
The returned value itself and each of its components (frozensets) are unordered
and hashable, making it efficient for lookup and comparison. For example, one
can check whether a group of taxa form a clade in the tree, regardless of its
internal structure.
This method can be applied to both rooted and unrooted trees. However, the
underlying assumption is that the direction of descendance is from the current
node to the tips below. That is, the root of the tree, even if not explicitly
defined, should be at or above the current node. This should be considered when
applying this method to an unrooted tree. If such an assumption is not present,
one should consider using :meth:`biparts` instead.
This method operates on the subtree below the current node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
>>> print(tree.ascii_art())
/-a
/e-------|
| | /-b
| \d-------|
-i-------| \-c
|
| /-f
\h-------|
\-g
>>> subsets = tree.subsets()
>>> for s in sorted(subsets, key=sorted):
... print(sorted(s))
['a', 'b', 'c']
['b', 'c']
['f', 'g']
>>> {'a', 'b', 'c'} in subsets
True
>>> {'a', 'b'} in subsets
False
"""
if not (getall := within is None):
if not isinstance(within, (set, frozenset, dict)):
within = frozenset(within)
# initiate result
subsets = []
subsets_append = subsets.append
if map_to_length:
lengths = []
lengths_append = lengths.append
# If the current subset has been encountered during postorder traversal, it
# must be the immediately previous subset. This happens when a single-child
# node is encountered after refining taxa to the "within" set.
last = None
for node in self.postorder(include_self=True):
# tip: create a one-taxon set
if not node.children:
if getall or node.name in within:
subset = frozenset([node.name])
else:
subset = frozenset()
# internal node: merge sets of children
else:
subset = frozenset()
for child in node.children:
subset |= child._subset
del child._subset
# add to result
if subset and (include_tips or len(subset) > 1):
if subset != last:
subsets_append(last := subset)
if map_to_length:
lengths_append(node.length or 0.0)
elif map_to_length:
lengths[-1] += node.length or 0.0
node._subset = subset
# final clean up
del self._subset
# remove the full set
if not include_full:
subsets = subsets[:-1]
if map_to_length:
lengths = lengths[:-1]
if map_to_length:
return dict(zip(subsets, lengths))
else:
return frozenset(subsets)
def bipart(self):
r"""Return a bipartition of the tree at the current branch.
.. versionadded:: 0.6.3
A bipartition, partition or split of a tree is the division of all taxa (tip
names) into two complementary subsets, separated at a given branch. In this
context, it is the branch connecting self and its parent. One subset consists
of all taxa descending from self and the other consists of all remaining taxa.
The smaller subset of the two is returned.
Returns
-------
frozenset of str
The set of names at the tips on the smaller side of the current branch.
See Also
--------
subset
biparts
Notes
-----
A bipartition describes the topological placement of a branch regardless of
other branches and the root of the tree.
The returned value is a set of tip names on the smaller side of the branch, as
determined by the number of tips. If a tie is observed, the tip names on both
sides are sorted lexicographically and the first set is returned.
The returned value (a frozenset) is unordered and hashable, making it efficient
for lookup and comparison. For example, one can check whether two branches in
two unrooted trees with the same taxa agree with each other.
Rerooting a tree will not change the bipartition of a branch. However, one
should be cautious because this method applies to a node, and rerooting may
change the branch above the current node.
Applying this method to a root node will return an empty set. Applying this
method to a tip will return a single-element set containing the tip name. These
two situations produce outputs independent of the topology of the tree.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["(((a,(b,c)X)Y,d)Z,(e,f),g);"])
>>> print(tree.ascii_art())
/-a
/Y-------|
| | /-b
/Z-------| \X-------|
| | \-c
| |
| \-d
---------|
| /-e
|---------|
| \-f
|
\-g
Clade has less than half taxa, return them.
>>> sorted(tree.find('X').bipart())
['b', 'c']
Clade has more than half taxa, return remaining taxa.
>>> sorted(tree.find('Z').bipart())
['e', 'f', 'g']
Clade has exactly half taxa, return the lexicographically smaller side.
>>> sorted(tree.find('Y').bipart())
['a', 'b', 'c']
A second tree with the same topology but different root position.
>>> tree2 = TreeNode.read(["((c,b)X2,a,(((f,e),g)Y2,d));"])
>>> print(tree2.ascii_art())
/-c
/X2------|
| \-b
|
|--a
---------|
| /-f
| /--------|
| /Y2------| \-e
| | |
\--------| \-g
|
\-d
Although the tree has been re-positioned, the corresponding branches have the
same bipartitions, whereas non-corresponding branches don't.
>>> tree.find('X').bipart() == tree2.find('X2').bipart()
True
>>> tree.find('Y').bipart() == tree2.find('Y2').bipart()
False
"""
bipart = self.subset(include_self=True)
full = self.root().subset(include_self=True)
if (size := len(bipart)) > (th := len(full) * 0.5):
bipart = full - bipart
elif size == th:
# sort the elements of each part by lexicographic order, then order the two
# parts and pick the smaller part
bipart, _ = sorted([bipart, full - bipart], key=sorted)
return bipart
def biparts(self, within=None, include_tips=False, map_to_length=False, full=None):
r"""Return all bipartitions within the tree under self.
.. versionadded:: 0.6.3
Parameters
----------
within : iterable of str, optional
A custom set of taxa to refine the result. Only taxa within it will be
considered. If None (default), all taxa in the tree will be considered.
include_tips : bool, optional
Whether to include bipartitions with only one taxon at either side.
Default is False, as such bipartitions provide no topological
information.
map_to_length : bool, optional
If True, return a mapping of subsets to their branch lengths. Missing
branch lengths will be replaced with 0. Default is False.
full : frozenset of str, optional
Pre-computed full set of taxa of the current tree. Providing this parameter
can save one tree traversal from computing.
Returns
-------
frozenset of frozenset of str, or
All sets of names at the tips on the smaller side of each branch. Returned
if `map_to_length` is False.
dict of {frozenset of str: float}
Mapping of All sets of smaller-side tip names to branch lengths. Returned
if `map_to_length` is True.
See Also
--------
bipart
subsets
Notes
-----
The returned value represents the tree as a set of nested sets, each of which
representing the position of a branch in the tree. It is useful for assessing
topological patterns of a tree.
The returned value itself and each of its components (frozensets) are unordered
and hashable, making it efficient for lookup and comparison. For example, one
can check whether the topologies of two trees are consistent, regardless of
their root positions.
This method can be applied to both rooted and unrooted trees. However, a rooted
tree implies the direction of descendance, which may violate the purpose of
bipartitioning a tree on arbitrary branches. If this is a concern, one should
consider using :meth:`subsets` instead.
This method operates on the subtree below the current node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,(b,c)),(d,e),f);"])
>>> print(tree.ascii_art())
/-a
/--------|
| | /-b
| \--------|
| \-c
---------|
| /-d
|---------|
| \-e
|
\-f
Return all bipartitions of an unrooted tree.
>>> biparts = tree.biparts()
>>> for s in sorted(biparts, key=sorted):
... print(sorted(s))
['a', 'b', 'c']
['b', 'c']
['d', 'e']
A second tree with the same topology but different root position.
>>> tree2 = TreeNode.read(["(a,((b,c),((d,e),f)));"])
>>> print(tree2.ascii_art())
/-a
|
---------| /-b
| /--------|
| | \-c
\--------|
| /-d
| /--------|
\--------| \-e
|
\-f
Although the tree has been re-positioned, the bipartitions remain the same.
>>> biparts == tree2.biparts()
True
"""
# identify full set (universe)
if full is None:
full = self.subset()
if not (getall := within is None):
if not isinstance(within, (set, frozenset)):
within = frozenset(within)
full &= within
th = len(full) * 0.5
# initiate result
if map_to_length:
biparts = {}
biparts_get = biparts.get
else:
biparts = []
biparts_append = biparts.append
for node in self.postorder(include_self=False):
# tip: create a one-taxon set
if not node.children:
if getall or node.name in full:
bipart = frozenset([node.name])
else:
bipart = frozenset()
flip = False
# internal node: merge sets of children
# `_bipart` of a node is either the taxa below it, or, if the former has
# reached half of the full set, it "flips" to the other half that is above
# the node, and `_flip` will be set to True.
# Taxa below should be united, whereas taxa above should be intersected.
# If at least one child is already flipped, the current node should also be
# flipped. Otherwise, the set will be compared to the half to determine the
# flipping status.
else:
aboves, belows = [], []
for child in node.children:
if child._flip:
aboves.append(child._bipart)
else:
belows.append(child._bipart)
del child._bipart
del child._flip
if aboves:
bipart = frozenset.intersection(*aboves).difference(*belows)
flip = True
else:
bipart = frozenset().union(*belows)
flip = False
if (size := len(bipart)) >= th:
other = full - bipart
if size > th or sorted(bipart) > sorted(other):
bipart = other
flip = True
# add to result
if bipart and (include_tips or len(bipart) > 1):
if map_to_length:
biparts[bipart] = biparts_get(bipart, 0.0) + (node.length or 0.0)
else:
biparts_append(bipart)
node._bipart = bipart
node._flip = flip
# final clean up
for child in self.children:
del child._bipart
del child._flip
return biparts if map_to_length else frozenset(biparts)
def _extract_support(self):
"""Extract the support value from a node label, if available.
Returns
-------
tuple of
int, float or None
The support value extracted from the node label.
str or None
The node label with the support value stripped.
"""
support, label = None, None
if self.name:
# separate support value from node name by the first colon
left, _, right = self.name.partition(":")
try:
support = int(left)
except ValueError:
try:
support = float(left)
except ValueError:
pass
# strip support value from node name
label = right or None if support is not None else self.name
return support, label
def _node_label(self):
"""Generate a node label.
The label will be in the format of "support:name" if both exist,
or "support" or "name" if either exists.
Returns
-------
str
Generated node label.
"""
lblst = []
if self.support is not None: # prevents support of NoneType
lblst.append(str(self.support))
if self.name: # prevents name of NoneType
lblst.append(self.name)
return ":".join(lblst)
def assign_supports(self):
"""Extract support values from internal node labels of a tree.
Notes
-----
A "support value" measures the confidence or frequency of the incoming
branch (the branch from parent to self) of an internal node in a tree.
Roots and tips do not have support values. To extract a support value
from a node label, this method reads from left and stops at the first
":" (if any), and attempts to convert it to a number.
For examples: "(a,b)1.0", "(a,b)1.0:2.5", and "(a,b)'1.0:species_A'".
In these cases the support values are all 1.0.
For examples: "(a,b):1.0" and "(a,b)species_A". In these cases there
are no support values.
If a support value is successfully extracted, it will be stripped from
the node label and assigned to the `support` property.
.. note::
Mathematically, "support value" is a property of a branch, not a
node, although they are usually attached to nodes in tree file
formats [1]_.
References
----------
.. [1] Czech, Lucas, Jaime Huerta-Cepas, and Alexandros Stamatakis. "A
Critical Review on the Use of Support Values in Tree Viewers and
Bioinformatics Toolkits." Molecular biology and evolution 34.6
(2017): 1535-1542.
Examples
--------
>>> from skbio import TreeNode
>>> newick = "((a,b)95,(c,d):1.1,(e,f)'80:speciesA':1.0);"
>>> tree = TreeNode.read([newick])
>>> tree.assign_supports()
>>> tree.lca(['a', 'b']).support
95
>>> tree.lca(['c', 'd']).support is None
True
>>> tree.lca(['e', 'f']).support
80
>>> tree.lca(['e', 'f']).name
'speciesA'
"""
for node in self.traverse():
if node.is_root() or node.is_tip():
node.support = None
else:
node.support, node.name = node._extract_support()
def is_bifurcating(self, strict=False, include_self=True):
r"""Check if the tree is bifurcating.
.. versionadded:: 0.6.3
Parameters
----------
strict : bool, optional
Whether to consider single-child nodes as violations of bifurcation.
Default is False.
include_self : bool, optional
If False, will not check the current node. This is useful for checking an
unrooted tree, whose root node may have three children. Default is True.
See Also
--------
bifurcate
prune
Notes
-----
In a bifurcating tree (a.k.a. binary tree), every node has at most two
children. The property of bifurcation is necessary for a wide range of tree
analyses. In contrast, if a node has three or more children, it is considered
as multifurcating, or polytomy in phylogenetics.
In strict mode, every internal node (including root) has to have exactly two
children in order for the tree to be bifurcating. Single-child nodes are
considered as violations. These nodes can be collapsed by :meth:`prune`.
This method operates on the subtree below the current node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b,c),(d,e))root;"])
>>> tree.is_bifurcating()
False
"""
test = ne if strict else gt
for node in self.traverse(include_self=include_self):
if (children := node.children) and test(len(children), 2):
return False
return True
def observed_node_counts(self, tip_counts):
"""Return counts of node observations from counts of tip observations.
Parameters
----------
tip_counts : dict of ints
Counts of observations of tips. Keys correspond to tip names in
``self``, and counts are unsigned ints.
Returns
-------
dict
Counts of observations of nodes. Keys correspond to node names
(internal nodes or tips), and counts are unsigned ints.
Raises
------
ValueError
If a count less than one is observed.
MissingNodeError
If a count is provided for a tip not in the tree, or for an
internal node.
"""
result = defaultdict(int)
for tip_name, count in tip_counts.items():
if count < 1:
raise ValueError("All tip counts must be greater than zero.")
else:
t = self.find(tip_name)
if not t.is_tip():
raise MissingNodeError(
"Counts can only be for tips in the tree. %s is an "
"internal node." % t.name
)
result[t] += count
for internal_node in t.ancestors():
result[internal_node] += count
return result
@aliased("accumulate_to_ancestor", "0.6.3")
def depth(
self, ancestor=None, include_root=False, use_length=True, missing_as_zero=False
):
r"""Calculate the depth of the current node.
The **depth** of a node is the sum of branch lengths from it to the root of the
tree.
Parameters
----------
ancestor : TreeNode, optional
An ancestral node of self. If provided, the distance from self to this node
instead of the root node will be calculated.
.. versionchanged:: 0.6.3
Becomes optional.
include_root : bool, optional
If True, the distance will include the length of the root node, or the
given ancestral node if ``ancestor`` is provided. Default is False.
.. versionadded:: 0.6.3
use_length : bool, optional
Whether to return the sum of branch lengths (True, default) or the number
of branches (False) from self to root.
.. versionadded:: 0.6.3
missing_as_zero : bool, optional
When a node without an associated branch length is encountered, raise an
error (False, default) or use 0 (True). Applicable when ``use_length`` is
True.
.. versionadded:: 0.6.3
Returns
-------
float
The depth of self.
Raises
------
NoParentError
If the given ancestral node is not an ancestor of self.
NoLengthError
If nodes without branch length are encountered, but ``missing_as_zero`` is
False.
See Also
--------
height
distance
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> tree.find('a').depth()
4.0
>>> tree.find('a').depth(tree.find('c'))
1.0
"""
curr = self
path = [curr]
path_append = path.append
if ancestor is None:
while (curr := curr.parent) is not None:
path_append(curr)
else:
try:
while curr is not ancestor:
path_append(curr := curr.parent)
except AttributeError:
raise NoParentError("Provided ancestor is not ancestral to self.")
if not include_root:
path = path[:-1]
if not use_length:
return float(len(path))
if missing_as_zero:
return sum(x.length or 0.0 for x in path)
try:
return sum(x.length for x in path)
except TypeError:
raise NoLengthError("Nodes without branch length are encountered.")
def height(self, include_self=False, use_length=True, missing_as_zero=False):
r"""Calculate the height of the current node.
.. versionadded:: 0.6.3
The **height** of a node is the maximum sum of branch lengths from it to any of
its descending tips.
Parameters
----------
include_self : bool, optional
If True, the height will include the length of the current node. Default
is False.
use_length : bool, optional
Whether to return the sum of branch lengths (True, default) or the number
of branches (False) from self to the most distant tip.
missing_as_zero : bool, optional
When a node without an associated branch length is encountered, raise an
error (False, default) or use 0 (True). Applicable when ``use_length`` is
True.
Returns
-------
float
The height of self.
TreeNode
The most distant descending tip from self.
Raises
------
NoLengthError
If nodes without branch length are encountered, but ``missing_as_zero`` is
False.
See Also
--------
depth
distance
Notes
-----
When a tie is observed among multiple tips, only one of them will be returned.
The choice is stable. This often happens when ``use_length=False``.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> dist, tip = tree.find('c').height()
>>> dist
2.0
>>> tip.name
'b'
"""
errmsg = "Nodes without branch length are encountered."
maxkey = itemgetter(0)
for node in self.postorder(include_self=True):
if not node.children:
node._height = (0.0, node)
else:
heights = []
for child in node.children:
H, tip = child._height
del child._height
if not use_length:
H += 1.0
elif (L := child.length) is not None:
H += L
elif not missing_as_zero:
raise NoLengthError(errmsg)
heights.append((H, tip))
node._height = max(heights, key=maxkey)
H, tip = self._height
del self._height
if include_self:
if not use_length:
H += 1.0
elif (L := self.length) is not None:
H += L
elif not missing_as_zero:
raise NoLengthError(errmsg)
return H, tip
@aliased("descending_branch_length", "0.6.3")
@params_aliased([("nodes", "tip_subset", "0.6.3", True)])
def total_length(self, nodes=None, include_stem=False, include_self=False):
r"""Calculate the total length of branches descending from self.
Parameters
----------
nodes : iterable of TreeNode or str, optional
Instances or names of a subset of descending nodes to refine the result.
If provided, the total length of branches connecting these nodes will be
returned. Otherwise, the total branch length of the tree will be returned.
.. versionchanged:: 0.6.3
Can accept TreeNode instances in addition to names.
Can accept internal nodes in addition to tips.
include_stem : bool, optional
Whether to include the path from the lowest common ancestor (LCA) of the
subset of nodes to self. Applicable when ``nodes`` is specified. Default is
False.
.. versionadded:: 0.6.3
include_self : bool, optional
Whether to include the length of self. When ``nodes`` is provided and
``include_stem`` is False, it is instead the LCA of the subset of nodes.
Default is False.
.. versionadded:: 0.6.3
Returns
-------
float
The total descending branch length.
Raises
------
MissingNodeError
If some nodes are not found in the tree or are not descendants of self.
Notes
-----
The metric can be considered as the total amount of evolutionary change across
all lineages in the tree.
This metric is closely related to phylogenetic diversity (PD) in community
ecology. When ``include_stem`` is True, it is equivalent to Faith's PD (see
:func:`~skbio.diversity.alpha.faith_pd`). However, this method is optimized
to handle a single set of nodes, whereas the referred function is optimized
to simultaneously calculate for multiple taxon sets (i.e., communities).
Missing branch lengths will be replaced with 0.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read([
... "(((A:.1,B:1.2)C:.6,(D:.9,E:.6)F:.9)G:2.4,(H:.4,I:.5)J:1.3)K;"])
>>> print(tree.ascii_art())
/-A
/C-------|
| \-B
/G-------|
| | /-D
| \F-------|
-K-------| \-E
|
| /-H
\J-------|
\-I
Calculate the total branch length of the tree.
>>> L = tree.total_length()
>>> print(round(L, 1))
8.9
Calculate the total branch length connecting three taxa.
>>> L = tree.total_length(['A', 'E', 'H'])
>>> print(round(L, 1))
6.3
"""
## shortcut for the entire subtree
if not nodes:
return sum(
n.length or 0.0 for n in self.postorder(include_self=include_self)
)
nodes = [self.find(x) for x in nodes]
# Identify all nodes that need to be visited during the navigation from all
# tips to the root. This algorithm resembles that of `lca`. However, we will
# separate the visited nodes of the first path and all other paths. Also, we
# don't need to record the previous node. All we need is whether each node is
# unique in all paths.
first_path = []
first_path_append = first_path.append
curr = next(nodes := iter(nodes))
while curr is not None:
first_path_append(curr)
curr._unique = True
curr = curr.parent
other_paths = []
other_paths_append = other_paths.append
for curr in nodes:
while not hasattr(curr, "_unique"):
other_paths_append(curr)
curr._unique = True
curr = curr.parent
curr._unique = False
# Iterate the first path in reverse order (from root to starting node) and find
# the indices of self and LCA.
i_self, i_lca = None, 0
for i in reversed(range(len(first_path))):
if (node := first_path[i]) is self:
i_self = i
if node._unique is False:
i_lca = i
break
# clear temporary attribute
for node in first_path:
del node._unique
for node in other_paths:
del node._unique
# If all nodes are descendants of self, LCA must also be self or one of its
# descendants, and self must be identified when iterating the first path.
if i_self is None:
raise MissingNodeError("Some nodes are not descendants of self.")
# Identify the range of nodes to be included in calculation depending on the
# parameter setting
stop = (i_self if include_stem else i_lca) + include_self
# sum up branch lengths
return (
sum(n.length or 0.0 for n in chain(first_path[:stop], other_paths)) or 0.0
)
def distance(self, other, use_length=True, missing_as_zero=False):
r"""Calculate the distance between self and another node.
Parameters
----------
other : TreeNode
The node to compute a distance to.
use_length : bool, optional
Whether to return the sum of branch lengths (True, default) or the number
of branches (False) connecting self and other.
.. versionadded:: 0.6.3
missing_as_zero : bool, optional
When a node without an associated branch length is encountered, raise an
error (False, default) or use 0 (True). Applicable when ``use_length`` is
True.
.. versionadded:: 0.6.3
Returns
-------
float
The distance between two nodes.
Raises
------
NoLengthError
If nodes without branch length are encountered, but ``missing_as_zero`` is
False.
See Also
--------
path
cophenet
compare_cophenet
maxdist
Notes
-----
The distance between two nodes is the length of the path (branches) connecting
them. It is also known as the patristic distance [1]_.
When ``use_length=False``, it is the number of branches in the path.
This method can be used to compute the distance between two given nodes.
However, it is not optimized for computing all pairwise tip distances. Use
:meth:`cophenet` instead for that purpose.
References
----------
.. [1] Fourment, M., & Gibbs, M. J. (2006). PATRISTIC: a program for
calculating patristic distances and graphically comparing the components of
genetic change. BMC evolutionary biology, 6, 1-5.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> tip_a = tree.find('a')
>>> tip_d = tree.find('d')
>>> tip_a.distance(tip_d)
14.0
>>> tip_a.distance(tip_d, use_length=False)
4.0
"""
_, self_path, other_path = self._path(other)
if not use_length:
return float(len(self_path) + len(other_path))
if missing_as_zero:
return sum(x.length or 0.0 for x in chain(self_path, other_path))
try:
return sum(x.length for x in chain(self_path, other_path))
except TypeError:
raise NoLengthError("Nodes without branch length are encountered.")
@aliased("get_max_distance", "0.6.3")
def maxdist(self, use_length=True):
r"""Return the maximum distance between any pair of tips in the tree.
This measure is also referred to as the **diameter** of a tree.
Parameters
----------
use_length : bool, optional
Whether to return the sum of branch lengths (True, default) or the number
of branches (False) connecting each pair of tips.
.. versionadded:: 0.6.3
Returns
-------
float
The distance between the two most distant tips in the tree.
tuple of (TreeNode, TreeNode)
The two most distant tips in the tree.
See Also
--------
distance
cophenet
scipy.cluster.hierarchy.maxdists
Notes
-----
This method identifies the two furthest apart tips in a tree, as measured by
the sum of branch lengths (i.e., patristic distance) connecting them. Missing
branch lengths will be replaced with 0. When ``use_length=False``, the number
of branches connecting two tips will be considered instead.
When a tie is observed among more than one pair of tips, only one pair will be
returned. The choice is stable. This often happens when ``use_length=False``.
This method operates on the subtree below the current node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
>>> dist, tips = tree.maxdist()
>>> dist
16.0
>>> [n.name for n in tips]
['e', 'b']
"""
# The code performs a post-order traversal and appends two pieces of
# information to each node:
# a: The maximum distance from the node to any descending tip.
# b: The maximum distance between any two descending tips.
# The information is updated at each internal node:
# a becomes the maximum of any child's (a + length).
# b becomes the larger of the maximum of any b and the sum of the two
# largest (a + length). The latter represents the new plausible maximum
# distance that crosses the node.
maxkey = itemgetter(0)
for node in self.postorder():
# initialize maximum at tip: (up_dist, up_tip, in_dist, in_tip1, in_tip2)
if not node.children:
node._maxdist = (0, node, 0, None, None)
# internal node: update the maximum
elif len(children := node.children) > 1:
ups, ins = [], []
for child in children:
up_dist, up_tip, in_dist, in_tip1, in_tip2 = child._maxdist
del child._maxdist
ups.append(
(up_dist + (child.length or 0.0 if use_length else 1), up_tip)
)
ins.append((in_dist, in_tip1, in_tip2))
# compare the previous maximum with the distance between the two
# longest descendants from any two child clades
ups.sort(key=maxkey, reverse=True)
(up_dist, up_tip), (up_dist2, up_tip2) = ups[:2]
in_dist, in_tip1, in_tip2 = max(ins, key=maxkey)
if (x_dist := up_dist + up_dist2) > in_dist:
node._maxdist = (up_dist, up_tip, x_dist, up_tip, up_tip2)
else:
node._maxdist = (up_dist, up_tip, in_dist, in_tip1, in_tip2)
# internal node with only one child: inherit the maximum
else:
(child,) = children
up_dist, up_tip, in_dist, in_tip1, in_tip2 = child._maxdist
del child._maxdist
up_dist += child.length or 0.0 if use_length else 1
node._maxdist = (up_dist, up_tip, in_dist, in_tip1, in_tip2)
max_dist, max_tip1, max_tip2 = self._maxdist[2:]
del self._maxdist
if not use_length:
max_dist = float(max_dist)
return max_dist, (max_tip1, max_tip2)
@aliased("tip_tip_distances", "0.6.3")
def cophenet(self, endpoints=None, use_length=True):
r"""Return a distance matrix between each pair of tips in the tree.
Parameters
----------
endpoints : list of TreeNode or str, optional
Tips or their names (i.e., taxa) to be included in the calculation. The
returned distance matrix will use this order. If not specified, all tips
will be included.
use_length : bool, optional
Whether to return the sum of branch lengths (True, default) or the number
of branches (False) connecting each pair of tips.
.. versionadded:: 0.6.3
Returns
-------
DistanceMatrix
The cophenetic distance matrix.
Raises
------
MissingNodeError
If any of the specified ``endpoints`` are not found in the tree.
DuplicateNodeError
If the specified ``endpoints`` have duplicates.
ValueError
If any of the specified ``endpoints`` are not tips.
See Also
--------
distance
compare_cophenet
scipy.cluster.hierarchy.cophenet
Notes
-----
The cophenetic distance [1]_ between a pair of tips is essentially the sum of
branch lengths connecting them (i.e., patristic distance [2]_, see
:meth:`distance`). It measures the divergence between two taxa in evolution.
This method calculates the cophenetic distances between all pairs of tips in a
tree and returns a distance matrix. Missing branch lengths will be replaced with
0's. If ``use_length`` is False, the method instead calculates the number of
branches connecting each pair of tips. This method operates on the subtree below
the current node.
In hierarchical clustering, the cophenetic distance is commonly used to measure
the dissimilarity between two objects before they are joined in a dendrogram.
In that context, it is also defined as the height of the lowest common ancestor
(LCA) from the surface of the tree. However, phylogenetic trees are usually
non-ultrametric (e.g., :func:`~skbio.tree.nj`), and the two child clades of a
node may have different heights. Therefore, the cophenetic distance is instead
defined as the patristic distance between the two tips. For ultrametric trees
(e.g., :func:`~skbio.tree.upgma`), this method's result should match SciPy's
:func:`~scipy.cluster.hierarchy.cophenet`.
One should also distinguish cophenetic distance from a related metric:
cophenetic value [1]_, which is the patristic distance between the LCA of two
tips and the root of the tree. It quantifies the shared evolutionary history
between two taxa, as in contrast to the cophenetic distance.
References
----------
.. [1] Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by
objective methods. Taxon, 33-40.
.. [2] Fourment, M., & Gibbs, M. J. (2006). PATRISTIC: a program for
calculating patristic distances and graphically comparing the components of
genetic change. BMC evolutionary biology, 6, 1-5.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
Calculate cophenetic distances as the sum of branch lengths (i.e., patristic
distance).
>>> mat = tree.cophenet()
>>> print(mat)
4x4 distance matrix
IDs:
'a', 'b', 'd', 'e'
Data:
[[ 0. 3. 14. 15.]
[ 3. 0. 15. 16.]
[ 14. 15. 0. 9.]
[ 15. 16. 9. 0.]]
Calculate cophenetic distances as the number of branches.
>>> mat = tree.cophenet(use_length=False)
>>> print(mat)
4x4 distance matrix
IDs:
'a', 'b', 'd', 'e'
Data:
[[ 0. 2. 4. 4.]
[ 2. 0. 4. 4.]
[ 4. 4. 0. 2.]
[ 4. 4. 2. 0.]]
"""
taxa = []
taxa_append = taxa.append
# Include all tips.
# `tips()` performs a postorder traversal, which guarantees the continuity
# of tip indices within each node. A `_range` attribute is assigned to each
# node, representing the range of tip indices.
if not endpoints:
for i, tip in enumerate(self.tips()):
tip._range = (i, i + 1)
taxa_append(tip.name)
num_tips = len(taxa)
# A tree could have duplicate taxa so this check is desired.
if len(set(taxa)) < num_tips:
raise DuplicateNodeError(f"Tree contains duplicate tip names.")
# Include only selected tips in order.
# Only selected tips are indexed, but the continuity of tip indices (see above)
# is still ensured.
else:
idxmap = {}
for i, tip in enumerate(endpoints):
# The `find` call will raise if there are duplicate taxa in the tree.
tip = self.find(tip)
if tip.children:
raise ValueError(f"Node with name '{tip.name}' is not a tip.")
taxa_append(name := tip.name)
if name in idxmap:
raise DuplicateNodeError(f"Duplicate tip name '{name}' found.")
idxmap[name] = i
num_tips = len(taxa)
# Create an index array to store the order of indices of original tips.
order = np.empty(num_tips, dtype=int)
i = 0
for tip in self.tips():
if (name := tip.name) in idxmap:
tip._range = (i, i + 1)
order[idxmap[name]] = i
i += 1
# Initiate the resulting distance matrix.
result = np.zeros((num_tips, num_tips))
# An intermediate vector storing the accumulative distance from each tip to
# the current node.
depths = np.zeros(num_tips)
# Traverse internal nodes.
# This method involves two postorder traversals. Theoretically, one can perform
# only one traversal, and store tip and internal node references into two lists
# for use. However, this method isn't more efficient according to benchmarks.
for node in self.postorder():
if not node.children:
continue
# Record tip ranges of each child clade, and increment the tip depths.
ranges = []
for child in node.children:
if not hasattr(child, "_range"):
continue
ranges.append(range_ := slice(*child._range))
depths[range_] += (child.length or 0.0) if use_length else 1
del child._range
# Calculate tip-to-tip distances between each pair of child clades, and
# save the results to both upper and lower triangles of the resulting
# distance matrix.
# This is significantly faster than saving to only one triangle and doing
# doing `result += result.T` after the iteration.
for range1, range2 in combinations(ranges, 2):
dists = depths[range1][:, np.newaxis] + depths[range2]
result[range1, range2] = dists
result[range2, range1] = dists.T
# Due to the continuity of tip indices (see above), it is guaranteed that
# the first child is the smallest and the last child is the largest.
if ranges:
node._range = (ranges[0].start, ranges[-1].stop)
if hasattr(self, "_range"):
del self._range
# Reorder the distance matrix to reflect the given order of endpoints.
if endpoints:
result = result[order][:, order]
# Skip validation as all items to validate are guaranteed.
return DistanceMatrix(result, taxa, validate=False)
@params_aliased([("shared_only", "exclude_absent_taxa", "0.6.3", True)])
def compare_subsets(self, other, shared_only=False, proportion=True):
r"""Calculate the difference of subsets between two trees.
Parameters
----------
other : TreeNode
The other tree to compare with.
shared_only : bool, optional
Only consider taxa shared with the other tree. Default is False.
proportion : bool, optional
Whether to return count (False) or proportion (True, default) of different
subsets.
.. versionadded:: 0.6.3
Returns
-------
float
The count or proportion of subsets that differ between the trees.
See Also
--------
subsets
compare_rfd
compare_biparts
Notes
-----
This metric is equivalent to the Robinson-Foulds distance on rooted trees.
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a,b),(c,d));"])
>>> tree2 = TreeNode.read(["(((a,b),c),d);"])
>>> tree1.compare_subsets(tree2)
0.5
"""
return _topo_dists((self, other), True, shared_only, proportion)[0]
def compare_biparts(self, other, proportion=True):
r"""Calculate the difference of bipartitions between two trees.
.. versionadded:: 0.6.3
Parameters
----------
other : TreeNode
The other tree to compare with.
proportion : bool, optional
Whether to return count (False) or proportion (True, default) of different
bipartitions.
Returns
-------
float
The count or proportion of bipartitions that differ between the trees.
See Also
--------
biparts
compare_rfd
compare_subsets
Notes
-----
This metric is equivalent to the Robinson-Foulds distance on unrooted trees.
Only taxa shared between the two trees are considered.
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a,b),(c,d));"])
>>> tree2 = TreeNode.read(["(((a,b),c),d);"])
>>> tree1.compare_biparts(tree2)
0.0
"""
return _topo_dists((self, other), False, True, proportion)[0]
def compare_rfd(self, other, proportion=False, rooted=None):
r"""Calculate Robinson-Foulds distance between two trees.
Parameters
----------
other : TreeNode
The other tree to compare with.
proportion : bool, optional
Whether to return the RF distance as count (False, default) or proportion
(True).
rooted : bool, optional
Whether to consider the trees as rooted or unrooted. If None (default),
this will be determined based on whether self is rooted. However, one
can override it by explicitly specifying True (rooted) or False (unrooted).
.. versionadded:: 0.6.3
Returns
-------
float
The Robinson-Foulds distance as count or proportion between the trees.
.. versionchanged:: 0.6.3
When the tree is unrooted, the calculation is based on bipartitions instead
of subsets.
Notes
-----
The Robinson-Foulds (RF) distance, a.k.a. symmetric difference, is a measure of
topological dissimilarity between two trees. It was originally described in
[1]_. It is calculated as the number of bipartitions that differ between two
unrooted trees. It is equivalent to :meth:`compare_biparts`.
.. math::
\text{RF}(T_1, T_2) = |S_1 \triangle S_2| = |(S_1 \setminus S_2) \cup (S_2
\setminus S_1)|
where :math:`S_1` and :math:`S_2` are the sets of bipartitions of trees
:math:`T_1` and :math:`T_2`, respectively.
For rooted trees, the RF distance is calculated as the number of unshared
clades (subsets of taxa) [2]_. It is equivalent to :meth:`compare_subsets`.
This method automatically determines whether to use the unrooted or rooted RF
distance based on whether self is rooted or not. Specifically, if self has two
children (see :meth:`details <unroot>`), or has a parent (i.e., it is a subtree
within a larger tree), it will be considered as rooted. Otherwise it will be
considered as unrooted.
One can override this automatic decision by setting the ``rooted`` parameter,
which is recommended for explicity.
By specifying ``proportion=True``, a unit distance will be returned, ranging
from 0 (identical) to 1 (completely different).
This method operates on the subtrees below the given nodes. Only taxa shared
between the two trees are considered. Taxa unique to either tree are excluded
from the calculation.
See Also
--------
compare_wrfd
compare_subsets
compare_biparts
skbio.tree.rf_dists
References
----------
.. [1] Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic
trees. Mathematical biosciences, 53(1-2), 131-147.
.. [2] Bogdanowicz, D., & Giaro, K. (2013). On a matching distance between
rooted phylogenetic trees. International Journal of Applied Mathematics
and Computer Science, 23(3), 669-684.
Examples
--------
Calculate the RF distance between two unrooted trees with the same taxa but
different topologies. Each tree has three non-trivial bipartitions, as defined
by individual internal branches, among which one pair (abc|def) is shared
whereas the other two of each tree are unique (ab|cdef, abcf|de, bc|adef,
abcd|ef). Therefore the RF distance is 2 + 2 = 4.
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a,b),c,((d,e),f));"])
>>> print(tree1.ascii_art())
/-a
/--------|
| \-b
|
---------|--c
|
| /-d
| /--------|
\--------| \-e
|
\-f
>>> tree2 = TreeNode.read(["((a,(b,c)),d,(e,f));"])
>>> print(tree2.ascii_art())
/-a
/--------|
| | /-b
| \--------|
| \-c
---------|
|--d
|
| /-e
\--------|
\-f
>>> tree1.compare_rfd(tree2)
4.0
"""
if rooted is None:
rooted = self.parent is not None or len(self.children) == 2
return _topo_dists((self, other), rooted, proportion=proportion)[0]
def compare_wrfd(self, other, metric="cityblock", rooted=None, include_tips=True):
r"""Calculate weighted Robinson-Foulds distance or variants between two trees.
.. versionadded:: 0.6.3
Parameters
----------
other : TreeNode
The other tree to compare with.
metric : str or callable, optional
The distance metric to use. Can be a preset, a distance function name under
:mod:`scipy.spatial.distance`, or a custom function that takes two vectors
and returns a number. Some notable options are:
- "cityblock" (default): City block (Manhattan) distance. The result
matches the original weighted Robinson-Foulds distance [1]_.
- "euclidean": Euclidean distance. The result matches the
Kuhner-Felsenstein (KF) distance, a.k.a. branch score (Bs) distance [2]_.
- "correlation": 1 - Pearson's correlation coefficient (:math:`r`). Ranges
between 0 (maximum similarity) and 2 (maximum dissimilarity). Independent
of tree scale.
- "unitcorr": :math:`(1 - r) / 2`, which returns a unit correlation
distance (range: [0, 1]).
rooted : bool, optional
Whether to consider the trees as rooted or unrooted. If None (default),
this will be determined based on whether self is rooted. However, one
can override it by explicitly setting True (rooted) or False (unrooted).
See :meth:`compare_rfd` for details.
include_tips : bool, optional
Whether to include single-taxon biparitions (terminal branches) in the
calculation. Default is True, such that all branches in the trees are
considered. Set this as False if terminal branch lengths are absent or
irrelevant.
Returns
-------
float
The weighted Robinson-Foulds distance or variants between the trees.
Notes
-----
The Robinson-Foulds (RF) distance may be weighted by the branch lengths of
bipartitions to account for evolutionary distances in addition to branching
patterns.
The default behavior of this method calculates the original weighted RF (wRF)
distance [1]_, which is the sum of differences of branch lengths of matching
bipartitions. Bipartitions unique to one tree are given a length of 0 in the
other tree during calculation.
.. math::
\text{wRF}(T_1, T_2) = \sum_{s \in S_1 \cup S_2} |l_1(s) - l_2(s)|
where :math:`S_1` and :math:`S_2` are the sets of bipartitions of trees
:math:`T_1` and :math:`T_2`, respectively. :math:`l_1` and :math:`l_2` are the
branch lengths of bipartition :math:`s` in :math:`T_1` and :math:`T_2`,
respectively (or 0 if :math:`s` is unique to the other tree).
When ``metric="euclidean"``, it calculates the Kuhner-Felsenstein (KF)
distance, a.k.a., branch score (Bs) distance [2]_, which replaces absolute
difference with squared difference in the equation.
.. math::
\text{KF}(T_1, T_2) = \sqrt{\sum_{s \in S_1 \cup S_2} (l_1(s) - l_2(s))^2}
This method operates on the subtrees below the given nodes. Only taxa shared
between the two trees are considered. Taxa unique to either tree are excluded
from the calculation.
See Also
--------
compare_rfd
compare_cophenet
skbio.tree.wrf_dists
References
----------
.. [1] Robinson, D. F., & Foulds, L. R. (1979) Comparison of weighted labelled
trees. In Combinatorial Mathematics VI: Proceedings of the Sixth Australian
Conference on Combinatorial Mathematics, Armidale, Australia (pp. 119-126).
.. [2] Kuhner, M. K., & Felsenstein, J. (1994). A simulation comparison of
phylogeny algorithms under equal and unequal evolutionary rates. Molecular
biology and evolution, 11(3), 459-468.
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a:1,b:2):1,c:4,((d:4,e:5):2,f:6):1);"])
>>> print(tree1.ascii_art())
/-a
/--------|
| \-b
|
---------|--c
|
| /-d
| /--------|
\--------| \-e
|
\-f
>>> tree2 = TreeNode.read(["((a:3,(b:2,c:2):1):3,d:8,(e:5,f:6):2);"])
>>> print(tree2.ascii_art())
/-a
/--------|
| | /-b
| \--------|
| \-c
---------|
|--d
|
| /-e
\--------|
\-f
Calculate the weighted RF (wRF) distance between two unrooted trees with branch
lengths.
>>> tree1.compare_wrfd(tree2)
16.0
Calculated the wRF distance while considering trees as rooted (therefore based
on subsets instead of bipartitions).
>>> tree1.compare_wrfd(tree2, rooted=True)
18.0
Calculate the Kuhner-Felsenstein (KF) distance.
>>> d = tree1.compare_wrfd(tree2, metric="euclidean")
>>> print(round(d, 5))
6.16441
Calculate the KF distance without considering terminal branches.
>>> d = tree1.compare_wrfd(tree2, metric="euclidean", include_tips=False)
>>> print(round(d, 5))
3.74166
"""
if rooted is None:
rooted = self.parent is not None or len(self.children) == 2
metric = _check_dist_metric(metric)
return _topo_dists(
(self, other),
rooted=rooted,
include_tips=include_tips,
weighted=True,
metric=metric,
)[0]
@aliased("compare_tip_distances", "0.6.3")
@params_aliased(
[
("shuffler", "shuffle_f", "0.6.3", True),
("metric", "dist_f", "0.6.3", True),
]
)
def compare_cophenet(
self,
other,
sample=None,
metric="unitcorr",
shuffler=None,
use_length=True,
ignore_self=False,
):
r"""Calculate the distance between two trees based on cophenetic distances.
Parameters
----------
other : TreeNode
The other tree to compare with.
sample : int, optional
Randomly subsample this number of tips in common between the trees to
compare. This is useful when comparing very large trees.
metric : str or callable, optional
The distance metric to use. Can be a preset, a distance function name under
:mod:`scipy.spatial.distance`, or a custom function that takes two vectors
and returns a number. Some notable options are:
- "cityblock": City block (Manhattan) distance.
- "euclidean": Euclidean distance. The result matches the path-length
distance [1]_, or the path distance [2]_ if ``use_length`` is False.
- "correlation": 1 - Pearson's correlation coefficient (:math:`r`). Ranges
between 0 (maximum similarity) and 2 (maximum dissimilarity). Independent
of tree scale.
- "unitcorr" (default): :math:`(1 - r) / 2`, which returns a unit
correlation distance (range: [0, 1]).
.. versionchanged:: 0.6.3
Accepts a function on two vectors instead of two `DistanceMatrix`
instances. The default value "unitcorr" is consistent with the previous
default behavior.
shuffler : int, np.random.Generator or callable, optional
The shuffling function to use if ``sample`` is specified. Default is
:meth:`~numpy.random.Generator.shuffle`. If an integer is provided, a
random generator will be constructed using this number as the seed.
.. versionchanged:: 0.6.3
Switched to NumPy's new random generator. Can accept a random seed or
random generator instance.
use_length : bool, optional
Whether to calculate the sum of branch lengths (True, default) or the
number of branches (False) connecting each pair of tips.
.. versionadded:: 0.6.3
ignore_self : bool, optional
Whether to ignore the distance between each tip and itself (which must be
0). Default is False.
.. versionadded:: 0.6.3
.. note:: The default value will be set as True in 0.7.0.
Returns
-------
float
The distance between the trees.
.. versionchanged:: 0.6.3
Improved customizability to allow calculation of published metrics, such
as path distance and path-length distance, while preserving the previous
default behavior.
Edge cases are now handled by the specified distance metric rather than
being treated separately.
Raises
------
ValueError
If there are no common tips between the trees.
See Also
--------
cophenet
compare_rfd
compare_wrfd
skbio.tree.path_dists
Notes
-----
This method calculates the dissimilarity between the cophenetic distance [1]_
(i.e., tip-to-tip distance) matrices of two trees. Tips are identified by
their names (i.e., taxa). Only tips shared between the trees are considered.
Tips unique to either tree are excluded from the calculation.
The default behavior returns a unit correlation distance (range: [0, 1]),
measuring the dissimilarity between the relative evolutionary distances among
taxa, regardless of the tree scale (i.e., multiply all branch lengths in one
tree by a factor and the result remains the same). This measure is closely
related to **cophenetic correlation**, which measures the similarity (instead
of dissimilarity) between two cophenetic distance matrices, or between a
cophenetic distance matrix and the original distance matrix among taxa on
which hierarchical clustering was performed.
When the metric is Euclidean and lengths are used, it returns the **path-length
distance** [2]_, which is the square root of the sum of squared differences of
path lengths among all pairs of taxa.
.. math::
d(T_1, T_2) = \sqrt{\sum (d_1(i,j) - d_2(i,j))^2}
where :math:`d_1` and :math:`d_2` are the sums of branch lengths connecting a
pair of tips :math:`i` and :math:`j` in trees :math:`T_1` and :math:`T_2`,
respectively.
When the metric is Euclidean and lengths are not used, it returns the **path
distance** [3]_, which insteads considers the number of edges in the path.
References
----------
.. [1] Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by
objective methods. Taxon, 33-40.
.. [2] Lapointe, F. J., & Cucumel, G. (1997). The average consensus procedure:
combination of weighted trees containing identical or overlapping sets of
taxa. Systematic Biology, 46(2), 306-312.
.. [3] Steel, M. A., & Penny, D. (1993). Distributions of tree comparison
metrics—some new results. Systematic Biology, 42(2), 126-141.
Examples
--------
>>> from skbio import TreeNode
>>> tree1 = TreeNode.read(["((a:1,b:2):1,c:4,((d:4,e:5):2,f:6):1);"])
>>> print(tree1.ascii_art())
/-a
/--------|
| \-b
|
---------|--c
|
| /-d
| /--------|
\--------| \-e
|
\-f
>>> tree2 = TreeNode.read(["((a:3,(b:2,c:2):1):3,d:8,(e:5,f:6):2);"])
>>> print(tree2.ascii_art())
/-a
/--------|
| | /-b
| \--------|
| \-c
---------|
|--d
|
| /-e
\--------|
\-f
Calculate the unit correlation distance between the two trees.
>>> d = tree1.compare_cophenet(tree2, ignore_self=True)
>>> print(round(d, 5))
0.14131
Calculate the path-length distance between the two trees.
>>> d = tree1.compare_cophenet(tree2, metric="euclidean",
... ignore_self=True)
>>> print(round(d, 5))
13.71131
Calculate the path distance between the two trees.
>>> tree1.compare_cophenet(
... tree2, metric="euclidean", use_length=False, ignore_self=True)
4.0
"""
# future warning
if ignore_self is False:
_warn_once(
self.__class__.compare_cophenet,
FutureWarning,
"The default behavior of `compare_cophenet` is subject to change in "
"0.7.0. The new default behavior can be achieved by specifying "
"`ignore_self=True`.",
)
metric = _check_dist_metric(metric)
if sample is not None:
shuffler = _check_shuffler(shuffler)
return _path_dists(
trees=(self, other),
sample=sample,
metric=metric,
shuffler=shuffler,
use_length=use_length,
ignore_self=ignore_self,
)[0]
# ------------------------------------------------
# Tree indexing and searching
# ------------------------------------------------
def has_caches(self):
r"""Check if the current tree has caches.
.. versionadded:: 0.6.3
Returns
-------
set or None
Names of present node attribute caches, or None if none is present.
bool
Presence (True) or absence (False) of node lookup caches.
See Also
--------
clear_caches
cache_attr
find
Notes
-----
Caches are optional but can significantly accelerate certain analyses of the
tree. Two types of caches may be created:
1. **Node attributes**, which may be created by calling :meth:`cache_attr` and
assigned to individual nodes within the tree. The names of these attributes
are optionally registered at the root.
2. **Node lookup table**, which is automatically created during the first node
search (e.g., by calling :meth:`find`) and reused in subsequent searches.
This table is attached to the root of the tree.
This method checks if a node lookup table and any registered node attributes
are present at the root node of the tree.
The returned set of node attribute names is a reference instead of a copy. One
may edit the set in place to explicitly enable/disable names. Use this feature
with caution.
When the tree is manipulated, caches typically become obsolete and are
automatically cleared. If the caches are not present or not relevant to the
analysis, you may set ``uncache=False`` when performing individual operations
to suppress clearing. This can improve the performance of these operations.
You may explicitly call :meth:`clear_caches` to clear caches of a tree.
"""
tree = self.root()
attrs = getattr(tree, "_registered_caches", None)
lookup = hasattr(tree, "_tip_cache") and hasattr(tree, "_non_tip_cache")
return attrs, lookup
@aliased("invalidate_caches", "0.6.3", True)
def clear_caches(self, attr=True, lookup=True):
r"""Delete node attribute and lookup caches of a tree.
Parameters
----------
attr : bool or str, optional
Whether to delete attribute caches created by ``cache_attr`` (default:
True). One may instead provide an attribute name such that only this
attribute will be deleted.
.. versionchanged:: 0.6.3
Can provide a specific attribute name.
lookup : bool, optional
Whether to delete lookup caches created during name searching (default:
True).
.. versionadded:: 0.6.3
See Also
--------
has_caches
cache_attr
find
Notes
-----
This method may be called from any node within a tree. The caches, which were
attached to the root node of the tree, will be deleted.
This method will silently skip if the specified caches do not exist.
"""
tree = self.root()
# delete attribute caches
if attr and hasattr(tree, "_registered_caches"):
attrs = tree._registered_caches
# delete a single attribute
if isinstance(attr, str):
if attr not in attrs:
return
for node in tree.traverse():
if hasattr(node, attr):
delattr(node, attr)
if len(attrs) == 1:
del tree._registered_caches
else:
attrs.remove(attr)
# delete all attributes
else:
for node in tree.traverse():
for attr in attrs:
if hasattr(node, attr):
delattr(node, attr)
del tree._registered_caches
# delete lookup caches
if lookup:
for key in ("_tip_cache", "_non_tip_cache"):
if hasattr(tree, key):
delattr(tree, key)
def cache_attr(self, func, cache_attrname, cache_type=list, register=True):
r"""Cache attributes on nodes of the tree through a postorder traversal.
Parameters
----------
func : callable
Function to calculate the attribute of the current node. The result will be
combined with the attributes of the previous nodes, if applicable.
cache_attrname : str
Name of the attribute to be attached to each node.
cache_type : {list, tuple, set, frozenset}, callable, or None
The type of the cache. Can be any of the four iterable types: list
(default), tuple, set, or frozenset. In these cases, combination of
attributes of the node's children and itself will be automated.
Or a custom function that takes two arguments: list of attributes of its
children, and attribute calculated from itself by ``func``, and returns the
combined attribute of the node.
Or None, in which case combination of attributes of children and self
will not take place, unless explicitly customized within ``func``.
.. versionchanged:: 0.6.3
Tuple, custom function and None were added to the options.
register : bool, optional
Whether to register the attribute name as a cache of the tree, such that
the attributes will be deleted from all nodes when the tree is manipulated
or the ``clear_caches`` method is explicitly invoked. Default is True.
.. versionadded:: 0.6.3
Raises
------
TypeError
If ``cache_type`` is invalid.
See Also
--------
has_caches
clear_caches
Notes
-----
This method provides an efficient interface to assign a custom attribute to
every node of a tree through one postorder travesal. It is particularly useful
if one needs to frequently look up attributes that would normally require one
traversal of the tree per lookup. The assigned attributes may be automatically
deleted when the tree is manipulated.
Examples
--------
This method facilitates evaluation for various useful node properties. Some
representative examples are provided below.
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a:1.2,b:1.6)c:0.3,(d:0.8,e:1.0)f:0.6)g;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-g-------|
| /-d
\f-------|
\-e
Cache a list of all descending tip names on each node. This faciliates the
assignment of taxon set under each clade in the tree. It resembles but is more
efficient than calling :meth:`subset` multiple times.
>>> f = lambda n: [n.name] if n.is_tip() else []
>>> tree.cache_attr(f, 'tip_names')
>>> for node in tree.traverse(include_self=True):
... print(f"Node: {node.name}, tips: {node.tip_names}")
Node: g, tips: ['a', 'b', 'd', 'e']
Node: c, tips: ['a', 'b']
Node: a, tips: ['a']
Node: b, tips: ['b']
Node: f, tips: ['d', 'e']
Node: d, tips: ['d']
Node: e, tips: ['e']
Cache the number of nodes per clade. The function ``sum`` is used in place of
cache type such that the count will be accumulated. This resembles but is more
efficient than calling :meth:`count` multiple times.
>>> f = lambda n: 1
>>> tree.cache_attr(f, 'node_count', sum)
>>> tree.node_count
7
Cache the sum of branch lengths per clade. This resembles but is more efficient
than calling :meth:`total_length` multiple times.
>>> f = lambda n: n.length or 0.0
>>> tree.cache_attr(f, 'clade_size', sum)
>>> tree.clade_size
5.5
Cache the accumulative distances from all tips to the common ancestor of each
clade. This is more efficient than calling :meth:`depth` multiple times. One
can further apply calculations like mean and standard deviation to the results.
>>> import numpy as np
>>> dist_f = lambda n: np.array(n.length or 0.0, ndmin=1)
>>> comb_f = lambda prev, curr: np.concatenate(prev) + curr if prev else curr
>>> tree.cache_attr(dist_f, 'accu_dists', comb_f)
>>> tree.accu_dists
array([ 1.5, 1.9, 1.4, 1.6])
"""
if cache_type in (set, frozenset):
def combine_f(prev, curr):
return cache_type().union(*prev + [curr])
elif cache_type in (list, tuple):
def combine_f(prev, curr):
return cache_type(chain.from_iterable(prev + [curr]))
elif callable(cache_type) or cache_type is None:
combine_f = cache_type
else:
raise TypeError("Cache type is invalid.")
# register attribute name as a cache
if register:
tree = self.root()
if not hasattr(tree, "_registered_caches"):
tree._registered_caches = set()
tree._registered_caches.add(cache_attrname)
# traverse tree and assign attributes
if combine_f is not None:
for node in self.postorder(include_self=True):
prev_attrs = [getattr(c, cache_attrname) for c in node.children]
curr_attr = func(node)
setattr(node, cache_attrname, combine_f(prev_attrs, curr_attr))
else:
for node in self.postorder(include_self=True):
setattr(node, cache_attrname, func(node))
def assign_ids(self):
"""Assign topologically stable unique IDs to all nodes of the tree.
See Also
--------
find_by_id
postorder
Notes
-----
This method assigns unique IDs to all nodes of the tree via a postorder
traversal. The IDs are incremental integers starting from 0. The order is
topologically stable. Following the call, all nodes in the tree will have
their ``id`` attribute set.
"""
curr_index = 0
for n in self.postorder():
for c in n.children:
c.id = curr_index
curr_index += 1
self.id = curr_index
def index_tree(self):
r"""Index a tree for rapid lookups within a tree array.
Indexes nodes in-place as ``n._leaf_index``.
Returns
-------
dict
A mapping {node_id: TreeNode}
ndarray of int
This arrays describes the IDs of every internal node, and the ID
range of the immediate descendents. The first column in the array
corresponds to node_id. The second column is the left most
descendent's ID. The third column is the right most descendent's
ID.
"""
self.assign_ids()
id_index = {}
child_index = []
for n in self.postorder():
for c in n.children:
id_index[c.id] = c
if c:
# c has children itself, so need to add to result
child_index.append((c.id, c.children[0].id, c.children[-1].id))
# handle root, which should be t itself
id_index[self.id] = self
# only want to add to the child_index if self has children...
if self.children:
child_index.append((self.id, self.children[0].id, self.children[-1].id))
child_index = np.asarray(child_index, dtype=np.int64)
child_index = np.atleast_2d(child_index)
return id_index, child_index
def create_caches(self):
r"""Construct an internal lookup table to facilitate searching by name.
Raises
------
DuplicateNodeError
If there are duplicate tip names.
See Also
--------
has_caches
clear_caches
find
Notes
-----
This method is automatically called during the first search in a tree (methods
:meth:`find` and :meth:`find_all`). After that, subsequent searches will
utilize the constructed lookup table, until it is deleted.
This method may be called from any node within a tree. The lookup table will be
attached to the root node of the tree.
This method will not cache nodes whose name is ``None``. This method will
raise an error if a name conflict in the tips is discovered, but will not raise
if on internal nodes. This is because, in practice, the tips of a tree are
required to be unique while no such requirement holds for internal nodes.
"""
tree = self.root()
if hasattr(tree, "_tip_cache") and hasattr(tree, "_non_tip_cache"):
return
tip_cache, non_tip_cache = {}, {}
non_tip_cache_setdefault = non_tip_cache.setdefault
for node in tree.postorder():
if (name := node.name) is None:
continue
if node.is_tip():
if name in tip_cache:
raise DuplicateNodeError(f"Duplicate tip name '{name}' found.")
tip_cache[name] = node
else:
non_tip_cache_setdefault(name, []).append(node)
tree._tip_cache = tip_cache
tree._non_tip_cache = non_tip_cache
def find(self, name):
r"""Find a node by name.
Parameters
----------
name : TreeNode or str
The name of the node to find. If a ``TreeNode`` object is provided,
will find this particular node in the tree.
Returns
-------
TreeNode
The found node.
Raises
------
MissingNodeError
If the node to be searched for is not found in the current tree.
See Also
--------
find_all
find_by_id
find_by_func
Notes
-----
This method will first attempt to find the node in the tips. If it cannot find
a corresponding tip, it will then search through the internal nodes of the
tree. In practice, phylogenetic trees and other common trees in biology do not
have unique internal node names. As a result, this find method will only return
the first occurrence of an internal node encountered on a postorder traversal
of the tree.
The first call of ``find`` will cache a node lookup table in the tree on the
assumption that additional calls to ``find`` will be made. See
:meth:`details <has_caches>`.
This method searches within the entire tree where self is located, regardless
if self is the root node.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> node = tree.find('c')
>>> node.name
'c'
"""
tree = self.root()
# create lookup table if not already
tree.create_caches()
# if input is a node, get its name
name_is_node = isinstance(name, tree.__class__)
name_ = name.name if name_is_node else name
# look up name in tips
node = tree._tip_cache.get(name_, None)
if node is not None:
if not name_is_node or node is name:
return node
# look up name in non-tips
nodes = tree._non_tip_cache.get(name_, None)
if nodes is not None:
if name_is_node:
for node in nodes:
if node is name:
return node
else:
return nodes[0]
raise MissingNodeError(f"Node '{name_}' is not found in the tree.")
def find_all(self, name):
r"""Find all nodes that match a given name.
Parameters
----------
name : TreeNode or str
The name or node to find. If a ``TreeNode`` object is provided, all nodes
with the same name will be returned.
Returns
-------
list of TreeNode
The found nodes.
Raises
------
MissingNodeError
If the node to be searched for is not found.
See Also
--------
find
find_by_id
find_by_func
Notes
-----
All internal nodes (including root) and tips with the given name will be
returned, with the former placed before the latter in the returned list.
The first call to ``find_all`` will cache a node lookup table in the tree on
the assumption that additional calls to ``find_all`` will be made. See
:meth:`details <has_caches>`.
This method searches within the entire tree where self is located, regardless
if self is the root node.
Examples
--------
>>> from skbio.tree import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)d,(f,g)c);"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
|
| /-d
---------|-d-------|
| \-e
|
| /-f
\c-------|
\-g
>>> for node in tree.find_all('c'):
... print(node.name, node.children[0].name, node.children[1].name)
c a b
c f g
>>> for node in tree.find_all('d'):
... print(node.name, str(node))
d (d,e)d;
<BLANKLINE>
d d;
<BLANKLINE>
"""
tree = self.root()
if isinstance(name, tree.__class__):
name = name.name
tree.create_caches()
tip = tree._tip_cache.get(name, None)
nodes = tree._non_tip_cache.get(name, [])
if tip is not None:
nodes.append(tip)
if not nodes:
raise MissingNodeError(f"Node '{name}' is not found.")
else:
return nodes
def find_by_id(self, node_id):
r"""Find a node by ID.
Parameters
----------
node_id : int
The ID of a node in the tree.
Returns
-------
TreeNode
The node with the matching ID.
Raises
------
MissingNodeError
If the ID cannot be found.
See Also
--------
assign_ids
find
Notes
-----
This method searches within the subtree under the current node. But the IDs
are assigned from the root of the entire tree.
This method does not cache ID associations. A full traversal of the
tree is performed to find a node by an ID on every call.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> print(tree.find_by_id(2).name)
d
"""
self.root().assign_ids()
for node in self.traverse(include_self=True):
if node.id == node_id:
return node
raise MissingNodeError(f"ID {node_id} is not in self.")
def find_by_func(self, func):
r"""Find all nodes in a tree that meet certain criteria.
Parameters
----------
func : callable
A function that accepts a ``TreeNode`` and returns True or False, where
True indicates the node is to be yielded.
Yields
------
TreeNode
The found node.
See Also
--------
find
find_all
find_by_id
Notes
-----
This search method is based on the current subtree, not the root.
This method does not cache search results.
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
>>> func = lambda x: x.parent == tree.find('c')
>>> [n.name for n in tree.find_by_func(func)]
['a', 'b']
"""
for node in self.traverse(include_self=True):
if func(node):
yield node
# ------------------------------------------------
# Tree visualization
# ------------------------------------------------
def _ascii_art(self, char1="-", show_internal=True, compact=False):
LEN = 10
PAD = " " * LEN
PA = " " * (LEN - 1)
namestr = self._node_label()
if self.children:
mids = []
result = []
for c in self.children:
if c is self.children[0]:
char2 = "/"
elif c is self.children[-1]:
char2 = "\\"
else:
char2 = "-"
(clines, mid) = c._ascii_art(char2, show_internal, compact)
mids.append(mid + len(result))
result.extend(clines)
if not compact:
result.append("")
if not compact:
result.pop()
(lo, hi, end) = (mids[0], mids[-1], len(result))
prefixes = (
[PAD] * (lo + 1) + [PA + "|"] * (hi - lo - 1) + [PAD] * (end - hi)
)
mid = int(np.trunc((lo + hi) / 2))
prefixes[mid] = char1 + "-" * (LEN - 2) + prefixes[mid][-1]
result = [p + L for (p, L) in zip(prefixes, result)]
if show_internal:
stem = result[mid]
result[mid] = stem[0] + namestr + stem[len(namestr) + 1 :]
return (result, mid)
else:
return ([char1 + "-" + namestr], 0)
def ascii_art(self, show_internal=True, compact=False):
r"""Return a string containing an ascii drawing of the tree.
Note, this method calls a private recursive function and is not safe
for large trees.
Parameters
----------
show_internal : bool
includes internal edge names
compact : bool
use exactly one line per tip
Returns
-------
str
an ASCII formatted version of the tree
Examples
--------
>>> from skbio import TreeNode
>>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
>>> print(tree.ascii_art())
/-a
/c-------|
| \-b
-root----|
| /-d
\f-------|
\-e
"""
(lines, mid) = self._ascii_art(show_internal=show_internal, compact=compact)
return "\n".join(lines)
# ------------------------------------------------
# Format conversion
# ------------------------------------------------
def _balanced_distance_to_tip(self):
"""Return the distance to tip from this node.
The distance to every tip from this node must be equal for this to
return a correct result.
Returns
-------
float
The distance to tip of a length-balanced tree.
"""
node = self
distance = 0.0
while node.has_children():
distance += node.children[0].length
node = node.children[0]
return distance
@classonlymethod
def from_linkage_matrix(cls, linkage_matrix, id_list):
r"""Return tree from SciPy linkage matrix.
Parameters
----------
linkage_matrix : ndarray
A linkage matrix generated by ``scipy.cluster.hierarchy.linkage``.
id_list : list
Corresponding IDs of the indices in the linkage matrix.
Returns
-------
TreeNode
An unrooted bifurcated tree.
See Also
--------
scipy.cluster.hierarchy.linkage
"""
tip_width = len(id_list)
cluster_count = len(linkage_matrix)
lookup_len = cluster_count + tip_width
node_lookup = np.empty(lookup_len, dtype=cls)
for i, name in enumerate(id_list):
node_lookup[i] = cls(name=name)
for i in range(tip_width, lookup_len):
node_lookup[i] = cls()
newest_cluster_index = cluster_count + 1
for link in linkage_matrix:
child_a = node_lookup[int(link[0])]
child_b = node_lookup[int(link[1])]
path_length = link[2] / 2
child_a.length = path_length - child_a._balanced_distance_to_tip()
child_b.length = path_length - child_b._balanced_distance_to_tip()
new_cluster = node_lookup[newest_cluster_index]
new_cluster.append(child_a, uncache=False)
new_cluster.append(child_b, uncache=False)
newest_cluster_index += 1
return node_lookup[-1]
@classonlymethod
def from_taxonomy(cls, lineage_map):
r"""Construct a tree from a taxonomy.
Parameters
----------
lineage_map : dict, iterable of tuples, or pd.DataFrame
Mapping of taxon IDs to lineages (iterables of taxonomic units
from high to low in ranking).
Returns
-------
TreeNode
The constructed taxonomy.
See Also
--------
from_taxdump
Examples
--------
>>> from skbio.tree import TreeNode
>>> lineages = [
... ('1', ['Bacteria', 'Firmicutes', 'Clostridia']),
... ('2', ['Bacteria', 'Firmicutes', 'Bacilli']),
... ('3', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
... ('4', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
... ('5', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
... ('6', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
... ('7', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
... ('8', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
... ('9', ['Bacteria', 'Bacteroidetes', 'Cytophagia'])]
>>> tree = TreeNode.from_taxonomy(lineages)
>>> print(tree.ascii_art())
/Clostridia-1
/Firmicutes
| \Bacilli- /-2
/Bacteria|
| | /-3
| | /Sphingobacteria
| \Bacteroidetes \-8
| |
---------| \Cytophagia-9
|
| /-4
| /Thermoplasmata
| | \-5
\Archaea- /Euryarchaeota
| /-6
\Halobacteria
\-7
"""
root = cls(name=None)
root._lookup = {}
if isinstance(lineage_map, dict):
lineage_map = lineage_map.items()
elif isinstance(lineage_map, pd.DataFrame):
lineage_map = ((idx, row.tolist()) for idx, row in lineage_map.iterrows())
for id_, lineage in lineage_map:
cur_node = root
# for each name, see if we've seen it, if not, add that puppy on
for name in lineage:
if name in cur_node._lookup:
cur_node = cur_node._lookup[name]
else:
new_node = cls(name=name)
new_node._lookup = {}
cur_node._lookup[name] = new_node
cur_node.append(new_node, uncache=False)
cur_node = new_node
cur_node.append(cls(name=id_), uncache=False)
# scrub the lookups
for node in root.non_tips(include_self=True):
del node._lookup
return root
def to_taxonomy(self, allow_empty=False, filter_f=None):
"""Return a taxonomy representation of self.
Parameters
----------
allow_empty : bool, optional
Allow gaps the taxonomy (e.g., internal nodes without names).
filter_f : function, optional
Specify a filtering function that returns True if the lineage is
to be returned. This function must accept a ``TreeNode`` as its
first parameter, and a ``list`` that represents the lineage as the
second parameter.
Yields
------
tuple
``(tip, [lineage])`` where ``tip`` corresponds to a tip in the tree
and ``[lineage]`` is the expanded names from root to tip. ``None``
and empty strings are omitted from the lineage.
Notes
-----
If ``allow_empty`` is True and the root node does not have a name, that name
will not be included. This is because it is common to have multiple domains
represented in the taxonomy, which would result in a root node that does not
have a name and does not make sense to represent in the output.
Examples
--------
>>> from skbio.tree import TreeNode
>>> lineages = {'1': ['Bacteria', 'Firmicutes', 'Clostridia'],
... '2': ['Bacteria', 'Firmicutes', 'Bacilli'],
... '3': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
... '4': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
... '5': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
... '6': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
... '7': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
... '8': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
... '9': ['Bacteria', 'Bacteroidetes', 'Cytophagia']}
>>> tree = TreeNode.from_taxonomy(lineages.items())
>>> lineages = sorted([(n.name, l) for n, l in tree.to_taxonomy()])
>>> for name, lineage in lineages:
... print(name, '; '.join(lineage))
1 Bacteria; Firmicutes; Clostridia
2 Bacteria; Firmicutes; Bacilli
3 Bacteria; Bacteroidetes; Sphingobacteria
4 Archaea; Euryarchaeota; Thermoplasmata
5 Archaea; Euryarchaeota; Thermoplasmata
6 Archaea; Euryarchaeota; Halobacteria
7 Archaea; Euryarchaeota; Halobacteria
8 Bacteria; Bacteroidetes; Sphingobacteria
9 Bacteria; Bacteroidetes; Cytophagia
"""
if filter_f is None:
def filter_f(a, b):
return True
self.assign_ids()
seen = set()
seen_add = seen.add
lineage = []
lineage_pop = lineage.pop
lineage_append = lineage.append
# visit internal nodes while traversing out to the tips, and on the
# way back up
for node in self.traverse(self_before=True, self_after=True):
if node.is_tip():
if filter_f(node, lineage):
yield (node, lineage[:])
else:
if allow_empty:
if node.is_root() and not node.name:
continue
else:
if not node.name:
continue
if node.id in seen:
lineage_pop()
else:
lineage_append(node.name)
seen_add(node.id)
@classonlymethod
def from_taxdump(cls, nodes, names=None):
r"""Construct a tree from the NCBI taxonomy database.
Parameters
----------
nodes : pd.DataFrame
Taxon hierarchy.
names : pd.DataFrame or dict, optional
Taxon names.
Returns
-------
TreeNode
The constructed tree.
Notes
-----
``nodes`` and ``names`` correspond to "nodes.dmp" and "names.dmp" of
the NCBI taxonomy database. The should be read into data frames using
``skbio.io.read`` prior to this operation. Alternatively, ``names``
may be provided as a dictionary. If ``names`` is omitted, taxonomy IDs
be used as taxon names.
Raises
------
ValueError
If there is no top-level node.
ValueError
If there are more than one top-level node.
See Also
--------
from_taxonomy
skbio.io.format.taxdump
Examples
--------
>>> import pandas as pd
>>> from skbio.tree import TreeNode
>>> nodes = pd.DataFrame([
... [1, 1, 'no rank'],
... [2, 1, 'domain'],
... [3, 1, 'domain'],
... [4, 2, 'phylum'],
... [5, 2, 'phylum']], columns=[
... 'tax_id', 'parent_tax_id', 'rank']).set_index('tax_id')
>>> names = {1: 'root', 2: 'Bacteria', 3: 'Archaea',
... 4: 'Firmicutes', 5: 'Bacteroidetes'}
>>> tree = TreeNode.from_taxdump(nodes, names)
>>> print(tree.ascii_art())
/-Firmicutes
/Bacteria|
-root----| \-Bacteroidetes
|
\-Archaea
"""
# identify top level of hierarchy
tops = nodes[nodes["parent_tax_id"] == nodes.index]
# validate root uniqueness
n_top = tops.shape[0]
if n_top == 0:
raise ValueError("There is no top-level node.")
elif n_top > 1:
raise ValueError("There are more than one top-level node.")
# get root taxid
root_id = tops.index[0]
# get parent-to-child(ren) map
to_children = {
p: g.index.tolist()
for p, g in nodes[nodes.index != root_id].groupby("parent_tax_id")
}
# get rank map
ranks = nodes["rank"].to_dict()
# get taxon-to-name map
# if not provided, use tax_id as name
if names is None:
names = {x: str(x) for x in nodes.index}
# use "scientific name" as name
elif isinstance(names, pd.DataFrame):
names = names[names["name_class"] == "scientific name"][
"name_txt"
].to_dict()
# initiate tree
tree = cls(names[root_id])
tree.id = root_id
tree.rank = ranks[root_id]
# helper for extending tree
def _extend_tree(node):
self_id = node.id
if self_id not in to_children:
return
children = []
for id_ in to_children[self_id]:
child = TreeNode(names[id_])
child.id = id_
child.rank = ranks[id_]
_extend_tree(child)
children.append(child)
node.extend(children, uncache=False)
# extend tree
_extend_tree(tree)
return tree
def to_array(self, attrs=None, nan_length_value=None):
"""Return an array representation of self.
Parameters
----------
attrs : list of tuple or None
The attributes and types to return. The expected form is
[(attribute_name, type)]. If `None`, then `name`, `length`, and
`id` are returned.
nan_length_value : float, optional
If provided, replaces any `nan` in the branch length vector
(i.e., ``result['length']``) with this value. `nan` branch lengths
can arise from an edge not having a length (common for the root
node parent edge), which can making summing problematic.
Returns
-------
dict of array
{id_index: {id: TreeNode},
child_index: ((node_id, left_child_id, right_child_id)),
attr_1: array(...),
...
attr_N: array(...)}
Notes
-----
Attribute arrays are in index order such that TreeNode.id can be used
as a lookup into the array.
Examples
--------
>>> from skbio import TreeNode
>>> t = TreeNode.read(['(((a:1,b:2,c:3)x:4,(d:5)y:6)z:7);'])
>>> res = t.to_array()
>>> sorted(res.keys())
['child_index', 'id', 'id_index', 'length', 'name']
>>> res['child_index'] # doctest: +ELLIPSIS
array([[4, 0, 2],
[5, 3, 3],
[6, 4, 5],
[7, 6, 6]]...
>>> for k, v in res['id_index'].items():
... print(k, v)
...
0 a:1.0;
<BLANKLINE>
1 b:2.0;
<BLANKLINE>
2 c:3.0;
<BLANKLINE>
3 d:5.0;
<BLANKLINE>
4 (a:1.0,b:2.0,c:3.0)x:4.0;
<BLANKLINE>
5 (d:5.0)y:6.0;
<BLANKLINE>
6 ((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0;
<BLANKLINE>
7 (((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0);
<BLANKLINE>
>>> res['id']
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> res['name']
array(['a', 'b', 'c', 'd', 'x', 'y', 'z', None], dtype=object)
"""
if attrs is None:
attrs = [("name", object), ("length", float), ("id", int)]
else:
for attr, dtype in attrs:
if not hasattr(self, attr):
raise AttributeError("Invalid attribute '%s'." % attr)
id_index, child_index = self.index_tree()
n = self.id + 1 # assign_ids starts at 0
tmp = [np.zeros(n, dtype=dtype) for attr, dtype in attrs]
for node in self.traverse(include_self=True):
n_id = node.id
for idx, (attr, dtype) in enumerate(attrs):
tmp[idx][n_id] = getattr(node, attr)
results = {"id_index": id_index, "child_index": child_index}
results.update({attr: arr for (attr, dtype), arr in zip(attrs, tmp)})
if nan_length_value is not None:
length_v = results["length"]
length_v[np.isnan(length_v)] = nan_length_value
return results
|