File: _tree.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (6194 lines) | stat: -rw-r--r-- 211,369 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

from warnings import warn, simplefilter
from operator import ne, gt, itemgetter
from copy import copy, deepcopy
from itertools import chain, combinations
from collections import defaultdict, deque

import numpy as np
import pandas as pd

from skbio._base import SkbioObject
from skbio.stats.distance import DistanceMatrix
from skbio.tree._exception import (
    NoLengthError,
    DuplicateNodeError,
    NoParentError,
    MissingNodeError,
    TreeError,
)
from skbio.util._decorator import (
    classonlymethod,
    deprecated,
    register_aliases,
    aliased,
    params_aliased,
)
from skbio.util._warning import _warn_once
from skbio.io.registry import Read, Write
from ._compare import (
    _check_dist_metric,
    _check_shuffler,
    _topo_dists,
    _path_dists,
)


# ----------------------------------------------------------------------------
# Important note: The TreeNode class has a large number of methods. They are
# organized under several categories, which are defined in this script as well
# as in `doc/source/_templates/TreeNode.rst`, which is a template file for the
# documentation. When methods are added, removed or re-organized, one needs to
# edit the template file to reflect the changes.
# ----------------------------------------------------------------------------


@register_aliases
class TreeNode(SkbioObject):
    r"""Represent a node within a tree.

    A ``TreeNode`` instance stores links from a node to its parent node and optionally
    child nodes. In addition, it can represent the length of the branch connecting
    itself and its parent, and the support of this branch.

    Parameters
    ----------
    name : str or None
        Name of the node. It is common for tips in particular to have names, for
        instance, in a phylogenetic tree where the tips correspond to taxa. Internal
        nodes and the root may also have names.
    length : float, int, or None
        Length of the branch connecting this node to its parent. Can represent
        ellapsed time, amount of mutations, or other measures of evolutionary
        distance.
    support : float, int, or None
        Support value of the branch connecting this node to its parent. Can be
        bootstrap value, posterior probability, or other measures of the confidence or
        frequency of this branch.
    parent : TreeNode or None
        Parent node to which this node is connected. A node without a parent is the
        root of the tree.
    children : list of TreeNode or None
        Child nodes to which this node is connected. A node without any children is a
        tip (leaf) of the tree.

    Notes
    -----
    A tree is a graph in which any two nodes (vertices) are connected by exactly one
    path. The ``TreeNode`` class is capable of representing various tree structures,
    including binary trees, phylogenetic trees, and other hierarchical systems such as
    taxonomies and ontologies. While the class is versatile, many of its terms and
    methods are specifically designed for phylogenetic analysis.

    In scikit-bio, trees are modeled as a collection of interconnected ``TreeNode``
    objects, each representing a single node in the tree. There is no explicit class
    for the entire tree, a clade, or a branch (edge). Instead, a tree is implicitly
    defined by its root node, from which the entire tree can be traversed. Starting
    from any node, one can navigate up to its parent and ancestors, down to its
    children and descendants, or sideways to its siblings.

    The underlying data structure of a tree composed of ``TreeNode`` objects is an
    ordered, rooted tree. However, the ``TreeNode`` class has the flexibility to handle
    unrooted and unordered trees as well, which are common in phylogenetics.

    """

    default_write_format = "newick"

    read = Read()
    write = Write()

    def __init__(
        self, name=None, length=None, support=None, parent=None, children=None
    ):
        self.name = name
        self.length = length
        self.support = support
        self.parent = parent
        self.children = []

        # TODO: `id` doesn't need to be a default attribute.
        self.id = None

        # TODO: This could skip cache clearing.
        if children is not None:
            self.extend(children)

    def __repr__(self):
        r"""Return summary of the tree.

        Returns
        -------
        str
            A summary of this node and all descendants

        Notes
        -----
        This method returns the name of the node and a count of tips and the
        number of internal nodes in the tree.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c, d)root;"])
        >>> repr(tree)
        '<TreeNode, name: root, internal node count: 1, tips count: 3>'

        """
        nodes = [n for n in self.traverse(include_self=False)]
        n_tips = sum([n.is_tip() for n in nodes])
        n_nontips = len(nodes) - n_tips
        classname = self.__class__.__name__
        name = self.name if self.name is not None else "unnamed"

        return "<%s, name: %s, internal node count: %d, tips count: %d>" % (
            classname,
            name,
            n_nontips,
            n_tips,
        )

    def __str__(self):
        r"""Return a Newick string of self, with names and distances."""
        return str("".join(self.write([])))

    def __iter__(self):
        r"""Iterate over the children of self."""
        return iter(self.children)

    def __len__(self):
        """Return the number of children of self."""
        return len(self.children)

    def __getitem__(self, i):
        r"""Slice the children of self."""
        return self.children[i]

    # ------------------------------------------------
    # Tree copying
    # ------------------------------------------------

    # node attributes that should not be copied
    _exclude_from_copy = {
        "name",
        "length",
        "support",
        "parent",
        "children",
        "id",
        "_tip_cache",
        "_non_tip_cache",
        "_registered_caches",
    }

    def _copy(self, deep, memo):
        """Return a copy of self."""

        # decide deep or shallow copy
        _copy = deepcopy if deep else copy
        _args = [memo] if deep else []

        # node attributes to exclude during copying
        # add any custom attributes that were registered as caches
        exclude_attrs = self._exclude_from_copy
        if hasattr((root := self.root()), "_registered_caches"):
            exclude_attrs = exclude_attrs | root._registered_caches

        # exclude dynamically generated methods
        exclude_attrs = exclude_attrs | {"_write_method"}

        # tree node class (default is TreeNode)
        # this is _possibly_ dangerous, we're assuming the node to copy is
        # of the same class as self, and has the same exclusion criteria.
        # however, it is potentially dangerous to mix TreeNode subclasses
        # within a tree, so...
        treenode = self.__class__

        def __copy_node(node, parent=None):
            """Copy a node."""

            # create a new instance by transferring built-in attributes, which can be
            # directly assigned
            res = treenode(
                name=node.name,
                length=node.length,
                support=node.support,
                parent=parent,
                children=None,
            )
            res.id = node.id

            # copy custom attributes, which may be compound objects therefore need to
            # be copied
            # this method of iteration is slightly faster than
            # `for key in node.__dict__.keys() - exclude_attrs:`
            for key in node.__dict__:
                if key not in exclude_attrs:
                    res.__dict__[key] = _copy(node.__dict__[key], *_args)
            return res

        # start with a copy of self, which will become the root (no parent)
        root = __copy_node(self)
        stack = [[root, self, len(self.children)]]
        stack_append = stack.append

        while stack:
            # check the top node, any children left unvisited?
            top = stack[-1]
            new_top_node, old_top_node, unvisited_children = top

            if unvisited_children:
                top[2] -= 1
                old_child = old_top_node.children[-unvisited_children]
                new_child = __copy_node(old_child, new_top_node)
                new_top_node.children.append(new_child)
                stack_append([new_child, old_child, len(old_child.children)])
            else:
                del stack[-1]
        return root

    def __copy__(self):
        """Return a shallow copy."""
        return self._copy(False, {})

    def __deepcopy__(self, memo):
        """Return a deep copy."""
        return self._copy(True, memo)

    def copy(self, deep=True):
        r"""Return a copy of self using an iterative approach.

        Parameters
        ----------
        deep : bool, optional
            Whether to perform a deep (True, default) or shallow (False) copy of node
            attributes.

            .. versionadded:: 0.6.2

            .. note:: The default value will be changed to False in 0.7.0.

        Returns
        -------
        TreeNode
            A new copy of self.

        .. versionchanged:: 0.6.3
            Node attribute caches will not be copied.

        See Also
        --------
        unrooted_copy

        Notes
        -----
        This method iteratively copies the current node and its descendants. That is,
        if the current node is not the root of the tree, only the subtree below the
        node, instead of the entire tree, will be copied.

        All nodes and their attributes except for caches will be copied. The copies are
        new objects rather than references to the original objects. The distinction
        between deep and shallow copies only applies to each node attribute.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> tree_copy = tree.copy()
        >>> tree_nodes = set([id(n) for n in tree.traverse()])
        >>> tree_copy_nodes = set([id(n) for n in tree_copy.traverse()])
        >>> print(len(tree_nodes.intersection(tree_copy_nodes)))
        0

        """
        return self._copy(deep, {})

    @deprecated("0.6.2", msg="Use `copy` instead.")
    def deepcopy(self):
        r"""Return a deep copy of self using an iterative approach.

        Returns
        -------
        TreeNode
            A new deep copy of self.

        See Also
        --------
        copy

        Notes
        -----
        ``deepcopy`` is equivalent to ``copy`` with ``deep=True``, which is
        currently the default behavior of the latter.

        """
        return self._copy(True, {})

    def subtree(self, tip_list=None):
        r"""Make a copy of the subtree.

        .. deprecated:: 0.6.3
            This method will be removed in version 0.7.0. It was never implemented, and
            its goal can be achieved by :meth:`copy`.

        """
        raise NotImplementedError()

    # ------------------------------------------------
    # Tree navigation
    # ------------------------------------------------

    def is_tip(self):
        r"""Check if the current node is a tip of a tree.

        Returns
        -------
        bool
            Whether the node is a tip.

        See Also
        --------
        is_root
        has_children

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> print(tree.is_tip())
        False
        >>> print(tree.find('a').is_tip())
        True

        """
        return not self.children

    def is_root(self):
        r"""Check if the current node is the root of a tree.

        Returns
        -------
        bool
            Whether the node is the root.

        See Also
        --------
        is_tip
        has_children

        Notes
        -----
        A root is defined as a node that has no ``parent``. A tree has exactly one
        root.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> print(tree.is_root())
        True
        >>> print(tree.find('a').is_root())
        False

        """
        return self.parent is None

    def has_children(self):
        r"""Check if the current node has any children.

        Returns
        -------
        bool
            Whether the node has at least one child.

        See Also
        --------
        is_tip
        is_root

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c);"])
        >>> print(tree.has_children())
        True
        >>> print(tree.find('a').has_children())
        False

        """
        return not self.is_tip()

    def root(self):
        r"""Return root of the tree which contains `self`.

        Returns
        -------
        TreeNode
            The root of the tree

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> tip_a = tree.find('a')
        >>> root = tip_a.root()
        >>> root == tree
        True

        """
        curr = self
        while not curr.is_root():
            curr = curr.parent
        return curr

    def ancestors(self, include_self=False):
        r"""Return all ancestral nodes from self back to the root.

        Parameters
        ----------
        include_self : bool, optional
            Whether to include the initial node in the path (default: False).

        Returns
        -------
        list of TreeNode
            The path from self toward the root.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -g-------|
                 |          /-d
                  \f-------|
                            \-e

        >>> tip = tree.find('a')
        >>> [node.name for node in tip.ancestors()]
        ['c', 'g']
        >>> [node.name for node in tip.ancestors(include_self=True)]
        ['a', 'c', 'g']

        """
        curr = self
        result = [curr] if include_self else []
        result_append = result.append
        while (curr := curr.parent) is not None:
            result_append(curr)
        return result

    def siblings(self):
        r"""Return all nodes that are siblings of the current node.

        Siblings are nodes that are children of the current node's parent, except for
        the current node itself.

        Returns
        -------
        list of TreeNode
            The list of sibling nodes relative to self.

        See Also
        --------
        neighbors

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e,f)g)root;"])
        >>> tip_e = tree.find('e')
        >>> [n.name for n in tip_e.siblings()]
        ['d', 'f']

        """
        try:
            return [x for x in self.parent.children if x is not self]
        except AttributeError:
            return []

    def neighbors(self, ignore=None):
        r"""Return all nodes that are neighbors of the current node.

        Neighbors are nodes that are directly connected to the current node by one
        branch. They usually include parent and children of the current node, if
        present. One may optionally ignore one node from the result.

        Parameters
        ----------
        ignore : TreeNode, optional
            A node to ignore.

        Returns
        -------
        list of TreeNode
            The list of all nodes that are connected to self.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> node_c = tree.find('c')
        >>> [n.name for n in node_c.neighbors()]
        ['a', 'b', 'root']

        """
        if (parent := self.parent) is not None:
            nodes = self.children + [parent]
        else:
            nodes = self.children[:]
        if ignore is None:
            return nodes
        else:
            return [n for n in nodes if n is not ignore]

    @aliased("lowest_common_ancestor")
    @params_aliased([("nodes", "tipnames", "0.6.3", True)])
    def lca(self, nodes=None):
        r"""Find the lowest common ancestor of a list of nodes.

        Parameters
        ----------
        nodes : iterable of TreeNode or str
            Instances or names of the nodes of interest.

        Returns
        -------
        TreeNode
            The lowest common ancestor of the nodes.

        Raises
        ------
        MissingNodeError
            If some nodes cannot be found in the tree.

        Notes
        -----
        Both tips and internal nodes may be provided in ``nodes``. If internal node
        names are provided, it is the user's responsibility to ensure that they are
        unique in the tree.

        This method considers the entire tree rather than the subtree below self.
        Therefore, if some nodes are not descendants of self, the LCA of nodes will be
        ancestral to self.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> nodes = [tree.find('a'), tree.find('b')]
        >>> lca = tree.lca(nodes)
        >>> print(lca.name)
        c
        >>> nodes = [tree.find('a'), tree.find('e')]
        >>> lca = tree.lca(nodes)  # lca is an alias for convience
        >>> print(lca.name)
        root

        """
        if not nodes:
            raise ValueError("No node is specified.")
        nodes = [self.find(x) for x in nodes]
        if len(nodes) == 1:
            return nodes[0]

        # Keep a record of visited nodes, such that the temporary attribute assigned
        # to each node can be cleared after getting LCA.
        visited = []
        visited_append = visited.append

        # Path of the first node to root. LCA must be in this path.
        # A temporary attribute "prev" will be assigned to visited nodes. It represents
        # the previous node in the upward path.
        curr = next(nodes := iter(nodes))
        prev = None
        while curr is not None:
            visited_append(curr)
            curr._prev = prev
            prev = curr
            curr = curr.parent

        # Paths of other nodes to root.
        # The prev attribute no longer needs to record the previous node. It is
        # uniformly set as None. When the path hits a previously visited node, it will
        # stop. If the node is in the first path, its prev becomes None, indicating
        # that it has been visited more than once.
        for curr in nodes:
            while not hasattr(curr, "_prev"):
                visited_append(curr)
                curr._prev = None
                curr = curr.parent
            curr._prev = None

        # walk down from root until a node with prev as None
        curr = prev
        while (prev := curr._prev) is not None:
            curr = prev

        # clear temporary attribute
        for node in visited:
            del node._prev

        return curr

    def _path(self, other):
        r"""Return the path from self to other.

        Parameters
        ----------
        other : TreeNode
            Target node.

        Returns
        -------
        TreeNode
            LCA of self and other.
        list of TreeNode
            self (inclusive) to LCA (exclusive).
        list of TreeNode
            other (inclusive) to LCA (exclusive).

        Notes
        -----
        This algorithm is optimized for finding the LCA of two nodes. Instead,
        :meth:`lca` is optimized for finding the LCA of multiple nodes.

        """
        anc1 = self.ancestors(include_self=True)
        anc2 = other.ancestors(include_self=True)

        # find lowest common ancestor of the two by iterating down from root and
        # stopping at divergence
        # pos is lca's index from root + 1
        lca, pos = None, None
        for i, (n1, n2) in enumerate(zip(reversed(anc1), reversed(anc2))):
            if n1 is n2:
                lca = n1
            else:
                pos = i
                break
        if lca is None:
            raise TreeError("Could not find a path between self and other.")
        if pos is None:
            pos = i + 1

        return lca, anc1[: len(anc1) - pos], anc2[: len(anc2) - pos]

    def path(self, other, include_ends=False):
        r"""Return the list of nodes in the path from self to another node.

        .. versionadded:: 0.6.3

        Parameters
        ----------
        other : TreeNode
            Final node of path.
        include_ends: bool, optional
            Whether to include the initial (self) and final (other) nodes in the list.
            Default is False.

        Returns
        -------
        list
            List of TreeNode objects.

        See Also
        --------
        distance

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -root----|
                 |          /-d
                  \f-------|
                            \-e

        >>> node_1, node_2 = tree.find('a'), tree.find('d')
        >>> path = node_1.path(node_2)
        >>> print(len(path))
        3
        >>> print('-'.join(x.name for x in path))
        c-root-f
        >>> path_2 = node_1.path(node_2, include_ends=True)
        >>> print(len(path_2))
        5
        >>> print('-'.join(x.name for x in path_2))
        a-c-root-f-d

        """
        lca, self_path, other_path = self._path(other)
        path = self_path + [lca] + other_path[::-1]

        # remove initial and final nodes if desired
        if include_ends is False:
            path = path[1:-1]

        return path

    # ------------------------------------------------
    # Tree traversal
    # ------------------------------------------------

    def traverse(self, self_before=True, self_after=False, include_self=True):
        r"""Traverse over tree.

        Parameters
        ----------
        self_before : bool, optional
            Whether to include each node before its descendants (default: True).
        self_after : bool, optional
            Whether to include each node after its descendants (default: False).
        include_self : bool, optional
            Include the initial node if True (default).

        Yields
        ------
        TreeNode
            Visited node.

        See Also
        --------
        preorder
        postorder
        pre_and_postorder
        levelorder
        tips
        non_tips

        Notes
        -----
        This is a depth-first search (DFS). ``self_before`` and ``self_after``
        determine whether a node should be visited before and after traversing its
        children. They are independent. If both True, each internal node (and root)
        will be visited twice. If neither is True, only tips will be returned.

        This method is a generalization of :meth:`preorder`, :meth:`postorder`,
        :meth:`pre_and_postorder` and :meth:`tips`. The default mode
        (``self_before=True, self_after=False``) is equivalent to preorder
        traversal.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -g-------|
                 |          /-d
                  \f-------|
                            \-e

        >>> for node in tree.traverse():
        ...     print(node.name)
        g
        c
        a
        b
        f
        d
        e

        """
        if self_before:
            if self_after:
                return self.pre_and_postorder(include_self=include_self)
            else:
                return self.preorder(include_self=include_self)
        else:
            if self_after:
                return self.postorder(include_self=include_self)
            else:
                return self.tips(include_self=include_self)

    def preorder(self, include_self=True):
        r"""Perform preorder traversal over tree.

        Parameters
        ----------
        include_self : bool, optional
            Include the initial node if True (default).

        Yields
        ------
        TreeNode
            Visited node.

        See Also
        --------
        traverse
        postorder
        pre_and_postorder
        levelorder

        Notes
        -----
        Preorder traversal visits each node followed by traversing each of its
        children in order. It is also known as NLR (node - left - right). It is
        a depth-first search (DFS). The overall direction of traversal is from
        root to tips.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -g-------|
                 |          /-d
                  \f-------|
                            \-e

        >>> for node in tree.preorder():
        ...     print(node.name)
        g
        c
        a
        b
        f
        d
        e

        """
        stack = [self] if include_self else self.children[::-1]
        stack_pop = stack.pop
        stack_extend = stack.extend
        while stack:
            yield (curr := stack_pop())
            if curr.children:
                stack_extend(curr.children[::-1])

    def postorder(self, include_self=True):
        r"""Perform postorder traversal over tree.

        Parameters
        ----------
        include_self : bool, optional
            Include the initial node if True (default).

        Yields
        ------
        TreeNode
            Visited node.

        See Also
        --------
        traverse
        preorder
        pre_and_postorder
        levelorder

        Notes
        -----
        Postorder traversal traverses all children of a node in order before
        visiting the parent node. It is also known as LRN (left - right -
        node). It is a depth-first search (DFS). The overall direction of
        traversal is from tips to root.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -g-------|
                 |          /-d
                  \f-------|
                            \-e

        >>> for node in tree.postorder():
        ...     print(node.name)
        a
        b
        c
        d
        e
        f
        g

        """
        # This is somewhat inelegant compared to saving the node and its index
        # on the stack, but is 30% faster in the average case and 3x faster in
        # the worst case (for a comb tree).
        child_index_stack = [0]
        child_index_stack_append = child_index_stack.append
        child_index_stack_pop = child_index_stack.pop
        curr = self
        curr_children = self.children
        curr_children_len = len(curr_children)
        while True:
            curr_index = child_index_stack[-1]
            # if there are children left, process them
            if curr_index < curr_children_len:
                curr_child = curr_children[curr_index]
                # if the current child has children, go there
                if curr_child.children:
                    child_index_stack_append(0)
                    curr = curr_child
                    curr_children = curr.children
                    curr_children_len = len(curr_children)
                    curr_index = 0
                # otherwise, yield that child
                else:
                    yield curr_child
                    child_index_stack[-1] += 1
            # if there are no children left, return self, and move to
            # self's parent
            else:
                if include_self or (curr is not self):
                    yield curr
                if curr is self:
                    break
                curr = curr.parent
                curr_children = curr.children
                curr_children_len = len(curr_children)
                child_index_stack_pop()
                child_index_stack[-1] += 1

    def pre_and_postorder(self, include_self=True):
        r"""Perform traversal over tree, visiting nodes before and after.

        Parameters
        ----------
        include_self : bool, optional
            Include the initial node if True (default).

        Yields
        ------
        TreeNode
            Visited node.

        See Also
        --------
        traverse
        postorder
        preorder
        levelorder

        Notes
        -----
        Pre- and post-order traversal visits each node before and after
        traversing all children of the node. Therefore, each internal node (and
        root) is visited twice. It is a depth-first search (DFS). The overall
        direction of traversal is from root to tips then back to root.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -g-------|
                 |          /-d
                  \f-------|
                            \-e

        >>> for node in tree.pre_and_postorder():
        ...     print(node.name)
        g
        c
        a
        b
        c
        f
        d
        e
        f
        g

        """
        # handle simple case first
        if not self.children:
            if include_self:
                yield self
            return
        child_index_stack = [0]
        child_index_stack_append = child_index_stack.append
        child_index_stack_pop = child_index_stack.pop
        curr = self
        curr_children = self.children
        while True:
            curr_index = child_index_stack[-1]
            if not curr_index:
                if include_self or (curr is not self):
                    yield curr
            # if there are children left, process them
            if curr_index < len(curr_children):
                curr_child = curr_children[curr_index]
                # if the current child has children, go there
                if curr_child.children:
                    child_index_stack_append(0)
                    curr = curr_child
                    curr_children = curr.children
                    curr_index = 0
                # otherwise, yield that child
                else:
                    yield curr_child
                    child_index_stack[-1] += 1
            # if there are no children left, return self, and move to
            # self's parent
            else:
                if include_self or (curr is not self):
                    yield curr
                if curr is self:
                    break
                curr = curr.parent
                curr_children = curr.children
                child_index_stack_pop()
                child_index_stack[-1] += 1

    def levelorder(self, include_self=True):
        r"""Perform level order traversal over tree.

        Parameters
        ----------
        include_self : bool, optional
            Include the initial node if True (default).

        Yields
        ------
        TreeNode
            Visited node.

        See Also
        --------
        postorder
        preorder
        pre_and_postorder
        traverse

        Notes
        -----
        Level order traversal visits all nodes at each depth from the root
        before visiting nodes at the next depth. It is a breadth-first search
        (BFS). The overall direction of traversal is from root to tips.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)g;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -g-------|
                 |          /-d
                  \f-------|
                            \-e

        >>> for node in tree.levelorder():
        ...     print(node.name)
        g
        c
        f
        a
        b
        d
        e

        """
        queue = deque([self]) if include_self else deque(self.children)
        queue_popleft = queue.popleft
        queue_extend = queue.extend
        while queue:
            yield (curr := queue_popleft())
            if curr.children:
                queue_extend(curr.children)

    def tips(self, include_self=False):
        r"""Iterate over tips descended from the current node.

        Parameters
        ----------
        include_self : bool, optional
            Whether to include the initial node if it is a tip (default: False).

        Yields
        ------
        TreeNode
            Visited tip.

        See Also
        --------
        non_tips
        postorder

        Notes
        -----
        Nodes are ordered by a postorder traversal of the tree. The order is
        consistent between calls.

        If self is a tip, it won't be yieled unless `include_self` is True.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        ---------|
                 |          /-d
                  \f-------|
                            \-e

        >>> for node in tree.tips():
        ...     print(node.name)
        a
        b
        d
        e

        """
        for node in self.postorder(include_self=include_self):
            if not node.children:
                yield node

    def non_tips(self, include_self=False):
        r"""Iterate over non-tip nodes descended from the current node.

        Parameters
        ----------
        include_self : bool, optional
            Whether to include the initial node if it is not a tip (default: False).

        Yields
        ------
        TreeNode
            Visited non-tip node.

        See Also
        --------
        tips
        postorder

        Notes
        -----
        Nodes are ordered by a postorder traversal of the tree. The order is
        consistent between calls.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        ---------|
                 |          /-d
                  \f-------|
                            \-e

        >>> for node in tree.non_tips():
        ...     print(node.name)
        c
        f

        """
        for node in self.postorder(include_self):
            if node.children:
                yield node

    # ------------------------------------------------
    # Tree manipulation
    # ------------------------------------------------

    def append(self, node, uncache=True):
        r"""Add a node to self's children.

        Parameters
        ----------
        node : TreeNode
            Node to add as a child.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        extend

        Notes
        -----
        This method will add the node to the end of self's children. If the incoming
        node is within another tree, it will be disconnected from its original parent,
        if any, but its children will be preserved. Therefore, this method is able to
        move an entire clade.

        The ``uncache`` parameter applies to both donor and recipient trees.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> root = TreeNode(name="root")
        >>> child1 = TreeNode(name="child1")
        >>> child2 = TreeNode(name="child2")
        >>> root.append(child1)
        >>> root.append(child2)
        >>> print(root)
        (child1,child2)root;
        <BLANKLINE>

        """
        if uncache:
            self.clear_caches()
            node.clear_caches()

        # reconnect the node from its original parent to self
        # this code is similar to `remove`, but it does not return a value
        if node.parent is not None:
            for i, curr_node in enumerate((children := node.parent.children)):
                if curr_node is node:
                    del children[i]
                    break
        node.parent = self
        self.children.append(node)

    def extend(self, nodes, uncache=True):
        r"""Add a list of nodes to self's children.

        Parameters
        ----------
        nodes : iterable of TreeNode
            Nodes to add as children.

            .. versionchanged:: 0.6.2

                Can accept any iterable type in addition to list as input.

        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        append

        Notes
        -----
        This method will remove existing parents of the nodes if they have any, set
        their parents to self, and add the nodes to the end of self's children.

        The ``uncache`` parameter applies to both donor and recipient trees.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> root = TreeNode(name="root")
        >>> root.extend([TreeNode(name="child1"), TreeNode(name="child2")])
        >>> print(root)
        (child1,child2)root;
        <BLANKLINE>

        """
        # make a shallow copy of nodes, which is necessary for working with iterators
        # and containers that are mutable during reconnection (like `children`)
        nodes = list(nodes)
        if uncache:
            self.clear_caches()
            for node in nodes:
                node.clear_caches()

        # reconnect each node from original parent to self; see `append`
        for node in nodes:
            if node.parent is not None:
                for i, curr_node in enumerate((children := node.parent.children)):
                    if curr_node is node:
                        del children[i]
                        break
            node.parent = self
        self.children.extend(nodes)

    def insert(self, node, distance=None, branch_attrs=[], uncache=True):
        r"""Insert a node into the branch connecting self and its parent.

        .. versionadded:: 0.6.2

        Parameters
        ----------
        node : TreeNode
            Node to insert.
        distance : float, int or None, optional
            Distance between self and the insertion point. Must not exceed ``length``
            of self. If None whereas ``length`` is not None, will insert at the
            midpoint of the branch.
        branch_attrs : iterable of str, optional
            Attributes of self that should be transferred to the inserted node
            as they are considered as attributes of the branch. ``support``
            will be automatically included as it is always a branch attribute.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        Raises
        ------
        NoParentError
            If self has no parent.
        ValueError
            If distance is specified but branch has no length.
        ValueError
            If distance exceeds branch length.

        See Also
        --------
        append

        Notes
        -----
        This method will remove the existing parent of the node if any, set its parent
        as self's parent, and set self's parent as the incoming node. The node's index
        position in the parent's children is consistent with that of self prior to
        insertion.

        The ``uncache`` parameter applies to both donor and recipient trees.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:4,d:5)e;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
        -e-------|          \-b
                 |
                  \-d

        >>> tree.find("c").insert(TreeNode("x"))
        >>> print(tree.ascii_art())
                                      /-a
                  /x------- /c-------|
        -e-------|                    \-b
                 |
                  \-d
        >>> tree.find("c").length
        2.0
        >>> tree.find("x").length
        2.0

        """
        if (parent := self.parent) is None:
            raise NoParentError("Self has no parent.")
        if uncache:
            self.clear_caches()

        # detach node from original tree if applicable
        if node.parent is not None:
            node.parent.remove(node, uncache)

        # replace self with node in the parent's list of children
        node.parent = parent
        for i, curr_node in enumerate(parent.children):
            if curr_node is self:
                parent.children[i] = node

        # add self to the beginning of the node's list of children
        self.parent = node
        node.children.insert(0, self)

        # transfer branch attributes to new node
        branch_attrs = set(branch_attrs)
        branch_attrs.add("support")
        branch_attrs.discard("length")
        for attr in branch_attrs:
            setattr(node, attr, getattr(self, attr, None))

        # determine insertion point
        if distance is None:
            if self.length is None:
                node.length = None
            else:
                self.length *= 0.5
                node.length = self.length
        else:
            if self.length is None:
                raise ValueError("Distance is provided but branch has no length.")
            elif distance > self.length:
                raise ValueError("Distance cannot exceed branch length.")
            node.length = self.length - distance
            self.length = distance

    def pop(self, index=-1, uncache=True):
        r"""Remove and return a child node by index position from self.

        Parameters
        ----------
        index : int, optional
            The index position in ``children`` to pop.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        Returns
        -------
        TreeNode
            The popped child node.

        Raises
        ------
        IndexError
            If the index position does not exist.

        See Also
        --------
        remove
        remove_by_func

        Notes
        -----
        The parent of the popped node will be set to ``None``.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(a,b)c;"])
        >>> print(tree.pop(0))
        a;
        <BLANKLINE>

        """
        if uncache:
            self.clear_caches()
        node = self.children.pop(index)
        node.parent = None
        return node

    def remove(self, node, uncache=True):
        r"""Remove a child node by identity from self.

        Parameters
        ----------
        node : TreeNode
            The node to remove from self's children.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        Returns
        -------
        bool
            True if the node was removed. False if the node is not a child of self.

        See Also
        --------
        pop
        remove_by_func

        Notes
        -----
        The parent of the removed node will be set to None. The removed node and its
        children (if any) still exist, but are disconnected from the tree. Therefore,
        this method is useful for detaching a clade from a tree.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(a,b)c;"])
        >>> tree.remove(tree.children[0])
        True

        """
        if uncache:
            self.clear_caches()

        # it is necessary to perform removal by identity (`is`), instead of removal by
        # equality (e.g., `self.children.remove(node)`), therefore:
        for i, curr_node in enumerate(self.children):
            if curr_node is node:
                curr_node.parent = None
                del self.children[i]
                return True
        return False

    @aliased("remove_deleted", "0.6.3", True)
    def remove_by_func(self, func, uncache=True):
        r"""Remove nodes of a tree that meet certain criteria.

        Parameters
        ----------
        func : callable
            A function that accepts a ``TreeNode`` and returns True or False, where
            True indicates the node is to be deleted.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        pop
        remove

        Notes
        -----
        This method has the potential to drop entire clades. That is, if an internal
        node is removed, all its descendants are no longer connected to the tree, even
        if they are not explicitly removed.

        This method has the potential to leave single-child internal nodes in the tree,
        which can be further collapsed by :meth:`prune`.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(a,b)c;"])
        >>> tree.remove_by_func(lambda x: x.name == 'b')
        >>> print(tree)
        (a)c;
        <BLANKLINE>

        """
        if uncache:
            self.clear_caches()
        for node in self.traverse(include_self=False):
            if func(node):
                node.parent.remove(node, uncache=False)

    def prune(self, uncache=True):
        r"""Collapse single-child nodes in the tree.

        Internal nodes with only one child will be removed, and direct connections will
        be made from the parent to the child. The branch length of the node will be
        added to the child. The name and properties of the child will override those of
        the parent following the operation.

        Parameters
        ----------
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        shear
        pop
        remove
        remove_by_func

        Notes
        -----
        This method is useful for cleaning up single-child nodes after some nodes were
        removed from a tree.

        If called from an internal node of the tree, only the clade below the node will
        be pruned.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(((a,b)c,(d)e)g,((h,i)j)k)root;"])
        >>> print(tree.ascii_art())
                                      /-a
                            /c-------|
                  /g-------|          \-b
                 |         |
        -root----|          \e------- /-d
                 |
                 |                    /-h
                  \k------- /j-------|
                                      \-i

        >>> tree.prune()
        >>> print(tree.ascii_art())
                                      /-a
                            /c-------|
                  /g-------|          \-b
                 |         |
        -root----|          \-d
                 |
                 |          /-h
                  \j-------|
                            \-i

        """
        if uncache:
            self.clear_caches()

        # build up the list of nodes to remove so the topology is not altered
        # while traversing
        nodes_to_remove = []
        nodes_to_remove_append = nodes_to_remove.append
        for node in self.traverse(include_self=False):
            if len(node.children) == 1:
                nodes_to_remove_append(node)

        # clean up the single children nodes
        for node in nodes_to_remove:
            child = node.children[0]
            if child.length is None or node.length is None:
                child.length = child.length or node.length
            else:
                child.length += node.length
            if (parent := node.parent) is not None:
                # TODO: replace the original node's index position, rather than append
                # to the end.
                parent.append(child, uncache=False)
                parent.remove(node, uncache=False)

        # If there is a single descendent from the root, the root will adopt the
        # child's properties. We can't "delete" the root as that would be deleting
        # self.
        if len(self.children) == 1:
            child = self.children[0]
            if child.length is None or self.length is None:
                self.length = self.length or child.length
            else:
                self.length += child.length
            for key, value in child.__dict__.items():
                if key not in ("length", "parent", "children"):
                    self.__dict__[key] = value
            self.remove(child, uncache=False)
            self.extend(child.children, uncache=False)

    def shear(self, names, strict=True, prune=True, inplace=False, uncache=True):
        r"""Refine a tree such that it just has the desired tip names.

        Parameters
        ----------
        names : iterable of str
            The tip names on the tree to keep.
        strict : bool, optional
            In case some names are not found in the tree, whether to raise an error
            (True, default) or to refine the tree to the found names only (False).

            .. versionadded:: 0.6.3

        prune : bool, optional
            Whether to collapse single-child nodes after shearing by calling
            :meth:`prune` (default: True).

            .. versionadded:: 0.6.3

        inplace : bool, optional
            Whether to modify the tree in place (True) or to create a modified copy of
            the tree (False, default).

            .. versionadded:: 0.6.3

        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`. Only applicable when ``inplace`` is True.

            .. versionadded:: 0.6.3

        Returns
        -------
        TreeNode, optional
            The resulting tree (if ``inplace`` is False).

        Raises
        ------
        ValueError
            If one or more names do not exist in the tree and ``strict`` is True.

        See Also
        --------
        prune
        remove
        remove_by_func

        Notes
        -----
        This method is useful for reducing a large tree to a relevant subset of taxa.

        If called from an internal node of the tree, only the clade below the node will
        be refined, and the copy of the tree (when ``inplace`` is False) will only
        include the clade.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(((a,b)c,(d,e)f)g,(h,i)j)root;"])
        >>> print(tree.ascii_art())
                                      /-a
                            /c-------|
                           |          \-b
                  /g-------|
                 |         |          /-d
                 |          \f-------|
        -root----|                    \-e
                 |
                 |          /-h
                  \j-------|
                            \-i

        >>> sheared = tree.shear(['a', 'd', 'h'])
        >>> print(sheared.ascii_art())
                            /-a
                  /g-------|
        -root----|          \-d
                 |
                  \-h

        """
        names = set(names)
        if strict and not names.issubset(self.subset()):
            raise ValueError("Names are not a subset of the tree.")

        # modify (sub)tree in place
        if inplace:
            tree = self
            if uncache:
                tree.clear_caches()

            # temporarily disconnect subtree from parent
            curr_parent = tree.parent
            tree.parent = None

        # make a copy of (sub)tree
        else:
            tree = self.copy()

        # mark desired tips and their ancestors
        marked = set()
        marked_add = marked.add
        for tip in tree.tips():
            if tip.name in names:
                marked_add(tip)

                # see also `tip.ancestors`, but the following code stops early if it
                # doesn't need to reach root
                anc = tip.parent
                while anc is not None:
                    if anc in marked:
                        break
                    marked_add(anc)
                    anc = anc.parent

        # TODO: This `list` can potentially be removed to save unnecessary removals
        # within clades that are already removed
        for node in list(tree.traverse()):
            if node not in marked:
                node.parent.remove(node, uncache=False)

        # remove single-child nodes
        if prune:
            tree.prune(uncache=False)

        # reconnect subtree to parent
        if inplace:
            tree.parent = curr_parent
        else:
            return tree

    def unpack(self, uncache=True):
        """Unpack an internal node in place.

        Parameters
        ----------
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        Notes
        -----
        This method sequentially: 1) elongates child nodes by branch length
        of self (omit if there is no branch length), 2) removes self from
        parent node, and 3) grafts child nodes to parent node.

        Raises
        ------
        ValueError
            If input node is root or tip.

        See Also
        --------
        unpack_by_func
        prune

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(['((c:2.0,d:3.0)a:1.0,(e:2.0,f:1.0)b:2.0);'])
        >>> tree.find('b').unpack()
        >>> print(tree)
        ((c:2.0,d:3.0)a:1.0,e:4.0,f:3.0);
        <BLANKLINE>

        """
        if self.is_root():
            raise TreeError("Cannot unpack root.")
        if self.is_tip():
            raise TreeError("Cannot unpack tip.")
        if uncache:
            self.clear_caches()
        parent = self.parent
        blen = self.length or 0.0
        for child in self.children:
            clen = child.length or 0.0
            child.length = clen + blen or None
        parent.remove(self, uncache=False)
        parent.extend(self.children, uncache=False)

    def unpack_by_func(self, func, uncache=True):
        """Unpack internal nodes of a tree that meet certain criteria.

        Parameters
        ----------
        func : callable
            A function that accepts a ``TreeNode`` and returns True or False, where
            True indicates the node is to be unpacked.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        unpack
        prune

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(['((c:2,d:3)a:1,(e:1,f:2)b:2);'])
        >>> tree.unpack_by_func(lambda x: x.length <= 1)
        >>> print(tree)
        ((e:1.0,f:2.0)b:2.0,c:3.0,d:4.0);
        <BLANKLINE>
        >>> tree = TreeNode.read(['(((a,b)85,(c,d)78)75,(e,(f,g)64)80);'])
        >>> tree.assign_supports()
        >>> tree.unpack_by_func(lambda x: x.support < 75)
        >>> print(tree)
        (((a,b)85,(c,d)78)75,(e,f,g)80);
        <BLANKLINE>

        """
        if uncache:
            self.clear_caches()
        nodes_to_unpack = []
        nodes_to_unpack_append = nodes_to_unpack.append
        for node in self.non_tips(include_self=False):
            if func(node):
                nodes_to_unpack_append(node)
        for node in nodes_to_unpack:
            node.unpack(uncache=False)

    def bifurcate(self, insert_length=None, include_self=True, uncache=True):
        r"""Convert the tree into a bifurcating tree.

        All nodes that have more than two children will have additional intermediate
        nodes inserted to ensure that every node has only two children.

        Parameters
        ----------
        insert_length : int, optional
            The branch length assigned to all inserted nodes.
        include_self : bool, optional
            If False, will not convert the current node. This is useful for keeping an
            unrooted tree unrooted. Default is True.

            .. versionadded:: 0.6.3

        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        prune
        is_bifurcating

        Notes
        -----
        This method does not modify single-child nodes. These nodes can be collapsed
        using :meth:`prune` prior to this method to create a strictly bifurcating tree.

        This method modifies the subtree under the current node.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b,g,h)c,(d,e)f)root;"])
        >>> print(tree.ascii_art())
                            /-a
                           |
                           |--b
                  /c-------|
                 |         |--g
                 |         |
        -root----|          \-h
                 |
                 |          /-d
                  \f-------|
                            \-e

        >>> tree.bifurcate()
        >>> print(tree.ascii_art())
                            /-h
                  /c-------|
                 |         |          /-g
                 |          \--------|
                 |                   |          /-a
        -root----|                    \--------|
                 |                              \-b
                 |
                 |          /-d
                  \f-------|
                            \-e

        """
        if uncache:
            self.clear_caches()
        treenode = self.__class__
        for node in self.traverse(include_self=include_self):
            if len(node.children) > 2:
                stack = node.children
                while len(stack) > 2:
                    ind = stack.pop()
                    interm = treenode(length=insert_length, children=stack[:])
                    node.append(interm, uncache=False)
                    for child in stack:
                        node.remove(child, uncache=False)
                    node.extend([ind, interm], uncache=False)

    @params_aliased([("shuffler", "shuffle_f", "0.6.3", True)])
    def shuffle(self, k=None, names=None, shuffler=None, n=1):
        r"""Randomly shuffle tip names of the tree.

        Parameters
        ----------
        k : int, optional
            The number of tips to shuffle. If provided, this number of tips will be
            randomly selected by ``shuffle_f``, and only those names will be shuffled.
            Conflicts with ``names``.
        names : list, optional
            The specific tip names to shuffle. Conflicts with ``k``.
        shuffler : int, np.random.Generator or callable, optional
            Shuffling function, which must accept a list and modify in place. Default
            is the :meth:`shuffle <numpy.random.Generator.shuffle>` method of a NumPy
            random generator. If an integer is provided, a random generator will be
            constructed using this number as the seed.

            .. versionchanged:: 0.6.3
                Switched to NumPy's new random generator. Can accept a random seed or
                random generator instance.

        n : int, optional
            The number of iterations to perform. Must be a positive integer. Default
            is 1. If None or ``np.inf``, iterations will be infinite.

            .. versionchanged:: 0.6.3
                Can accept None.

        Yields
        ------
        TreeNode
            Tree with shuffled tip names.

        Raises
        ------
        ValueError
            If ``k`` < 2 or ``n`` < 1.
        ValueError
            If both ``k`` and ``names`` are specified.
        MissingNodeError
            If ``names`` is specified but one of the names cannot be found.

        See Also
        --------
        numpy.random.Generator.shuffle

        Notes
        -----
        This method does not create copies of the tree. Instead, tip names are shuffled
        in place in the original tree and the tree is yielded prior to the next round
        of shuffling. Tree caches will be cleared prior to shuffling.

        ``k`` and ``names`` cannot be specified at the same time. If neither ``k`` nor
        ``names`` are provided, all tips will be shuffled.

        Examples
        --------
        Shuffle the names of a 4-tip tree for 5 times:

        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b),(c,d));"])
        >>> for shuffled in tree.shuffle(shuffler=42, n=5):
        ...     print(shuffled)
        ((d,c),(b,a));
        <BLANKLINE>
        ((a,b),(d,c));
        <BLANKLINE>
        ((a,c),(d,b));
        <BLANKLINE>
        ((d,b),(a,c));
        <BLANKLINE>
        ((a,c),(d,b));
        <BLANKLINE>

        """
        if k is not None:
            if k < 2:
                raise ValueError("k must be None or >= 2.")
            if names is not None:
                raise ValueError("k and names cannot be specified at the same time.")
        if n is None:
            n = np.inf
        elif n < 1:
            raise ValueError("n must be > 0.")

        # determine shuffling function
        shuffler = _check_shuffler(shuffler)

        # determine tip names to shuffle
        if names is not None:
            tips = [self.find(x) for x in names]
        else:
            tips = list(self.tips())
            if k is not None:
                shuffler(tips)
                tips = tips[:k]
            names = [x.name for x in tips]

        # since the names are being shuffled, the caches are no longer reliable
        self.clear_caches()

        # iteratively shuffle tip names and yield tree
        counter = 0
        while counter < n:
            shuffler(names)
            for tip, name in zip(tips, names):
                tip.name = name
            yield self
            counter += 1

    # ------------------------------------------------
    # Tree rerooting
    # ------------------------------------------------

    def unroot(self, side=None, uncache=True):
        r"""Convert a rooted tree into unrooted.

        .. versionadded:: 0.6.2

        Parameters
        ----------
        side : int, optional
            Which basal node (i.e., children of root) will be elevated to root. Must be
            0 or 1. If not provided, will elevate the first basal node that is not a
            tip. The choice won't impact tree topology.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        root
        root_at

        Notes
        -----
        In scikit-bio, every tree has a root node. A tree is considered as
        "rooted" if its root node has exactly two children. In contrast, an
        "unrooted" tree may have three (the most common case), one, or more
        than three children attached to its root node. This method will not
        modify the tree if it is already unrooted.

        This method unroots a tree by trifucating its root. Specifically, it
        removes one of the two basal nodes of the tree (i.e., children of the
        root), transfers the name of the removed node to the root, and
        re-attaches the removed node's children to the root. Additionally, the
        removed node's branch length, if available, will be added to the other
        basal node's branch. The outcome appears as if the root is removed
        and the two basal nodes are directly connected.

        The choice of the basal node to be elevated affects the positioning of
        the resulting tree, but does not affect its topology from a
        phylogenetic perspective, as it is considered as unrooted.

        This method manipulates the tree in place. There is no return value.

        .. note:: In the case where the basal node has just one child, the
            resulting tree will still appear rooted as it has two basal nodes.
            To avoid this scenario, call :meth:`prune` to remove all one-child
            internal nodes.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(['(((a,b)c,(d,e)f)g,(h,i)j)k;'])
        >>> print(tree.ascii_art())
                                      /-a
                            /c-------|
                           |          \-b
                  /g-------|
                 |         |          /-d
                 |          \f-------|
        -k-------|                    \-e
                 |
                 |          /-h
                  \j-------|
                            \-i

        >>> tree.unroot()
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
                 |
                 |          /-d
        -g-------|-f-------|
                 |          \-e
                 |
                 |          /-h
                  \j-------|
                            \-i

        """
        # return original tree if already unrooted
        root = self.root()
        if len(bases := root.children) != 2:
            return root

        if uncache:
            root.clear_caches()

        # choose a basal node to elevate
        if side is None:
            side = 1 if (bases[0].is_tip() and not bases[1].is_tip()) else 0
        chosen, other = bases[side], bases[1 - side]

        # remove chosen node and re-attach its children to root
        chosen.parent = None
        for child in chosen.children:
            child.parent = root
        if side:
            root.children = [other] + chosen.children
        else:
            root.children = chosen.children + [other]

        # transfer basal node's attributes to root
        for key, value in chosen.__dict__.items():
            if key not in ("length", "support", "parent", "children"):
                root.__dict__[key] = value

        # add branch length to the other basal node
        if (L := chosen.length) is not None:
            if other.length is not None:
                other.length += L
            else:
                other.length = L

    def unrooted_copy(
        self,
        parent=None,
        branch_attrs={"name", "length", "support"},
        root_name="root",
        deep=False,
        exclude_attrs=None,
    ):
        r"""Walk the tree unrooted-style and return a copy.

        Parameters
        ----------
        parent : TreeNode or None
            Direction of walking (from parent to self). If specified, walking to the
            parent will be prohibited.

        branch_attrs : set of str, optional
            Attributes of ``TreeNode`` objects that should be considered as branch
            attributes during the operation.

            .. versionadded:: 0.6.2

            .. note:: ``name`` will be removed from the default in 0.7.0, as it is
                usually considered as an attribute of the node instead of the branch.

        root_name : str or None, optional
            Name for the new root node, if it doesn't have one.

            .. versionadded:: 0.6.2

            .. note:: This parameter will be removed in 0.7.0, and the root node will
                not be renamed.

        deep : bool, optional
            Whether to perform a shallow (False, default) or deep (True) copy of node
            attributes.

            .. versionadded:: 0.6.2

        exclude_attrs : set, optional
            Node attributes that should not be copied. If None (default), the caches
            will be excluded. This parameter keeps a memo during recursive copying for
            efficiency. It should not be customized by the user unless absolutely
            needed.

            .. versionadded:: 0.6.3

        Returns
        -------
        TreeNode
            A new copy of the tree rooted at the given node.

            .. versionchanged:: 0.6.2

                Node attributes other than name and length will also be copied.

        Warnings
        --------
        The default behavior of ``unrooted_copy`` is subject to change in 0.7.0. The
        new default behavior can be achieved by specifying
        ``branch_attrs={"length", "support"}, root_name=None``.

        See Also
        --------
        copy
        unrooted_move

        Notes
        -----
        This method recursively walks a tree from a given node in an unrooted style
        (i.e., directions of branches are not assumed), and copies each node it
        visits, such that the copy of the given node becomes the root node of a new
        tree and the copies of all other nodes are re-positioned accordingly, whereas
        the topology of the new tree will be identical to the existing one.

        Nodes attributes except for caches will be copied to the new tree. Attributes
        in ``branch_attrs`` will be transferred to the node at the other end of a
        branch if the branch is flipped in the new tree.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> new_tree = tree.find('d').unrooted_copy()
        >>> print(new_tree)
        (b,c,(a,((f,g)h)e)d)root;
        <BLANKLINE>

        """
        # future warning
        if branch_attrs == {"name", "length", "support"} and root_name == "root":
            _warn_once(
                self.__class__.unrooted_copy,
                FutureWarning,
                "The default behavior of `unrooted_copy` is subject to change in "
                "0.7.0. The new default behavior can be achieved by specifying "
                '`branch_attrs={"length", "support"}, root_name=None`.',
            )

        # determine copy mode
        _copy = deepcopy if deep else copy

        # determine node attributes to exclude
        if exclude_attrs is None:
            exclude_attrs = self._exclude_from_copy
            if hasattr((root := self.root()), "_registered_caches"):
                exclude_attrs = exclude_attrs | root._registered_caches

        # identify neighbors (adjacent nodes) of self, excluding the incoming node
        neighbors = self.neighbors(ignore=parent)

        # recursively copy each neighbor; they will become outgoing nodes (children)
        children = [
            c.unrooted_copy(
                parent=self,
                branch_attrs=branch_attrs,
                root_name=root_name,
                deep=deep,
                exclude_attrs=exclude_attrs,
            )
            for c in neighbors
        ]

        # identify node from which branch attributes should be transferred
        # 1. starting point (becomes root)
        if parent is None:
            other = None
        # 2. walk up (parent becomes child)
        elif parent.parent is self:
            other = parent
        # 3. walk down (retain the same order)
        else:
            other = self

        # create a new node and attach children to it, see also `copy`
        attrs = {
            x: (
                (None if other is None else getattr(other, x))
                if x in branch_attrs
                else getattr(self, x)
            )
            for x in ("name", "length", "support")
        }
        result = self.__class__(**attrs, children=children)

        # transfer attributes to the new node, see also `copy`
        for key in self.__dict__:
            if key not in exclude_attrs:
                source = other if key in branch_attrs else self
                if source is not None and key in source.__dict__:
                    result.__dict__[key] = _copy(source.__dict__[key])

        # name the new root
        if root_name and parent is None and result.name is None:
            result.name = root_name

        return result

    @deprecated(
        "0.6.2",
        msg="Because it generates a redundant copy of the tree. Use `unrooted_copy` "
        "instead.",
    )
    def unrooted_deepcopy(self, parent=None):
        r"""Walk the tree unrooted-style and returns a new deepcopy.

        Parameters
        ----------
        parent : TreeNode or None
            Direction of walking (from parent to self). If specified, walking
            to the parent will be prohibited.

        Returns
        -------
        TreeNode
            A new copy of the tree rooted at the given node.

        See Also
        --------
        copy
        unrooted_copy
        root_at

        Notes
        -----
        Perform a deepcopy of self and return a new copy of the tree as an
        unrooted copy. This is useful for defining a new root of the tree.

        This method calls :meth:`unrooted_copy` which is recursive.

        """
        root = self.root()
        root.assign_ids()

        new_tree = root.copy()
        new_tree.assign_ids()

        new_tree_self = new_tree.find_by_id(self.id)
        return new_tree_self.unrooted_copy(parent, deep=True)

    def unrooted_move(
        self,
        branch_attrs={"length", "support"},
        uncache=True,
    ):
        r"""Walk the tree unrooted-style and rearrange it.

        .. versionadded:: 0.6.2

        .. versionchanged:: 0.6.3
            The underlying algorithm is now iterative instead of recursive, therefore
            won't be constrained by Python's maximum recursion limit when working with
            large trees. Parameter ``parent`` was removed as it is no longer needed.

        Parameters
        ----------
        parent : TreeNode or None
            Direction of walking (from parent to self). If specified, walking
            to the parent will be prohibited.
        branch_attrs : set of str, optional
            Attributes of ``TreeNode`` objects that should be considered as
            branch attributes during the operation.
        uncache : bool, optional
            Whether to clear caches of the tree if present (default: True). See
            :meth:`details <has_caches>`.

            .. versionadded:: 0.6.3

        See Also
        --------
        root_at
        unrooted_copy

        Notes
        -----
        This method walks a tree from a given node in an unrooted style (i.e.,
        directions of branches are not assumed). It rerranges the tree such that
        the given node becomes the root node and all other nodes are re-positioned
        accordingly, whereas the topology remains the same.

        This method manipulates the tree in place. There is no return value.
        The new tree should be referred to by the node where the operation
        started, as it has become the new root node.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> new_root = tree.find('d')
        >>> new_root.unrooted_move()
        >>> print(new_root)
        (b,c,(a,((f,g)h)i)e)d;
        <BLANKLINE>

        """
        if uncache:
            self.clear_caches()

        # This algorithm uses an iterative approach to avoid the maximum recursion
        # limit imposed by Python. Two rounds of iterations are involved to 1) flip
        # the tree and to 2) reconstruct the upward branches.
        self.old_child = None
        curr = self
        parent = None

        # move up in the original tree and move parent to children
        while (old_parent := curr.parent) is not None:
            for i, child in enumerate(old_parent.children):
                if child is curr:
                    old_parent.children.pop(i)
                    break
            curr.children.append(old_parent)
            old_parent.old_child = curr
            curr.parent = parent
            parent = curr
            curr = old_parent

        # move up in the new tree and rebuild parent connection
        while curr.old_child is not None:
            child = curr.old_child
            curr.parent = child
            for attr in branch_attrs:
                setattr(curr, attr, getattr(child, attr, None))
            del curr.old_child
            curr = child

        del self.old_child
        for attr in branch_attrs:
            setattr(self, attr, None)

    def root_at(
        self,
        node=None,
        above=False,
        reset=False,
        branch_attrs=["name"],
        root_name="root",
        inplace=False,
    ):
        r"""Reroot the tree at the provided node.

        This is useful for positioning a tree with an orientation that reflects
        knowledge of the true root location.

        Parameters
        ----------
        node : TreeNode or str, optional
            The node to root at. Can either be a node object or the name of the node.
            If not provided, will root at self. If a root node provided, will return
            the original tree.

            .. versionchanged:: 0.6.2

                Becomes optional.

        above : bool, float, or int, optional
            Whether and where to insert a new root node. If False (default), the target
            node will serve as the root node. If True, a new root node will be created
            and inserted at the midpoint of the branch connecting the target node and
            its parent. If a number, the new root will be inserted at this distance
            from the target node. The number ranges between 0 and branch length.

            .. versionadded:: 0.6.2

        reset : bool, optional
            Whether to remove the original root of a rooted tree before performing the
            rerooting operation. Default is False.

            .. versionadded:: 0.6.2

            .. note:: The default value will be set as True in 0.7.0.

        branch_attrs : iterable of str, optional
            Attributes of each node that should be considered as attributes of the
            branch connecting the node to its parent. This is important for the correct
            rerooting operation. "length" and "support" will be automatically included
            as they are always branch attributes.

            .. versionadded:: 0.6.2

            .. note:: ``name`` will be removed from the default in 0.7.0, as it is
                usually considered as an attribute of the node instead of the branch.

        root_name : str or None, optional
            Name for the root node, if it doesn't already have one.

            .. versionadded:: 0.6.2

            .. note:: The default value will be set as ``None`` in 0.7.0.

        inplace : bool, optional
            Whether to reroot the tree in place (True) or to create a rerooted copy of
            the tree (False, default).

            .. versionadded:: 0.6.3

        Returns
        -------
        TreeNode
            A tree rooted at the give node.

        Warnings
        --------
        The default behavior of ``root_at`` is subject to change in 0.7.0. The
        new default behavior can be achieved by specifying ``reset=True,
        branch_attrs=[], root_name=None``.

        See Also
        --------
        unrooted_copy
        unrooted_move
        unroot

        Notes
        -----
        The specified node will be come the root of the new tree.

        Tree caches (see :meth:`details <has_caches>`) will not be retained in the
        returned tree. In in-place mode, they will be cleared prior to rerooting. In
        copying mode, they will not be copied to the new tree.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(((a,b)c,(d,e)f)g,h)i;"])
        >>> print(tree.ascii_art())
                                      /-a
                            /c-------|
                           |          \-b
                  /g-------|
                 |         |          /-d
        -i-------|          \f-------|
                 |                    \-e
                 |
                  \-h

        Use the given node as the root node. This will typically create an
        unrooted tree (i.e., root node has three children).

        >>> t1 = tree.root_at("c", branch_attrs=[])
        >>> print(t1)
        (a,b,((d,e)f,(h)i)g)c;
        <BLANKLINE>
        >>> print(t1.ascii_art())
                  /-a
                 |
                 |--b
        -c-------|
                 |                    /-d
                 |          /f-------|
                  \g-------|          \-e
                           |
                            \i------- /-h

        Insert a new root node into the branch above the given node. This will
        create a rooted tree (i.e., root node has two children).

        >>> t2 = tree.root_at("c", above=True, branch_attrs=[])
        >>> print(t2)
        ((a,b)c,((d,e)f,(h)i)g)root;
        <BLANKLINE>
        >>> print(t2.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -root----|
                 |                    /-d
                 |          /f-------|
                  \g-------|          \-e
                           |
                            \i------- /-h

        """
        # future warning
        if reset is False and branch_attrs == ["name"] and root_name == "root":
            _warn_once(
                self.__class__.root_at,
                FutureWarning,
                "The default behavior of `root_at` is subject to change in 0.7.0. "
                "The new default behavior can be achieved by specifying "
                "`reset=True, branch_attrs=[], root_name=None`.",
            )

        # locate to-be root node
        tree = self.root()
        if node is None:
            node = self
        elif isinstance(node, str):
            node = tree.find(node)

        # return if already rooted
        if node.is_root():
            return node.copy()

        # check if tree is rooted
        if reset and len(tree.children) != 2:
            reset = False

        # Prior to rerooting, the tree may need to be manipulated to remove the
        # original root and/or to insert a new root node

        # For optimal performance (copying the tree only once), the following code
        # considers three scenarios:
        # 1. In-place mode: Just manipulate the tree if needed, then call
        #    `unrooted_move`.
        # 2. Copying mode, tree doesn't need to be manipulated: directly call
        #    `unrooted_copy`
        # 3. Copying mode, tree needs to be manipulated: Make a copy of the
        #    tree, manipulate, then call `unrooted_move`.

        to_copy = False
        if not inplace:
            if reset or above is not False:
                tree.assign_ids()
                new_tree = tree.copy()
                new_tree.assign_ids()
                node = new_tree.find_by_id(node.id)
                tree = new_tree
            else:
                to_copy = True

        # Clear caches, since root node will be different and caches are going to be
        # useless regardless.
        else:
            tree.clear_caches()

        # Remove original root. We need to make sure the node itself is not the basal
        # node that gets removed.
        if reset:
            side = None
            for i, base in enumerate(tree.children):
                if node is base:
                    side = 1 - i
                    break
            tree.unroot(side)

        # insert a new root node into the branch above
        if above is not False:
            to_insert = node.__class__()
            distance = None if above is True else above
            node.insert(to_insert, distance, branch_attrs, uncache=False)
            node = to_insert

        branch_attrs = set(branch_attrs)
        branch_attrs.update(["length", "support"])

        # rotate the tree to position the new root
        if to_copy:
            return node.unrooted_copy(branch_attrs=branch_attrs, root_name=root_name)
        else:
            node.unrooted_move(branch_attrs=branch_attrs, uncache=False)
            if root_name and node.name is None:
                node.name = root_name
            return node

    def root_at_midpoint(
        self, reset=False, branch_attrs=["name"], root_name="root", inplace=False
    ):
        r"""Reroot the tree at the midpoint of the two tips farthest apart.

        Parameters
        ----------
        reset : bool, optional
            Whether to remove the original root of a rooted tree before performing
            the rerooting operation. Default is False.

            .. versionadded:: 0.6.2

            .. note:: The default value will be set as True in 0.7.0.

        branch_attrs : iterable of str, optional
            Attributes of each node that should be considered as attributes of
            the branch connecting the node to its parent. This is important for
            the correct rerooting operation. "length" and "support" will be
            automatically included as they are always branch attributes.

            .. versionadded:: 0.6.2

            .. note:: ``name`` will be removed from the default in 0.7.0, as
                it is usually considered as an attribute of the node instead of
                the branch.

        root_name : str or None, optional
            Name for the new root node, if it doesn't have one.

            .. versionadded:: 0.6.2

            .. note:: The default value will be set as ``None`` in 0.7.0.

        inplace : bool, optional
            Whether to reroot the tree in place (True) or to create a rerooted copy of
            the tree (False, default).

            .. versionadded:: 0.6.3

        Returns
        -------
        TreeNode
            A tree rooted at its midpoint.

        Raises
        ------
        TreeError
            If a tip ends up being the mid point.
        LengthError
            Midpoint rooting requires `length` and will raise (indirectly) if
            evaluated nodes don't have length.

        Warnings
        --------
        The default behavior of ``root_at_midpoint`` is subject to change in
        0.7.0. The new default behavior can be achieved by specifying
        ``reset=True, branch_attrs=[], root_name=None``.

        See Also
        --------
        root_at
        unrooted_copy

        Notes
        -----
        The midpoint rooting (MPR) method was originally described in [1]_.

        Tree caches (see :meth:`details <has_caches>`) will not be retained in the
        returned tree. In in-place mode, they will be cleared prior to rerooting. In
        copying mode, they will not be copied to the new tree.

        References
        ----------
        .. [1] Farris, J. S. (1972). Estimating phylogenetic trees from
           distance matrices. The American Naturalist, 106(951), 645-668.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:1)c:2,(d:3,e:4)f:5,g:1)h;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
                 |
        -h-------|          /-d
                 |-f-------|
                 |          \-e
                 |
                  \-g

        >>> t = tree.root_at_midpoint(branch_attrs=[])
        >>> print(t)
        ((d:3.0,e:4.0)f:2.0,((a:1.0,b:1.0)c:2.0,g:1.0)h:3.0)root;
        <BLANKLINE>
        >>> print(t.ascii_art())
                            /-d
                  /f-------|
                 |          \-e
        -root----|
                 |                    /-a
                 |          /c-------|
                  \h-------|          \-b
                           |
                            \-g

        """
        # future warning
        if reset is False and branch_attrs == ["name"] and root_name == "root":
            _warn_once(
                self.__class__.root_at_midpoint,
                FutureWarning,
                "The default behavior of `root_at_midpoint` is subject to change in "
                "0.7.0. The new default behavior can be achieved by specifying "
                "`reset=True, branch_attrs=[], root_name=None`.",
            )

        tree = self.root()
        if inplace:
            tree.clear_caches()
        else:
            tree = tree.copy()

        if reset:
            tree.unroot(uncache=False)

        max_dist, tips = tree.maxdist()
        half_max_dist = max_dist / 2.0

        if max_dist == 0.0:
            return tree

        tip1 = tree.find(tips[0])
        tip2 = tree.find(tips[1])
        lca = tree.lca([tip1, tip2])

        if tip1.depth(lca) > half_max_dist:
            climb_node = tip1
        else:
            climb_node = tip2

        dist_climbed = 0.0
        while dist_climbed + climb_node.length < half_max_dist:
            dist_climbed += climb_node.length
            climb_node = climb_node.parent

        # case 1: midpoint is at the climb node's parent
        # make the parent node as the new root
        if dist_climbed + climb_node.length == half_max_dist:
            new_root = climb_node.parent

        # case 2: midpoint is on the climb node's branch to its parent
        # insert a new root node into the branch
        else:
            new_root = tree.__class__()
            climb_node.insert(new_root, half_max_dist - dist_climbed, uncache=False)
            # TODO: Here, `branch_attrs` should be added to `insert`. However, this
            # will cause a backward-incompatible behavior. This change will be made
            # in version 0.7.0, along with the removal of `name` from the default of
            # `branch_attrs`.

        branch_attrs = set(branch_attrs)
        branch_attrs.update(["length", "support"])
        new_root.unrooted_move(branch_attrs=branch_attrs, uncache=False)
        if root_name and new_root.name is None:
            new_root.name = root_name
        return new_root

    def root_by_outgroup(
        self,
        outgroup,
        above=True,
        reset=True,
        branch_attrs=[],
        root_name=None,
        inplace=False,
    ):
        r"""Reroot the tree with a given set of taxa as outgroup.

        .. versionadded:: 0.6.2

        Parameters
        ----------
        outgroup : iterable of str
            Taxon set to serve as outgroup. Must be a proper subset of taxa in the
            tree. The tree will be rooted at the lowest common ancestor (LCA) of the
            outgroup.
        above : bool, float, or int, optional
            Whether and where to insert a new root node. If False, the LCA will serve
            as the root node. If True (default), a new root node will be created and
            inserted at the midpoint of the branch connecting the LCA and its parent
            (i.e., the midpoint between outgroup and ingroup). If a number between 0
            and branch length, the new root will be inserted at this distance from the
            LCA.
        reset : bool, optional
            Whether to remove the original root of a rooted tree before performing the
            rerooting operation. Default is True.
        branch_attrs : iterable of str, optional
            Attributes of each node that should be considered as attributes of the
            branch connecting the node to its parent. This is important for the correct
            rerooting operation. "length" and "support" will be automatically included
            as they are always branch attributes.
        root_name : str or None, optional
            Name for the root node, if it doesn't already have one.
        inplace : bool, optional
            Whether to reroot the tree in place (True) or to create a rerooted copy of
            the tree (False, default).

            .. versionadded:: 0.6.3

        Returns
        -------
        TreeNode
            A tree rooted by the outgroup.

        Raises
        ------
        TreeError
            Outgroup is not a proper subset of taxa in the tree.
        TreeError
            Outgroup is not monophyletic in the tree.

        Notes
        -----
        An outgroup is a subset of taxa that are usually distantly related from
        the remaining taxa (ingroup). The outgroup helps with locating the root
        of the ingroup, which are of interest in the study.

        This method reroots the tree at the lowest common ancestor (LCA) of the
        outgroup. By default, a new root will be placed at the midpoint between
        the LCA of outgroup and that of ingroup. But this behavior can be
        customized.

        This method requires the outgroup to be monophyletic, i.e., it forms a
        single clade in the tree. If the outgroup spans across the root of the
        tree, the method will reroot the tree within the ingroup such that the
        outgroup can form a clade in the rerooted tree, prior to rooting by
        outgroup.

        Tree caches (see :meth:`details <has_caches>`) will not be retained in the
        returned tree. In in-place mode, they will be cleared prior to rerooting. In
        copying mode, they will not be copied to the new tree.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(['((((a,b),(c,d)),(e,f)),g);'])
        >>> print(tree.ascii_art())
                                                /-a
                                      /--------|
                                     |          \-b
                            /--------|
                           |         |          /-c
                           |          \--------|
                  /--------|                    \-d
                 |         |
                 |         |          /-e
        ---------|          \--------|
                 |                    \-f
                 |
                  \-g

        >>> rooted = tree.root_by_outgroup(['a', 'b'])
        >>> print(rooted.ascii_art())
                            /-a
                  /--------|
                 |          \-b
                 |
        ---------|                    /-c
                 |          /--------|
                 |         |          \-d
                  \--------|
                           |                    /-e
                           |          /--------|
                            \--------|          \-f
                                     |
                                      \-g

        >>> rooted = tree.root_by_outgroup(['e', 'f', 'g'])
        >>> print(rooted.ascii_art())
                                      /-e
                            /--------|
                  /--------|          \-f
                 |         |
                 |          \-g
        ---------|
                 |                    /-c
                 |          /--------|
                 |         |          \-d
                  \--------|
                           |          /-b
                            \--------|
                                      \-a

        """
        outgroup = set(outgroup)

        if not outgroup < self.subset():
            raise TreeError("Outgroup is not a proper subset of taxa in the tree.")

        # locate the lowest common ancestor (LCA) of outgroup in the tree
        lca = self.lca(outgroup)

        # if LCA is root (i.e., outgroup is split across basal clades), root
        # the tree at a tip within the ingroup and locate LCA again
        if lca is self:
            for tip in self.tips():
                if tip.name not in outgroup:
                    tree = self.root_at(
                        tip, reset=reset, branch_attrs=branch_attrs, inplace=inplace
                    )
                    inplace = False  # no need to make copy again
                    break
            lca = tree.lca(outgroup)
        else:
            tree = self

        # test if outgroup is monophyletic
        if lca.count(tips=True) > len(outgroup):
            raise TreeError("Outgroup is not monophyletic in the tree.")

        # reroot the tree at LCA
        return tree.root_at(
            lca,
            above=above,
            reset=reset,
            branch_attrs=branch_attrs,
            root_name=root_name,
            inplace=inplace,
        )

    # ------------------------------------------------
    # Tree metrics
    # ------------------------------------------------

    def count(self, tips=False):
        r"""Get the count of nodes in the tree.

        Parameters
        ----------
        tips : bool, optional
            If True, only return the count of tips (default: False).

        Returns
        -------
        int
            The number of nodes.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> print(tree.count())
        9
        >>> print(tree.count(tips=True))
        5

        """
        if tips:
            return len(list(self.tips()))
        else:
            return len(list(self.traverse(include_self=True)))

    def subset(self, include_self=False):
        r"""Return a subset of taxa descending from self.

        A subset can be considered as taxa (tip names) within a clade defined by the
        current node (branch), selected from all taxa within the tree.

        Parameters
        ----------
        include_self : bool, optional
            Whether to include the current node if it is a tip (default: False).

            .. versionadded:: 0.6.3

        Returns
        -------
        frozenset of str
            The set of names at the tips of the clade that descends from self.

        See Also
        --------
        tips
        subsets
        bipart

        Notes
        -----
        This is a convenient method to return all taxa (tip names) rather than the tip
        nodes themselves. Internal node names will not be included.

        The returned value (a frozenset) is unordered and hashable, therefore can be
        used to define clades, lineages and taxon groups for efficient lookup. For
        example, one can check whether a taxon exists in the current tree or clade.

        By default, if this method is applied to a tip, an empty set will be returned,
        because a tip does not have descendants. If `include_self` is True, a single-
        element set containing the name of the tip will be returned. This behavior can
        be considered as returning taxa descending from the branch connecting self
        and its parent.

        Applying this method to the root node of a tree will return all taxa in the
        tree.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> print(tree.ascii_art())
                            /-a
                  /e-------|
                 |         |          /-b
                 |          \d-------|
        -i-------|                    \-c
                 |
                 |          /-f
                  \h-------|
                            \-g

        >>> sorted(tree.subset())
        ['a', 'b', 'c', 'f', 'g']

        >>> subset = tree.find('e').subset()
        >>> sorted(subset)
        ['a', 'b', 'c']

        >>> 'a' in subset
        True

        >>> 'f' in subset
        False

        """
        return frozenset({i.name for i in self.tips(include_self=include_self)})

    def subsets(
        self,
        within=None,
        include_full=False,
        include_tips=False,
        map_to_length=False,
    ):
        r"""Return all subsets of taxa defined by nodes descending from self.

        Parameters
        ----------
        within : iterable of str, optional
            A custom set of taxa to refine the result. Only taxa within it will be
            considered. If None (default), all taxa in the tree will be considered.

            .. versionadded:: 0.6.3

        include_full : bool, optional
            Whether to include a set of all taxa in the result. Default is False, as
            such a set provides no topological information.

            .. versionadded:: 0.6.3

        include_tips : bool, optional
            Whether to include subsets with only one taxon in the result. Default is
            False, as such sets provide no topological information.

            .. versionadded:: 0.6.3

        map_to_length : bool, optional
            If True, return a mapping of subsets to their branch lengths. Missing
            branch lengths will be replaced with 0. Default is False.

            .. versionadded:: 0.6.3

        Returns
        -------
        frozenset of frozenset of str, or
            All subsets of taxa defined by nodes descending from self. Returned if
            `map_to_length` is False.
        dict of {frozenset of str: float}
            Mapping of all subsets of taxa to their branch lengths. Returned if
            `map_to_length` is True.

        See Also
        --------
        subset
        compare_subsets
        biparts

        Notes
        -----
        The returned value represents the tree as a set of nested sets, each of which
        representing a clade in the tree. It is useful for assessing topological
        patterns of a tree.

        The returned value itself and each of its components (frozensets) are unordered
        and hashable, making it efficient for lookup and comparison. For example, one
        can check whether a group of taxa form a clade in the tree, regardless of its
        internal structure.

        This method can be applied to both rooted and unrooted trees. However, the
        underlying assumption is that the direction of descendance is from the current
        node to the tips below. That is, the root of the tree, even if not explicitly
        defined, should be at or above the current node. This should be considered when
        applying this method to an unrooted tree. If such an assumption is not present,
        one should consider using :meth:`biparts` instead.

        This method operates on the subtree below the current node.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)d)e,(f,g)h)i;"])
        >>> print(tree.ascii_art())
                            /-a
                  /e-------|
                 |         |          /-b
                 |          \d-------|
        -i-------|                    \-c
                 |
                 |          /-f
                  \h-------|
                            \-g

        >>> subsets = tree.subsets()
        >>> for s in sorted(subsets, key=sorted):
        ...     print(sorted(s))
        ['a', 'b', 'c']
        ['b', 'c']
        ['f', 'g']

        >>> {'a', 'b', 'c'} in subsets
        True

        >>> {'a', 'b'} in subsets
        False

        """
        if not (getall := within is None):
            if not isinstance(within, (set, frozenset, dict)):
                within = frozenset(within)

        # initiate result
        subsets = []
        subsets_append = subsets.append
        if map_to_length:
            lengths = []
            lengths_append = lengths.append

        # If the current subset has been encountered during postorder traversal, it
        # must be the immediately previous subset. This happens when a single-child
        # node is encountered after refining taxa to the "within" set.
        last = None

        for node in self.postorder(include_self=True):
            # tip: create a one-taxon set
            if not node.children:
                if getall or node.name in within:
                    subset = frozenset([node.name])
                else:
                    subset = frozenset()

            # internal node: merge sets of children
            else:
                subset = frozenset()
                for child in node.children:
                    subset |= child._subset
                    del child._subset

            # add to result
            if subset and (include_tips or len(subset) > 1):
                if subset != last:
                    subsets_append(last := subset)
                    if map_to_length:
                        lengths_append(node.length or 0.0)
                elif map_to_length:
                    lengths[-1] += node.length or 0.0

            node._subset = subset

        # final clean up
        del self._subset

        # remove the full set
        if not include_full:
            subsets = subsets[:-1]
            if map_to_length:
                lengths = lengths[:-1]

        if map_to_length:
            return dict(zip(subsets, lengths))
        else:
            return frozenset(subsets)

    def bipart(self):
        r"""Return a bipartition of the tree at the current branch.

        .. versionadded:: 0.6.3

        A bipartition, partition or split of a tree is the division of all taxa (tip
        names) into two complementary subsets, separated at a given branch. In this
        context, it is the branch connecting self and its parent. One subset consists
        of all taxa descending from self and the other consists of all remaining taxa.
        The smaller subset of the two is returned.

        Returns
        -------
        frozenset of str
            The set of names at the tips on the smaller side of the current branch.

        See Also
        --------
        subset
        biparts

        Notes
        -----
        A bipartition describes the topological placement of a branch regardless of
        other branches and the root of the tree.

        The returned value is a set of tip names on the smaller side of the branch, as
        determined by the number of tips. If a tie is observed, the tip names on both
        sides are sorted lexicographically and the first set is returned.

        The returned value (a frozenset) is unordered and hashable, making it efficient
        for lookup and comparison. For example, one can check whether two branches in
        two unrooted trees with the same taxa agree with each other.

        Rerooting a tree will not change the bipartition of a branch. However, one
        should be cautious because this method applies to a node, and rerooting may
        change the branch above the current node.

        Applying this method to a root node will return an empty set. Applying this
        method to a tip will return a single-element set containing the tip name. These
        two situations produce outputs independent of the topology of the tree.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["(((a,(b,c)X)Y,d)Z,(e,f),g);"])
        >>> print(tree.ascii_art())
                                      /-a
                            /Y-------|
                           |         |          /-b
                  /Z-------|          \X-------|
                 |         |                    \-c
                 |         |
                 |          \-d
        ---------|
                 |          /-e
                 |---------|
                 |          \-f
                 |
                  \-g

        Clade has less than half taxa, return them.

        >>> sorted(tree.find('X').bipart())
        ['b', 'c']

        Clade has more than half taxa, return remaining taxa.

        >>> sorted(tree.find('Z').bipart())
        ['e', 'f', 'g']

        Clade has exactly half taxa, return the lexicographically smaller side.

        >>> sorted(tree.find('Y').bipart())
        ['a', 'b', 'c']

        A second tree with the same topology but different root position.

        >>> tree2 = TreeNode.read(["((c,b)X2,a,(((f,e),g)Y2,d));"])
        >>> print(tree2.ascii_art())
                            /-c
                  /X2------|
                 |          \-b
                 |
                 |--a
        ---------|
                 |                              /-f
                 |                    /--------|
                 |          /Y2------|          \-e
                 |         |         |
                  \--------|          \-g
                           |
                            \-d

        Although the tree has been re-positioned, the corresponding branches have the
        same bipartitions, whereas non-corresponding branches don't.

        >>> tree.find('X').bipart() == tree2.find('X2').bipart()
        True

        >>> tree.find('Y').bipart() == tree2.find('Y2').bipart()
        False

        """
        bipart = self.subset(include_self=True)
        full = self.root().subset(include_self=True)
        if (size := len(bipart)) > (th := len(full) * 0.5):
            bipart = full - bipart
        elif size == th:
            # sort the elements of each part by lexicographic order, then order the two
            # parts and pick the smaller part
            bipart, _ = sorted([bipart, full - bipart], key=sorted)
        return bipart

    def biparts(self, within=None, include_tips=False, map_to_length=False, full=None):
        r"""Return all bipartitions within the tree under self.

        .. versionadded:: 0.6.3

        Parameters
        ----------
        within : iterable of str, optional
            A custom set of taxa to refine the result. Only taxa within it will be
            considered. If None (default), all taxa in the tree will be considered.
        include_tips : bool, optional
            Whether to include bipartitions with only one taxon at either side.
            Default is False, as such bipartitions provide no topological
            information.
        map_to_length : bool, optional
            If True, return a mapping of subsets to their branch lengths. Missing
            branch lengths will be replaced with 0. Default is False.
        full : frozenset of str, optional
            Pre-computed full set of taxa of the current tree. Providing this parameter
            can save one tree traversal from computing.

        Returns
        -------
        frozenset of frozenset of str, or
            All sets of names at the tips on the smaller side of each branch. Returned
            if `map_to_length` is False.
        dict of {frozenset of str: float}
            Mapping of All sets of smaller-side tip names to branch lengths. Returned
            if `map_to_length` is True.

        See Also
        --------
        bipart
        subsets

        Notes
        -----
        The returned value represents the tree as a set of nested sets, each of which
        representing the position of a branch in the tree. It is useful for assessing
        topological patterns of a tree.

        The returned value itself and each of its components (frozensets) are unordered
        and hashable, making it efficient for lookup and comparison. For example, one
        can check whether the topologies of two trees are consistent, regardless of
        their root positions.

        This method can be applied to both rooted and unrooted trees. However, a rooted
        tree implies the direction of descendance, which may violate the purpose of
        bipartitioning a tree on arbitrary branches. If this is a concern, one should
        consider using :meth:`subsets` instead.

        This method operates on the subtree below the current node.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,(b,c)),(d,e),f);"])
        >>> print(tree.ascii_art())
                            /-a
                  /--------|
                 |         |          /-b
                 |          \--------|
                 |                    \-c
        ---------|
                 |          /-d
                 |---------|
                 |          \-e
                 |
                  \-f

        Return all bipartitions of an unrooted tree.

        >>> biparts = tree.biparts()
        >>> for s in sorted(biparts, key=sorted):
        ...     print(sorted(s))
        ['a', 'b', 'c']
        ['b', 'c']
        ['d', 'e']

        A second tree with the same topology but different root position.

        >>> tree2 = TreeNode.read(["(a,((b,c),((d,e),f)));"])
        >>> print(tree2.ascii_art())
                  /-a
                 |
        ---------|                    /-b
                 |          /--------|
                 |         |          \-c
                  \--------|
                           |                    /-d
                           |          /--------|
                            \--------|          \-e
                                     |
                                      \-f

        Although the tree has been re-positioned, the bipartitions remain the same.

        >>> biparts == tree2.biparts()
        True

        """
        # identify full set (universe)
        if full is None:
            full = self.subset()
        if not (getall := within is None):
            if not isinstance(within, (set, frozenset)):
                within = frozenset(within)
            full &= within
        th = len(full) * 0.5

        # initiate result
        if map_to_length:
            biparts = {}
            biparts_get = biparts.get
        else:
            biparts = []
            biparts_append = biparts.append

        for node in self.postorder(include_self=False):
            # tip: create a one-taxon set
            if not node.children:
                if getall or node.name in full:
                    bipart = frozenset([node.name])
                else:
                    bipart = frozenset()
                flip = False

            # internal node: merge sets of children
            # `_bipart` of a node is either the taxa below it, or, if the former has
            # reached half of the full set, it "flips" to the other half that is above
            # the node, and `_flip` will be set to True.
            # Taxa below should be united, whereas taxa above should be intersected.
            # If at least one child is already flipped, the current node should also be
            # flipped. Otherwise, the set will be compared to the half to determine the
            # flipping status.
            else:
                aboves, belows = [], []
                for child in node.children:
                    if child._flip:
                        aboves.append(child._bipart)
                    else:
                        belows.append(child._bipart)
                    del child._bipart
                    del child._flip

                if aboves:
                    bipart = frozenset.intersection(*aboves).difference(*belows)
                    flip = True
                else:
                    bipart = frozenset().union(*belows)
                    flip = False
                    if (size := len(bipart)) >= th:
                        other = full - bipart
                        if size > th or sorted(bipart) > sorted(other):
                            bipart = other
                            flip = True

            # add to result
            if bipart and (include_tips or len(bipart) > 1):
                if map_to_length:
                    biparts[bipart] = biparts_get(bipart, 0.0) + (node.length or 0.0)
                else:
                    biparts_append(bipart)

            node._bipart = bipart
            node._flip = flip

        # final clean up
        for child in self.children:
            del child._bipart
            del child._flip

        return biparts if map_to_length else frozenset(biparts)

    def _extract_support(self):
        """Extract the support value from a node label, if available.

        Returns
        -------
        tuple of
            int, float or None
                The support value extracted from the node label.
            str or None
                The node label with the support value stripped.

        """
        support, label = None, None
        if self.name:
            # separate support value from node name by the first colon
            left, _, right = self.name.partition(":")
            try:
                support = int(left)
            except ValueError:
                try:
                    support = float(left)
                except ValueError:
                    pass
            # strip support value from node name
            label = right or None if support is not None else self.name
        return support, label

    def _node_label(self):
        """Generate a node label.

        The label will be in the format of "support:name" if both exist,
        or "support" or "name" if either exists.

        Returns
        -------
        str
            Generated node label.

        """
        lblst = []
        if self.support is not None:  # prevents support of NoneType
            lblst.append(str(self.support))
        if self.name:  # prevents name of NoneType
            lblst.append(self.name)
        return ":".join(lblst)

    def assign_supports(self):
        """Extract support values from internal node labels of a tree.

        Notes
        -----
        A "support value" measures the confidence or frequency of the incoming
        branch (the branch from parent to self) of an internal node in a tree.
        Roots and tips do not have support values. To extract a support value
        from a node label, this method reads from left and stops at the first
        ":" (if any), and attempts to convert it to a number.

        For examples: "(a,b)1.0", "(a,b)1.0:2.5", and "(a,b)'1.0:species_A'".
        In these cases the support values are all 1.0.

        For examples: "(a,b):1.0" and "(a,b)species_A". In these cases there
        are no support values.

        If a support value is successfully extracted, it will be stripped from
        the node label and assigned to the `support` property.

        .. note::
            Mathematically, "support value" is a property of a branch, not a
            node, although they are usually attached to nodes in tree file
            formats [1]_.

        References
        ----------
        .. [1] Czech, Lucas, Jaime Huerta-Cepas, and Alexandros Stamatakis. "A
           Critical Review on the Use of Support Values in Tree Viewers and
           Bioinformatics Toolkits." Molecular biology and evolution 34.6
           (2017): 1535-1542.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> newick = "((a,b)95,(c,d):1.1,(e,f)'80:speciesA':1.0);"
        >>> tree = TreeNode.read([newick])
        >>> tree.assign_supports()
        >>> tree.lca(['a', 'b']).support
        95
        >>> tree.lca(['c', 'd']).support is None
        True
        >>> tree.lca(['e', 'f']).support
        80
        >>> tree.lca(['e', 'f']).name
        'speciesA'

        """
        for node in self.traverse():
            if node.is_root() or node.is_tip():
                node.support = None
            else:
                node.support, node.name = node._extract_support()

    def is_bifurcating(self, strict=False, include_self=True):
        r"""Check if the tree is bifurcating.

        .. versionadded:: 0.6.3

        Parameters
        ----------
        strict : bool, optional
            Whether to consider single-child nodes as violations of bifurcation.
            Default is False.
        include_self : bool, optional
            If False, will not check the current node. This is useful for checking an
            unrooted tree, whose root node may have three children. Default is True.

        See Also
        --------
        bifurcate
        prune

        Notes
        -----
        In a bifurcating tree (a.k.a. binary tree), every node has at most two
        children. The property of bifurcation is necessary for a wide range of tree
        analyses. In contrast, if a node has three or more children, it is considered
        as multifurcating, or polytomy in phylogenetics.

        In strict mode, every internal node (including root) has to have exactly two
        children in order for the tree to be bifurcating. Single-child nodes are
        considered as violations. These nodes can be collapsed by :meth:`prune`.

        This method operates on the subtree below the current node.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b,c),(d,e))root;"])
        >>> tree.is_bifurcating()
        False

        """
        test = ne if strict else gt
        for node in self.traverse(include_self=include_self):
            if (children := node.children) and test(len(children), 2):
                return False
        return True

    def observed_node_counts(self, tip_counts):
        """Return counts of node observations from counts of tip observations.

        Parameters
        ----------
        tip_counts : dict of ints
            Counts of observations of tips. Keys correspond to tip names in
            ``self``, and counts are unsigned ints.

        Returns
        -------
        dict
            Counts of observations of nodes. Keys correspond to node names
            (internal nodes or tips), and counts are unsigned ints.

        Raises
        ------
        ValueError
            If a count less than one is observed.
        MissingNodeError
            If a count is provided for a tip not in the tree, or for an
            internal node.

        """
        result = defaultdict(int)
        for tip_name, count in tip_counts.items():
            if count < 1:
                raise ValueError("All tip counts must be greater than zero.")
            else:
                t = self.find(tip_name)
                if not t.is_tip():
                    raise MissingNodeError(
                        "Counts can only be for tips in the tree. %s is an "
                        "internal node." % t.name
                    )
                result[t] += count
                for internal_node in t.ancestors():
                    result[internal_node] += count
        return result

    @aliased("accumulate_to_ancestor", "0.6.3")
    def depth(
        self, ancestor=None, include_root=False, use_length=True, missing_as_zero=False
    ):
        r"""Calculate the depth of the current node.

        The **depth** of a node is the sum of branch lengths from it to the root of the
        tree.

        Parameters
        ----------
        ancestor : TreeNode, optional
            An ancestral node of self. If provided, the distance from self to this node
            instead of the root node will be calculated.

            .. versionchanged:: 0.6.3
                Becomes optional.

        include_root : bool, optional
            If True, the distance will include the length of the root node, or the
            given ancestral node if ``ancestor`` is provided. Default is False.

            .. versionadded:: 0.6.3

        use_length : bool, optional
            Whether to return the sum of branch lengths (True, default) or the number
            of branches (False) from self to root.

            .. versionadded:: 0.6.3

        missing_as_zero : bool, optional
            When a node without an associated branch length is encountered, raise an
            error (False, default) or use 0 (True). Applicable when ``use_length`` is
            True.

            .. versionadded:: 0.6.3

        Returns
        -------
        float
            The depth of self.

        Raises
        ------
        NoParentError
            If the given ancestral node is not an ancestor of self.
        NoLengthError
            If nodes without branch length are encountered, but ``missing_as_zero`` is
            False.

        See Also
        --------
        height
        distance

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> tree.find('a').depth()
        4.0
        >>> tree.find('a').depth(tree.find('c'))
        1.0

        """
        curr = self
        path = [curr]
        path_append = path.append
        if ancestor is None:
            while (curr := curr.parent) is not None:
                path_append(curr)
        else:
            try:
                while curr is not ancestor:
                    path_append(curr := curr.parent)
            except AttributeError:
                raise NoParentError("Provided ancestor is not ancestral to self.")
        if not include_root:
            path = path[:-1]
        if not use_length:
            return float(len(path))
        if missing_as_zero:
            return sum(x.length or 0.0 for x in path)
        try:
            return sum(x.length for x in path)
        except TypeError:
            raise NoLengthError("Nodes without branch length are encountered.")

    def height(self, include_self=False, use_length=True, missing_as_zero=False):
        r"""Calculate the height of the current node.

        .. versionadded:: 0.6.3

        The **height** of a node is the maximum sum of branch lengths from it to any of
        its descending tips.

        Parameters
        ----------
        include_self : bool, optional
            If True, the height will include the length of the current node. Default
            is False.
        use_length : bool, optional
            Whether to return the sum of branch lengths (True, default) or the number
            of branches (False) from self to the most distant tip.
        missing_as_zero : bool, optional
            When a node without an associated branch length is encountered, raise an
            error (False, default) or use 0 (True). Applicable when ``use_length`` is
            True.

        Returns
        -------
        float
            The height of self.
        TreeNode
            The most distant descending tip from self.

        Raises
        ------
        NoLengthError
            If nodes without branch length are encountered, but ``missing_as_zero`` is
            False.

        See Also
        --------
        depth
        distance

        Notes
        -----
        When a tie is observed among multiple tips, only one of them will be returned.
        The choice is stable. This often happens when ``use_length=False``.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> dist, tip = tree.find('c').height()
        >>> dist
        2.0
        >>> tip.name
        'b'

        """
        errmsg = "Nodes without branch length are encountered."
        maxkey = itemgetter(0)
        for node in self.postorder(include_self=True):
            if not node.children:
                node._height = (0.0, node)
            else:
                heights = []
                for child in node.children:
                    H, tip = child._height
                    del child._height
                    if not use_length:
                        H += 1.0
                    elif (L := child.length) is not None:
                        H += L
                    elif not missing_as_zero:
                        raise NoLengthError(errmsg)
                    heights.append((H, tip))
                node._height = max(heights, key=maxkey)
        H, tip = self._height
        del self._height
        if include_self:
            if not use_length:
                H += 1.0
            elif (L := self.length) is not None:
                H += L
            elif not missing_as_zero:
                raise NoLengthError(errmsg)
        return H, tip

    @aliased("descending_branch_length", "0.6.3")
    @params_aliased([("nodes", "tip_subset", "0.6.3", True)])
    def total_length(self, nodes=None, include_stem=False, include_self=False):
        r"""Calculate the total length of branches descending from self.

        Parameters
        ----------
        nodes : iterable of TreeNode or str, optional
            Instances or names of a subset of descending nodes to refine the result.
            If provided, the total length of branches connecting these nodes will be
            returned. Otherwise, the total branch length of the tree will be returned.

            .. versionchanged:: 0.6.3
                Can accept TreeNode instances in addition to names.
                Can accept internal nodes in addition to tips.

        include_stem : bool, optional
            Whether to include the path from the lowest common ancestor (LCA) of the
            subset of nodes to self. Applicable when ``nodes`` is specified. Default is
            False.

            .. versionadded:: 0.6.3

        include_self : bool, optional
            Whether to include the length of self. When ``nodes`` is provided and
            ``include_stem`` is False, it is instead the LCA of the subset of nodes.
            Default is False.

            .. versionadded:: 0.6.3

        Returns
        -------
        float
            The total descending branch length.

        Raises
        ------
        MissingNodeError
            If some nodes are not found in the tree or are not descendants of self.

        Notes
        -----
        The metric can be considered as the total amount of evolutionary change across
        all lineages in the tree.

        This metric is closely related to phylogenetic diversity (PD) in community
        ecology. When ``include_stem`` is True, it is equivalent to Faith's PD (see
        :func:`~skbio.diversity.alpha.faith_pd`). However, this method is optimized
        to handle a single set of nodes, whereas the referred function is optimized
        to simultaneously calculate for multiple taxon sets (i.e., communities).

        Missing branch lengths will be replaced with 0.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read([
        ...     "(((A:.1,B:1.2)C:.6,(D:.9,E:.6)F:.9)G:2.4,(H:.4,I:.5)J:1.3)K;"])
        >>> print(tree.ascii_art())
                                      /-A
                            /C-------|
                           |          \-B
                  /G-------|
                 |         |          /-D
                 |          \F-------|
        -K-------|                    \-E
                 |
                 |          /-H
                  \J-------|
                            \-I

        Calculate the total branch length of the tree.

        >>> L = tree.total_length()
        >>> print(round(L, 1))
        8.9

        Calculate the total branch length connecting three taxa.

        >>> L = tree.total_length(['A', 'E', 'H'])
        >>> print(round(L, 1))
        6.3

        """
        ## shortcut for the entire subtree
        if not nodes:
            return sum(
                n.length or 0.0 for n in self.postorder(include_self=include_self)
            )

        nodes = [self.find(x) for x in nodes]

        # Identify all nodes that need to be visited during the navigation from all
        # tips to the root. This algorithm resembles that of `lca`. However, we will
        # separate the visited nodes of the first path and all other paths. Also, we
        # don't need to record the previous node. All we need is whether each node is
        # unique in all paths.
        first_path = []
        first_path_append = first_path.append
        curr = next(nodes := iter(nodes))
        while curr is not None:
            first_path_append(curr)
            curr._unique = True
            curr = curr.parent

        other_paths = []
        other_paths_append = other_paths.append
        for curr in nodes:
            while not hasattr(curr, "_unique"):
                other_paths_append(curr)
                curr._unique = True
                curr = curr.parent
            curr._unique = False

        # Iterate the first path in reverse order (from root to starting node) and find
        # the indices of self and LCA.
        i_self, i_lca = None, 0
        for i in reversed(range(len(first_path))):
            if (node := first_path[i]) is self:
                i_self = i
            if node._unique is False:
                i_lca = i
                break

        # clear temporary attribute
        for node in first_path:
            del node._unique
        for node in other_paths:
            del node._unique

        # If all nodes are descendants of self, LCA must also be self or one of its
        # descendants, and self must be identified when iterating the first path.
        if i_self is None:
            raise MissingNodeError("Some nodes are not descendants of self.")

        # Identify the range of nodes to be included in calculation depending on the
        # parameter setting
        stop = (i_self if include_stem else i_lca) + include_self

        # sum up branch lengths
        return (
            sum(n.length or 0.0 for n in chain(first_path[:stop], other_paths)) or 0.0
        )

    def distance(self, other, use_length=True, missing_as_zero=False):
        r"""Calculate the distance between self and another node.

        Parameters
        ----------
        other : TreeNode
            The node to compute a distance to.
        use_length : bool, optional
            Whether to return the sum of branch lengths (True, default) or the number
            of branches (False) connecting self and other.

            .. versionadded:: 0.6.3

        missing_as_zero : bool, optional
            When a node without an associated branch length is encountered, raise an
            error (False, default) or use 0 (True). Applicable when ``use_length`` is
            True.

            .. versionadded:: 0.6.3

        Returns
        -------
        float
            The distance between two nodes.

        Raises
        ------
        NoLengthError
            If nodes without branch length are encountered, but ``missing_as_zero`` is
            False.

        See Also
        --------
        path
        cophenet
        compare_cophenet
        maxdist

        Notes
        -----
        The distance between two nodes is the length of the path (branches) connecting
        them. It is also known as the patristic distance [1]_.

        When ``use_length=False``, it is the number of branches in the path.

        This method can be used to compute the distance between two given nodes.
        However, it is not optimized for computing all pairwise tip distances. Use
        :meth:`cophenet` instead for that purpose.

        References
        ----------
        .. [1] Fourment, M., & Gibbs, M. J. (2006). PATRISTIC: a program for
           calculating patristic distances and graphically comparing the components of
           genetic change. BMC evolutionary biology, 6, 1-5.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> tip_a = tree.find('a')
        >>> tip_d = tree.find('d')
        >>> tip_a.distance(tip_d)
        14.0
        >>> tip_a.distance(tip_d, use_length=False)
        4.0

        """
        _, self_path, other_path = self._path(other)
        if not use_length:
            return float(len(self_path) + len(other_path))
        if missing_as_zero:
            return sum(x.length or 0.0 for x in chain(self_path, other_path))
        try:
            return sum(x.length for x in chain(self_path, other_path))
        except TypeError:
            raise NoLengthError("Nodes without branch length are encountered.")

    @aliased("get_max_distance", "0.6.3")
    def maxdist(self, use_length=True):
        r"""Return the maximum distance between any pair of tips in the tree.

        This measure is also referred to as the **diameter** of a tree.

        Parameters
        ----------
        use_length : bool, optional
            Whether to return the sum of branch lengths (True, default) or the number
            of branches (False) connecting each pair of tips.

            .. versionadded:: 0.6.3

        Returns
        -------
        float
            The distance between the two most distant tips in the tree.
        tuple of (TreeNode, TreeNode)
            The two most distant tips in the tree.

        See Also
        --------
        distance
        cophenet
        scipy.cluster.hierarchy.maxdists

        Notes
        -----
        This method identifies the two furthest apart tips in a tree, as measured by
        the sum of branch lengths (i.e., patristic distance) connecting them. Missing
        branch lengths will be replaced with 0. When ``use_length=False``, the number
        of branches connecting two tips will be considered instead.

        When a tie is observed among more than one pair of tips, only one pair will be
        returned. The choice is stable. This often happens when ``use_length=False``.

        This method operates on the subtree below the current node.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])
        >>> dist, tips = tree.maxdist()
        >>> dist
        16.0
        >>> [n.name for n in tips]
        ['e', 'b']

        """
        # The code performs a post-order traversal and appends two pieces of
        # information to each node:
        #   a: The maximum distance from the node to any descending tip.
        #   b: The maximum distance between any two descending tips.
        # The information is updated at each internal node:
        #   a becomes the maximum of any child's (a + length).
        #   b becomes the larger of the maximum of any b and the sum of the two
        # largest (a + length). The latter represents the new plausible maximum
        # distance that crosses the node.
        maxkey = itemgetter(0)
        for node in self.postorder():
            # initialize maximum at tip: (up_dist, up_tip, in_dist, in_tip1, in_tip2)
            if not node.children:
                node._maxdist = (0, node, 0, None, None)

            # internal node: update the maximum
            elif len(children := node.children) > 1:
                ups, ins = [], []
                for child in children:
                    up_dist, up_tip, in_dist, in_tip1, in_tip2 = child._maxdist
                    del child._maxdist
                    ups.append(
                        (up_dist + (child.length or 0.0 if use_length else 1), up_tip)
                    )
                    ins.append((in_dist, in_tip1, in_tip2))

                # compare the previous maximum with the distance between the two
                # longest descendants from any two child clades
                ups.sort(key=maxkey, reverse=True)
                (up_dist, up_tip), (up_dist2, up_tip2) = ups[:2]
                in_dist, in_tip1, in_tip2 = max(ins, key=maxkey)
                if (x_dist := up_dist + up_dist2) > in_dist:
                    node._maxdist = (up_dist, up_tip, x_dist, up_tip, up_tip2)
                else:
                    node._maxdist = (up_dist, up_tip, in_dist, in_tip1, in_tip2)

            # internal node with only one child: inherit the maximum
            else:
                (child,) = children
                up_dist, up_tip, in_dist, in_tip1, in_tip2 = child._maxdist
                del child._maxdist
                up_dist += child.length or 0.0 if use_length else 1
                node._maxdist = (up_dist, up_tip, in_dist, in_tip1, in_tip2)

        max_dist, max_tip1, max_tip2 = self._maxdist[2:]
        del self._maxdist
        if not use_length:
            max_dist = float(max_dist)
        return max_dist, (max_tip1, max_tip2)

    @aliased("tip_tip_distances", "0.6.3")
    def cophenet(self, endpoints=None, use_length=True):
        r"""Return a distance matrix between each pair of tips in the tree.

        Parameters
        ----------
        endpoints : list of TreeNode or str, optional
            Tips or their names (i.e., taxa) to be included in the calculation. The
            returned distance matrix will use this order. If not specified, all tips
            will be included.
        use_length : bool, optional
            Whether to return the sum of branch lengths (True, default) or the number
            of branches (False) connecting each pair of tips.

            .. versionadded:: 0.6.3

        Returns
        -------
        DistanceMatrix
            The cophenetic distance matrix.

        Raises
        ------
        MissingNodeError
            If any of the specified ``endpoints`` are not found in the tree.
        DuplicateNodeError
            If the specified ``endpoints`` have duplicates.
        ValueError
            If any of the specified ``endpoints`` are not tips.

        See Also
        --------
        distance
        compare_cophenet
        scipy.cluster.hierarchy.cophenet

        Notes
        -----
        The cophenetic distance [1]_ between a pair of tips is essentially the sum of
        branch lengths connecting them (i.e., patristic distance [2]_, see
        :meth:`distance`). It measures the divergence between two taxa in evolution.

        This method calculates the cophenetic distances between all pairs of tips in a
        tree and returns a distance matrix. Missing branch lengths will be replaced with
        0's. If ``use_length`` is False, the method instead calculates the number of
        branches connecting each pair of tips. This method operates on the subtree below
        the current node.

        In hierarchical clustering, the cophenetic distance is commonly used to measure
        the dissimilarity between two objects before they are joined in a dendrogram.
        In that context, it is also defined as the height of the lowest common ancestor
        (LCA) from the surface of the tree. However, phylogenetic trees are usually
        non-ultrametric (e.g., :func:`~skbio.tree.nj`), and the two child clades of a
        node may have different heights. Therefore, the cophenetic distance is instead
        defined as the patristic distance between the two tips. For ultrametric trees
        (e.g., :func:`~skbio.tree.upgma`), this method's result should match SciPy's
        :func:`~scipy.cluster.hierarchy.cophenet`.

        One should also distinguish cophenetic distance from a related metric:
        cophenetic value [1]_, which is the patristic distance between the LCA of two
        tips and the root of the tree. It quantifies the shared evolutionary history
        between two taxa, as in contrast to the cophenetic distance.

        References
        ----------
        .. [1] Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by
           objective methods. Taxon, 33-40.

        .. [2] Fourment, M., & Gibbs, M. J. (2006). PATRISTIC: a program for
           calculating patristic distances and graphically comparing the components of
           genetic change. BMC evolutionary biology, 6, 1-5.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1,b:2)c:3,(d:4,e:5)f:6)root;"])

        Calculate cophenetic distances as the sum of branch lengths (i.e., patristic
        distance).

        >>> mat = tree.cophenet()
        >>> print(mat)
        4x4 distance matrix
        IDs:
        'a', 'b', 'd', 'e'
        Data:
        [[  0.   3.  14.  15.]
         [  3.   0.  15.  16.]
         [ 14.  15.   0.   9.]
         [ 15.  16.   9.   0.]]

        Calculate cophenetic distances as the number of branches.

        >>> mat = tree.cophenet(use_length=False)
        >>> print(mat)
        4x4 distance matrix
        IDs:
        'a', 'b', 'd', 'e'
        Data:
        [[ 0.  2.  4.  4.]
         [ 2.  0.  4.  4.]
         [ 4.  4.  0.  2.]
         [ 4.  4.  2.  0.]]

        """
        taxa = []
        taxa_append = taxa.append

        # Include all tips.
        # `tips()` performs a postorder traversal, which guarantees the continuity
        # of tip indices within each node. A `_range` attribute is assigned to each
        # node, representing the range of tip indices.
        if not endpoints:
            for i, tip in enumerate(self.tips()):
                tip._range = (i, i + 1)
                taxa_append(tip.name)
            num_tips = len(taxa)

            # A tree could have duplicate taxa so this check is desired.
            if len(set(taxa)) < num_tips:
                raise DuplicateNodeError(f"Tree contains duplicate tip names.")

        # Include only selected tips in order.
        # Only selected tips are indexed, but the continuity of tip indices (see above)
        # is still ensured.
        else:
            idxmap = {}
            for i, tip in enumerate(endpoints):
                # The `find` call will raise if there are duplicate taxa in the tree.
                tip = self.find(tip)
                if tip.children:
                    raise ValueError(f"Node with name '{tip.name}' is not a tip.")
                taxa_append(name := tip.name)
                if name in idxmap:
                    raise DuplicateNodeError(f"Duplicate tip name '{name}' found.")
                idxmap[name] = i
            num_tips = len(taxa)

            # Create an index array to store the order of indices of original tips.
            order = np.empty(num_tips, dtype=int)
            i = 0
            for tip in self.tips():
                if (name := tip.name) in idxmap:
                    tip._range = (i, i + 1)
                    order[idxmap[name]] = i
                    i += 1

        # Initiate the resulting distance matrix.
        result = np.zeros((num_tips, num_tips))

        # An intermediate vector storing the accumulative distance from each tip to
        # the current node.
        depths = np.zeros(num_tips)

        # Traverse internal nodes.
        # This method involves two postorder traversals. Theoretically, one can perform
        # only one traversal, and store tip and internal node references into two lists
        # for use. However, this method isn't more efficient according to benchmarks.
        for node in self.postorder():
            if not node.children:
                continue

            # Record tip ranges of each child clade, and increment the tip depths.
            ranges = []
            for child in node.children:
                if not hasattr(child, "_range"):
                    continue
                ranges.append(range_ := slice(*child._range))
                depths[range_] += (child.length or 0.0) if use_length else 1
                del child._range

            # Calculate tip-to-tip distances between each pair of child clades, and
            # save the results to both upper and lower triangles of the resulting
            # distance matrix.
            # This is significantly faster than saving to only one triangle and doing
            # doing `result += result.T` after the iteration.
            for range1, range2 in combinations(ranges, 2):
                dists = depths[range1][:, np.newaxis] + depths[range2]
                result[range1, range2] = dists
                result[range2, range1] = dists.T

            # Due to the continuity of tip indices (see above), it is guaranteed that
            # the first child is the smallest and the last child is the largest.
            if ranges:
                node._range = (ranges[0].start, ranges[-1].stop)

        if hasattr(self, "_range"):
            del self._range

        # Reorder the distance matrix to reflect the given order of endpoints.
        if endpoints:
            result = result[order][:, order]

        # Skip validation as all items to validate are guaranteed.
        return DistanceMatrix(result, taxa, validate=False)

    @params_aliased([("shared_only", "exclude_absent_taxa", "0.6.3", True)])
    def compare_subsets(self, other, shared_only=False, proportion=True):
        r"""Calculate the difference of subsets between two trees.

        Parameters
        ----------
        other : TreeNode
            The other tree to compare with.
        shared_only : bool, optional
            Only consider taxa shared with the other tree. Default is False.
        proportion : bool, optional
            Whether to return count (False) or proportion (True, default) of different
            subsets.

            .. versionadded:: 0.6.3

        Returns
        -------
        float
            The count or proportion of subsets that differ between the trees.

        See Also
        --------
        subsets
        compare_rfd
        compare_biparts

        Notes
        -----
        This metric is equivalent to the Robinson-Foulds distance on rooted trees.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree1 = TreeNode.read(["((a,b),(c,d));"])
        >>> tree2 = TreeNode.read(["(((a,b),c),d);"])
        >>> tree1.compare_subsets(tree2)
        0.5

        """
        return _topo_dists((self, other), True, shared_only, proportion)[0]

    def compare_biparts(self, other, proportion=True):
        r"""Calculate the difference of bipartitions between two trees.

        .. versionadded:: 0.6.3

        Parameters
        ----------
        other : TreeNode
            The other tree to compare with.
        proportion : bool, optional
            Whether to return count (False) or proportion (True, default) of different
            bipartitions.

        Returns
        -------
        float
            The count or proportion of bipartitions that differ between the trees.

        See Also
        --------
        biparts
        compare_rfd
        compare_subsets

        Notes
        -----
        This metric is equivalent to the Robinson-Foulds distance on unrooted trees.

        Only taxa shared between the two trees are considered.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree1 = TreeNode.read(["((a,b),(c,d));"])
        >>> tree2 = TreeNode.read(["(((a,b),c),d);"])
        >>> tree1.compare_biparts(tree2)
        0.0

        """
        return _topo_dists((self, other), False, True, proportion)[0]

    def compare_rfd(self, other, proportion=False, rooted=None):
        r"""Calculate Robinson-Foulds distance between two trees.

        Parameters
        ----------
        other : TreeNode
            The other tree to compare with.
        proportion : bool, optional
            Whether to return the RF distance as count (False, default) or proportion
            (True).
        rooted : bool, optional
            Whether to consider the trees as rooted or unrooted. If None (default),
            this will be determined based on whether self is rooted. However, one
            can override it by explicitly specifying True (rooted) or False (unrooted).

            .. versionadded:: 0.6.3

        Returns
        -------
        float
            The Robinson-Foulds distance as count or proportion between the trees.

        .. versionchanged:: 0.6.3
            When the tree is unrooted, the calculation is based on bipartitions instead
            of subsets.

        Notes
        -----
        The Robinson-Foulds (RF) distance, a.k.a. symmetric difference, is a measure of
        topological dissimilarity between two trees. It was originally described in
        [1]_. It is calculated as the number of bipartitions that differ between two
        unrooted trees. It is equivalent to :meth:`compare_biparts`.

        .. math::

           \text{RF}(T_1, T_2) = |S_1 \triangle S_2| = |(S_1 \setminus S_2) \cup (S_2
           \setminus S_1)|

        where :math:`S_1` and :math:`S_2` are the sets of bipartitions of trees
        :math:`T_1` and :math:`T_2`, respectively.

        For rooted trees, the RF distance is calculated as the number of unshared
        clades (subsets of taxa) [2]_. It is equivalent to :meth:`compare_subsets`.

        This method automatically determines whether to use the unrooted or rooted RF
        distance based on whether self is rooted or not. Specifically, if self has two
        children (see :meth:`details <unroot>`), or has a parent (i.e., it is a subtree
        within a larger tree), it will be considered as rooted. Otherwise it will be
        considered as unrooted.

        One can override this automatic decision by setting the ``rooted`` parameter,
        which is recommended for explicity.

        By specifying ``proportion=True``, a unit distance will be returned, ranging
        from 0 (identical) to 1 (completely different).

        This method operates on the subtrees below the given nodes. Only taxa shared
        between the two trees are considered. Taxa unique to either tree are excluded
        from the calculation.

        See Also
        --------
        compare_wrfd
        compare_subsets
        compare_biparts
        skbio.tree.rf_dists

        References
        ----------
        .. [1] Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic
           trees. Mathematical biosciences, 53(1-2), 131-147.

        .. [2] Bogdanowicz, D., & Giaro, K. (2013). On a matching distance between
           rooted phylogenetic trees. International Journal of Applied Mathematics
           and Computer Science, 23(3), 669-684.

        Examples
        --------
        Calculate the RF distance between two unrooted trees with the same taxa but
        different topologies. Each tree has three non-trivial bipartitions, as defined
        by individual internal branches, among which one pair (abc|def) is shared
        whereas the other two of each tree are unique (ab|cdef, abcf|de, bc|adef,
        abcd|ef). Therefore the RF distance is 2 + 2 = 4.

        >>> from skbio import TreeNode
        >>> tree1 = TreeNode.read(["((a,b),c,((d,e),f));"])
        >>> print(tree1.ascii_art())
                            /-a
                  /--------|
                 |          \-b
                 |
        ---------|--c
                 |
                 |                    /-d
                 |          /--------|
                  \--------|          \-e
                           |
                            \-f

        >>> tree2 = TreeNode.read(["((a,(b,c)),d,(e,f));"])
        >>> print(tree2.ascii_art())
                            /-a
                  /--------|
                 |         |          /-b
                 |          \--------|
                 |                    \-c
        ---------|
                 |--d
                 |
                 |          /-e
                  \--------|
                            \-f

        >>> tree1.compare_rfd(tree2)
        4.0

        """
        if rooted is None:
            rooted = self.parent is not None or len(self.children) == 2
        return _topo_dists((self, other), rooted, proportion=proportion)[0]

    def compare_wrfd(self, other, metric="cityblock", rooted=None, include_tips=True):
        r"""Calculate weighted Robinson-Foulds distance or variants between two trees.

        .. versionadded:: 0.6.3

        Parameters
        ----------
        other : TreeNode
            The other tree to compare with.
        metric : str or callable, optional
            The distance metric to use. Can be a preset, a distance function name under
            :mod:`scipy.spatial.distance`, or a custom function that takes two vectors
            and returns a number. Some notable options are:

            - "cityblock" (default): City block (Manhattan) distance. The result
              matches the original weighted Robinson-Foulds distance [1]_.
            - "euclidean": Euclidean distance. The result matches the
              Kuhner-Felsenstein (KF) distance, a.k.a. branch score (Bs) distance [2]_.
            - "correlation": 1 - Pearson's correlation coefficient (:math:`r`). Ranges
              between 0 (maximum similarity) and 2 (maximum dissimilarity). Independent
              of tree scale.
            - "unitcorr": :math:`(1 - r) / 2`, which returns a unit correlation
              distance (range: [0, 1]).

        rooted : bool, optional
            Whether to consider the trees as rooted or unrooted. If None (default),
            this will be determined based on whether self is rooted. However, one
            can override it by explicitly setting True (rooted) or False (unrooted).
            See :meth:`compare_rfd` for details.
        include_tips : bool, optional
            Whether to include single-taxon biparitions (terminal branches) in the
            calculation. Default is True, such that all branches in the trees are
            considered. Set this as False if terminal branch lengths are absent or
            irrelevant.

        Returns
        -------
        float
            The weighted Robinson-Foulds distance or variants between the trees.

        Notes
        -----
        The Robinson-Foulds (RF) distance may be weighted by the branch lengths of
        bipartitions to account for evolutionary distances in addition to branching
        patterns.

        The default behavior of this method calculates the original weighted RF (wRF)
        distance [1]_, which is the sum of differences of branch lengths of matching
        bipartitions. Bipartitions unique to one tree are given a length of 0 in the
        other tree during calculation.

        .. math::

           \text{wRF}(T_1, T_2) = \sum_{s \in S_1 \cup S_2} |l_1(s) - l_2(s)|

        where :math:`S_1` and :math:`S_2` are the sets of bipartitions of trees
        :math:`T_1` and :math:`T_2`, respectively. :math:`l_1` and :math:`l_2` are the
        branch lengths of bipartition :math:`s` in :math:`T_1` and :math:`T_2`,
        respectively (or 0 if :math:`s` is unique to the other tree).

        When ``metric="euclidean"``, it calculates the Kuhner-Felsenstein (KF)
        distance, a.k.a., branch score (Bs) distance [2]_, which replaces absolute
        difference with squared difference in the equation.

        .. math::

           \text{KF}(T_1, T_2) = \sqrt{\sum_{s \in S_1 \cup S_2} (l_1(s) - l_2(s))^2}

        This method operates on the subtrees below the given nodes. Only taxa shared
        between the two trees are considered. Taxa unique to either tree are excluded
        from the calculation.

        See Also
        --------
        compare_rfd
        compare_cophenet
        skbio.tree.wrf_dists

        References
        ----------
        .. [1] Robinson, D. F., & Foulds, L. R. (1979) Comparison of weighted labelled
           trees. In Combinatorial Mathematics VI: Proceedings of the Sixth Australian
           Conference on Combinatorial Mathematics, Armidale, Australia (pp. 119-126).

        .. [2] Kuhner, M. K., & Felsenstein, J. (1994). A simulation comparison of
           phylogeny algorithms under equal and unequal evolutionary rates. Molecular
           biology and evolution, 11(3), 459-468.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree1 = TreeNode.read(["((a:1,b:2):1,c:4,((d:4,e:5):2,f:6):1);"])
        >>> print(tree1.ascii_art())
                            /-a
                  /--------|
                 |          \-b
                 |
        ---------|--c
                 |
                 |                    /-d
                 |          /--------|
                  \--------|          \-e
                           |
                            \-f

        >>> tree2 = TreeNode.read(["((a:3,(b:2,c:2):1):3,d:8,(e:5,f:6):2);"])
        >>> print(tree2.ascii_art())
                            /-a
                  /--------|
                 |         |          /-b
                 |          \--------|
                 |                    \-c
        ---------|
                 |--d
                 |
                 |          /-e
                  \--------|
                            \-f

        Calculate the weighted RF (wRF) distance between two unrooted trees with branch
        lengths.

        >>> tree1.compare_wrfd(tree2)
        16.0

        Calculated the wRF distance while considering trees as rooted (therefore based
        on subsets instead of bipartitions).

        >>> tree1.compare_wrfd(tree2, rooted=True)
        18.0

        Calculate the Kuhner-Felsenstein (KF) distance.

        >>> d = tree1.compare_wrfd(tree2, metric="euclidean")
        >>> print(round(d, 5))
        6.16441

        Calculate the KF distance without considering terminal branches.

        >>> d = tree1.compare_wrfd(tree2, metric="euclidean", include_tips=False)
        >>> print(round(d, 5))
        3.74166

        """
        if rooted is None:
            rooted = self.parent is not None or len(self.children) == 2
        metric = _check_dist_metric(metric)
        return _topo_dists(
            (self, other),
            rooted=rooted,
            include_tips=include_tips,
            weighted=True,
            metric=metric,
        )[0]

    @aliased("compare_tip_distances", "0.6.3")
    @params_aliased(
        [
            ("shuffler", "shuffle_f", "0.6.3", True),
            ("metric", "dist_f", "0.6.3", True),
        ]
    )
    def compare_cophenet(
        self,
        other,
        sample=None,
        metric="unitcorr",
        shuffler=None,
        use_length=True,
        ignore_self=False,
    ):
        r"""Calculate the distance between two trees based on cophenetic distances.

        Parameters
        ----------
        other : TreeNode
            The other tree to compare with.
        sample : int, optional
            Randomly subsample this number of tips in common between the trees to
            compare. This is useful when comparing very large trees.
        metric : str or callable, optional
            The distance metric to use. Can be a preset, a distance function name under
            :mod:`scipy.spatial.distance`, or a custom function that takes two vectors
            and returns a number. Some notable options are:

            - "cityblock": City block (Manhattan) distance.
            - "euclidean": Euclidean distance. The result matches the path-length
              distance [1]_, or the path distance [2]_ if ``use_length`` is False.
            - "correlation": 1 - Pearson's correlation coefficient (:math:`r`). Ranges
              between 0 (maximum similarity) and 2 (maximum dissimilarity). Independent
              of tree scale.
            - "unitcorr" (default): :math:`(1 - r) / 2`, which returns a unit
              correlation distance (range: [0, 1]).

            .. versionchanged:: 0.6.3
                Accepts a function on two vectors instead of two `DistanceMatrix`
                instances. The default value "unitcorr" is consistent with the previous
                default behavior.

        shuffler : int, np.random.Generator or callable, optional
            The shuffling function to use if ``sample`` is specified. Default is
            :meth:`~numpy.random.Generator.shuffle`. If an integer is provided, a
            random generator will be constructed using this number as the seed.

            .. versionchanged:: 0.6.3
                Switched to NumPy's new random generator. Can accept a random seed or
                random generator instance.

        use_length : bool, optional
            Whether to calculate the sum of branch lengths (True, default) or the
            number of branches (False) connecting each pair of tips.

            .. versionadded:: 0.6.3

        ignore_self : bool, optional
            Whether to ignore the distance between each tip and itself (which must be
            0). Default is False.

            .. versionadded:: 0.6.3

            .. note:: The default value will be set as True in 0.7.0.

        Returns
        -------
        float
            The distance between the trees.

        .. versionchanged:: 0.6.3
            Improved customizability to allow calculation of published metrics, such
            as path distance and path-length distance, while preserving the previous
            default behavior.

            Edge cases are now handled by the specified distance metric rather than
            being treated separately.

        Raises
        ------
        ValueError
            If there are no common tips between the trees.

        See Also
        --------
        cophenet
        compare_rfd
        compare_wrfd
        skbio.tree.path_dists

        Notes
        -----
        This method calculates the dissimilarity between the cophenetic distance [1]_
        (i.e., tip-to-tip distance) matrices of two trees. Tips are identified by
        their names (i.e., taxa). Only tips shared between the trees are considered.
        Tips unique to either tree are excluded from the calculation.

        The default behavior returns a unit correlation distance (range: [0, 1]),
        measuring the dissimilarity between the relative evolutionary distances among
        taxa, regardless of the tree scale (i.e., multiply all branch lengths in one
        tree by a factor and the result remains the same). This measure is closely
        related to **cophenetic correlation**, which measures the similarity (instead
        of dissimilarity) between two cophenetic distance matrices, or between a
        cophenetic distance matrix and the original distance matrix among taxa on
        which hierarchical clustering was performed.

        When the metric is Euclidean and lengths are used, it returns the **path-length
        distance** [2]_, which is the square root of the sum of squared differences of
        path lengths among all pairs of taxa.

        .. math::

           d(T_1, T_2) = \sqrt{\sum (d_1(i,j) - d_2(i,j))^2}

        where :math:`d_1` and :math:`d_2` are the sums of branch lengths connecting a
        pair of tips :math:`i` and :math:`j` in trees :math:`T_1` and :math:`T_2`,
        respectively.

        When the metric is Euclidean and lengths are not used, it returns the **path
        distance** [3]_, which insteads considers the number of edges in the path.

        References
        ----------
        .. [1] Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by
           objective methods. Taxon, 33-40.

        .. [2] Lapointe, F. J., & Cucumel, G. (1997). The average consensus procedure:
           combination of weighted trees containing identical or overlapping sets of
           taxa. Systematic Biology, 46(2), 306-312.

        .. [3] Steel, M. A., & Penny, D. (1993). Distributions of tree comparison
           metrics—some new results. Systematic Biology, 42(2), 126-141.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree1 = TreeNode.read(["((a:1,b:2):1,c:4,((d:4,e:5):2,f:6):1);"])
        >>> print(tree1.ascii_art())
                            /-a
                  /--------|
                 |          \-b
                 |
        ---------|--c
                 |
                 |                    /-d
                 |          /--------|
                  \--------|          \-e
                           |
                            \-f

        >>> tree2 = TreeNode.read(["((a:3,(b:2,c:2):1):3,d:8,(e:5,f:6):2);"])
        >>> print(tree2.ascii_art())
                            /-a
                  /--------|
                 |         |          /-b
                 |          \--------|
                 |                    \-c
        ---------|
                 |--d
                 |
                 |          /-e
                  \--------|
                            \-f

        Calculate the unit correlation distance between the two trees.

        >>> d = tree1.compare_cophenet(tree2, ignore_self=True)
        >>> print(round(d, 5))
        0.14131

        Calculate the path-length distance between the two trees.

        >>> d = tree1.compare_cophenet(tree2, metric="euclidean",
        ...                                 ignore_self=True)
        >>> print(round(d, 5))
        13.71131

        Calculate the path distance between the two trees.

        >>> tree1.compare_cophenet(
        ...     tree2, metric="euclidean", use_length=False, ignore_self=True)
        4.0

        """
        # future warning
        if ignore_self is False:
            _warn_once(
                self.__class__.compare_cophenet,
                FutureWarning,
                "The default behavior of `compare_cophenet` is subject to change in "
                "0.7.0. The new default behavior can be achieved by specifying "
                "`ignore_self=True`.",
            )

        metric = _check_dist_metric(metric)
        if sample is not None:
            shuffler = _check_shuffler(shuffler)

        return _path_dists(
            trees=(self, other),
            sample=sample,
            metric=metric,
            shuffler=shuffler,
            use_length=use_length,
            ignore_self=ignore_self,
        )[0]

    # ------------------------------------------------
    # Tree indexing and searching
    # ------------------------------------------------

    def has_caches(self):
        r"""Check if the current tree has caches.

        .. versionadded:: 0.6.3

        Returns
        -------
        set or None
            Names of present node attribute caches, or None if none is present.
        bool
            Presence (True) or absence (False) of node lookup caches.

        See Also
        --------
        clear_caches
        cache_attr
        find

        Notes
        -----
        Caches are optional but can significantly accelerate certain analyses of the
        tree. Two types of caches may be created:

        1. **Node attributes**, which may be created by calling :meth:`cache_attr` and
           assigned to individual nodes within the tree. The names of these attributes
           are optionally registered at the root.

        2. **Node lookup table**, which is automatically created during the first node
           search (e.g., by calling :meth:`find`) and reused in subsequent searches.
           This table is attached to the root of the tree.

        This method checks if a node lookup table and any registered node attributes
        are present at the root node of the tree.

        The returned set of node attribute names is a reference instead of a copy. One
        may edit the set in place to explicitly enable/disable names. Use this feature
        with caution.

        When the tree is manipulated, caches typically become obsolete and are
        automatically cleared. If the caches are not present or not relevant to the
        analysis, you may set ``uncache=False`` when performing individual operations
        to suppress clearing. This can improve the performance of these operations.

        You may explicitly call :meth:`clear_caches` to clear caches of a tree.

        """
        tree = self.root()
        attrs = getattr(tree, "_registered_caches", None)
        lookup = hasattr(tree, "_tip_cache") and hasattr(tree, "_non_tip_cache")
        return attrs, lookup

    @aliased("invalidate_caches", "0.6.3", True)
    def clear_caches(self, attr=True, lookup=True):
        r"""Delete node attribute and lookup caches of a tree.

        Parameters
        ----------
        attr : bool or str, optional
            Whether to delete attribute caches created by ``cache_attr`` (default:
            True). One may instead provide an attribute name such that only this
            attribute will be deleted.

            .. versionchanged:: 0.6.3

                Can provide a specific attribute name.

        lookup : bool, optional
            Whether to delete lookup caches created during name searching (default:
            True).

            .. versionadded:: 0.6.3

        See Also
        --------
        has_caches
        cache_attr
        find

        Notes
        -----
        This method may be called from any node within a tree. The caches, which were
        attached to the root node of the tree, will be deleted.

        This method will silently skip if the specified caches do not exist.

        """
        tree = self.root()

        # delete attribute caches
        if attr and hasattr(tree, "_registered_caches"):
            attrs = tree._registered_caches

            # delete a single attribute
            if isinstance(attr, str):
                if attr not in attrs:
                    return
                for node in tree.traverse():
                    if hasattr(node, attr):
                        delattr(node, attr)
                if len(attrs) == 1:
                    del tree._registered_caches
                else:
                    attrs.remove(attr)

            # delete all attributes
            else:
                for node in tree.traverse():
                    for attr in attrs:
                        if hasattr(node, attr):
                            delattr(node, attr)
                del tree._registered_caches

        # delete lookup caches
        if lookup:
            for key in ("_tip_cache", "_non_tip_cache"):
                if hasattr(tree, key):
                    delattr(tree, key)

    def cache_attr(self, func, cache_attrname, cache_type=list, register=True):
        r"""Cache attributes on nodes of the tree through a postorder traversal.

        Parameters
        ----------
        func : callable
            Function to calculate the attribute of the current node. The result will be
            combined with the attributes of the previous nodes, if applicable.

        cache_attrname : str
            Name of the attribute to be attached to each node.

        cache_type : {list, tuple, set, frozenset}, callable, or None
            The type of the cache. Can be any of the four iterable types: list
            (default), tuple, set, or frozenset. In these cases, combination of
            attributes of the node's children and itself will be automated.

            Or a custom function that takes two arguments: list of attributes of its
            children, and attribute calculated from itself by ``func``, and returns the
            combined attribute of the node.

            Or None, in which case combination of attributes of children and self
            will not take place, unless explicitly customized within ``func``.

            .. versionchanged:: 0.6.3

                Tuple, custom function and None were added to the options.

        register : bool, optional
            Whether to register the attribute name as a cache of the tree, such that
            the attributes will be deleted from all nodes when the tree is manipulated
            or the ``clear_caches`` method is explicitly invoked. Default is True.

            .. versionadded:: 0.6.3

        Raises
        ------
        TypeError
            If ``cache_type`` is invalid.

        See Also
        --------
        has_caches
        clear_caches

        Notes
        -----
        This method provides an efficient interface to assign a custom attribute to
        every node of a tree through one postorder travesal. It is particularly useful
        if one needs to frequently look up attributes that would normally require one
        traversal of the tree per lookup. The assigned attributes may be automatically
        deleted when the tree is manipulated.

        Examples
        --------
        This method facilitates evaluation for various useful node properties. Some
        representative examples are provided below.

        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a:1.2,b:1.6)c:0.3,(d:0.8,e:1.0)f:0.6)g;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -g-------|
                 |          /-d
                  \f-------|
                            \-e

        Cache a list of all descending tip names on each node. This faciliates the
        assignment of taxon set under each clade in the tree. It resembles but is more
        efficient than calling :meth:`subset` multiple times.

        >>> f = lambda n: [n.name] if n.is_tip() else []
        >>> tree.cache_attr(f, 'tip_names')
        >>> for node in tree.traverse(include_self=True):
        ...     print(f"Node: {node.name}, tips: {node.tip_names}")
        Node: g, tips: ['a', 'b', 'd', 'e']
        Node: c, tips: ['a', 'b']
        Node: a, tips: ['a']
        Node: b, tips: ['b']
        Node: f, tips: ['d', 'e']
        Node: d, tips: ['d']
        Node: e, tips: ['e']

        Cache the number of nodes per clade. The function ``sum`` is used in place of
        cache type such that the count will be accumulated. This resembles but is more
        efficient than calling :meth:`count` multiple times.

        >>> f = lambda n: 1
        >>> tree.cache_attr(f, 'node_count', sum)
        >>> tree.node_count
        7

        Cache the sum of branch lengths per clade. This resembles but is more efficient
        than calling :meth:`total_length` multiple times.

        >>> f = lambda n: n.length or 0.0
        >>> tree.cache_attr(f, 'clade_size', sum)
        >>> tree.clade_size
        5.5

        Cache the accumulative distances from all tips to the common ancestor of each
        clade. This is more efficient than calling :meth:`depth` multiple times. One
        can further apply calculations like mean and standard deviation to the results.

        >>> import numpy as np
        >>> dist_f = lambda n: np.array(n.length or 0.0, ndmin=1)
        >>> comb_f = lambda prev, curr: np.concatenate(prev) + curr if prev else curr
        >>> tree.cache_attr(dist_f, 'accu_dists', comb_f)
        >>> tree.accu_dists
        array([ 1.5,  1.9,  1.4,  1.6])

        """
        if cache_type in (set, frozenset):

            def combine_f(prev, curr):
                return cache_type().union(*prev + [curr])

        elif cache_type in (list, tuple):

            def combine_f(prev, curr):
                return cache_type(chain.from_iterable(prev + [curr]))

        elif callable(cache_type) or cache_type is None:
            combine_f = cache_type
        else:
            raise TypeError("Cache type is invalid.")

        # register attribute name as a cache
        if register:
            tree = self.root()
            if not hasattr(tree, "_registered_caches"):
                tree._registered_caches = set()
            tree._registered_caches.add(cache_attrname)

        # traverse tree and assign attributes
        if combine_f is not None:
            for node in self.postorder(include_self=True):
                prev_attrs = [getattr(c, cache_attrname) for c in node.children]
                curr_attr = func(node)
                setattr(node, cache_attrname, combine_f(prev_attrs, curr_attr))
        else:
            for node in self.postorder(include_self=True):
                setattr(node, cache_attrname, func(node))

    def assign_ids(self):
        """Assign topologically stable unique IDs to all nodes of the tree.

        See Also
        --------
        find_by_id
        postorder

        Notes
        -----
        This method assigns unique IDs to all nodes of the tree via a postorder
        traversal. The IDs are incremental integers starting from 0. The order is
        topologically stable. Following the call, all nodes in the tree will have
        their ``id`` attribute set.

        """
        curr_index = 0
        for n in self.postorder():
            for c in n.children:
                c.id = curr_index
                curr_index += 1

        self.id = curr_index

    def index_tree(self):
        r"""Index a tree for rapid lookups within a tree array.

        Indexes nodes in-place as ``n._leaf_index``.

        Returns
        -------
        dict
            A mapping {node_id: TreeNode}
        ndarray of int
            This arrays describes the IDs of every internal node, and the ID
            range of the immediate descendents. The first column in the array
            corresponds to node_id. The second column is the left most
            descendent's ID. The third column is the right most descendent's
            ID.

        """
        self.assign_ids()

        id_index = {}
        child_index = []

        for n in self.postorder():
            for c in n.children:
                id_index[c.id] = c

                if c:
                    # c has children itself, so need to add to result
                    child_index.append((c.id, c.children[0].id, c.children[-1].id))

        # handle root, which should be t itself
        id_index[self.id] = self

        # only want to add to the child_index if self has children...
        if self.children:
            child_index.append((self.id, self.children[0].id, self.children[-1].id))
        child_index = np.asarray(child_index, dtype=np.int64)
        child_index = np.atleast_2d(child_index)

        return id_index, child_index

    def create_caches(self):
        r"""Construct an internal lookup table to facilitate searching by name.

        Raises
        ------
        DuplicateNodeError
            If there are duplicate tip names.

        See Also
        --------
        has_caches
        clear_caches
        find

        Notes
        -----
        This method is automatically called during the first search in a tree (methods
        :meth:`find` and :meth:`find_all`). After that, subsequent searches will
        utilize the constructed lookup table, until it is deleted.

        This method may be called from any node within a tree. The lookup table will be
        attached to the root node of the tree.

        This method will not cache nodes whose name is ``None``. This method will
        raise an error if a name conflict in the tips is discovered, but will not raise
        if on internal nodes. This is because, in practice, the tips of a tree are
        required to be unique while no such requirement holds for internal nodes.

        """
        tree = self.root()
        if hasattr(tree, "_tip_cache") and hasattr(tree, "_non_tip_cache"):
            return

        tip_cache, non_tip_cache = {}, {}
        non_tip_cache_setdefault = non_tip_cache.setdefault
        for node in tree.postorder():
            if (name := node.name) is None:
                continue
            if node.is_tip():
                if name in tip_cache:
                    raise DuplicateNodeError(f"Duplicate tip name '{name}' found.")
                tip_cache[name] = node
            else:
                non_tip_cache_setdefault(name, []).append(node)

        tree._tip_cache = tip_cache
        tree._non_tip_cache = non_tip_cache

    def find(self, name):
        r"""Find a node by name.

        Parameters
        ----------
        name : TreeNode or str
            The name of the node to find. If a ``TreeNode`` object is provided,
            will find this particular node in the tree.

        Returns
        -------
        TreeNode
            The found node.

        Raises
        ------
        MissingNodeError
            If the node to be searched for is not found in the current tree.

        See Also
        --------
        find_all
        find_by_id
        find_by_func

        Notes
        -----
        This method will first attempt to find the node in the tips. If it cannot find
        a corresponding tip, it will then search through the internal nodes of the
        tree. In practice, phylogenetic trees and other common trees in biology do not
        have unique internal node names. As a result, this find method will only return
        the first occurrence of an internal node encountered on a postorder traversal
        of the tree.

        The first call of ``find`` will cache a node lookup table in the tree on the
        assumption that additional calls to ``find`` will be made. See
        :meth:`details <has_caches>`.

        This method searches within the entire tree where self is located, regardless
        if self is the root node.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> node = tree.find('c')
        >>> node.name
        'c'

        """
        tree = self.root()

        # create lookup table if not already
        tree.create_caches()

        # if input is a node, get its name
        name_is_node = isinstance(name, tree.__class__)
        name_ = name.name if name_is_node else name

        # look up name in tips
        node = tree._tip_cache.get(name_, None)
        if node is not None:
            if not name_is_node or node is name:
                return node

        # look up name in non-tips
        nodes = tree._non_tip_cache.get(name_, None)
        if nodes is not None:
            if name_is_node:
                for node in nodes:
                    if node is name:
                        return node
            else:
                return nodes[0]

        raise MissingNodeError(f"Node '{name_}' is not found in the tree.")

    def find_all(self, name):
        r"""Find all nodes that match a given name.

        Parameters
        ----------
        name : TreeNode or str
            The name or node to find. If a ``TreeNode`` object is provided, all nodes
            with the same name will be returned.

        Returns
        -------
        list of TreeNode
            The found nodes.

        Raises
        ------
        MissingNodeError
            If the node to be searched for is not found.

        See Also
        --------
        find
        find_by_id
        find_by_func

        Notes
        -----
        All internal nodes (including root) and tips with the given name will be
        returned, with the former placed before the latter in the returned list.

        The first call to ``find_all`` will cache a node lookup table in the tree on
        the assumption that additional calls to ``find_all`` will be made. See
        :meth:`details <has_caches>`.

        This method searches within the entire tree where self is located, regardless
        if self is the root node.

        Examples
        --------
        >>> from skbio.tree import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)d,(f,g)c);"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
                 |
                 |          /-d
        ---------|-d-------|
                 |          \-e
                 |
                 |          /-f
                  \c-------|
                            \-g

        >>> for node in tree.find_all('c'):
        ...     print(node.name, node.children[0].name, node.children[1].name)
        c a b
        c f g
        >>> for node in tree.find_all('d'):
        ...     print(node.name, str(node))
        d (d,e)d;
        <BLANKLINE>
        d d;
        <BLANKLINE>

        """
        tree = self.root()
        if isinstance(name, tree.__class__):
            name = name.name
        tree.create_caches()
        tip = tree._tip_cache.get(name, None)
        nodes = tree._non_tip_cache.get(name, [])
        if tip is not None:
            nodes.append(tip)
        if not nodes:
            raise MissingNodeError(f"Node '{name}' is not found.")
        else:
            return nodes

    def find_by_id(self, node_id):
        r"""Find a node by ID.

        Parameters
        ----------
        node_id : int
            The ID of a node in the tree.

        Returns
        -------
        TreeNode
            The node with the matching ID.

        Raises
        ------
        MissingNodeError
            If the ID cannot be found.

        See Also
        --------
        assign_ids
        find

        Notes
        -----
        This method searches within the subtree under the current node. But the IDs
        are assigned from the root of the entire tree.

        This method does not cache ID associations. A full traversal of the
        tree is performed to find a node by an ID on every call.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> print(tree.find_by_id(2).name)
        d

        """
        self.root().assign_ids()
        for node in self.traverse(include_self=True):
            if node.id == node_id:
                return node
        raise MissingNodeError(f"ID {node_id} is not in self.")

    def find_by_func(self, func):
        r"""Find all nodes in a tree that meet certain criteria.

        Parameters
        ----------
        func : callable
            A function that accepts a ``TreeNode`` and returns True or False, where
            True indicates the node is to be yielded.

        Yields
        ------
        TreeNode
            The found node.

        See Also
        --------
        find
        find_all
        find_by_id

        Notes
        -----
        This search method is based on the current subtree, not the root.

        This method does not cache search results.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f);"])
        >>> func = lambda x: x.parent == tree.find('c')
        >>> [n.name for n in tree.find_by_func(func)]
        ['a', 'b']

        """
        for node in self.traverse(include_self=True):
            if func(node):
                yield node

    # ------------------------------------------------
    # Tree visualization
    # ------------------------------------------------

    def _ascii_art(self, char1="-", show_internal=True, compact=False):
        LEN = 10
        PAD = " " * LEN
        PA = " " * (LEN - 1)
        namestr = self._node_label()
        if self.children:
            mids = []
            result = []
            for c in self.children:
                if c is self.children[0]:
                    char2 = "/"
                elif c is self.children[-1]:
                    char2 = "\\"
                else:
                    char2 = "-"
                (clines, mid) = c._ascii_art(char2, show_internal, compact)
                mids.append(mid + len(result))
                result.extend(clines)
                if not compact:
                    result.append("")
            if not compact:
                result.pop()
            (lo, hi, end) = (mids[0], mids[-1], len(result))
            prefixes = (
                [PAD] * (lo + 1) + [PA + "|"] * (hi - lo - 1) + [PAD] * (end - hi)
            )
            mid = int(np.trunc((lo + hi) / 2))
            prefixes[mid] = char1 + "-" * (LEN - 2) + prefixes[mid][-1]
            result = [p + L for (p, L) in zip(prefixes, result)]
            if show_internal:
                stem = result[mid]
                result[mid] = stem[0] + namestr + stem[len(namestr) + 1 :]
            return (result, mid)
        else:
            return ([char1 + "-" + namestr], 0)

    def ascii_art(self, show_internal=True, compact=False):
        r"""Return a string containing an ascii drawing of the tree.

        Note, this method calls a private recursive function and is not safe
        for large trees.

        Parameters
        ----------
        show_internal : bool
            includes internal edge names
        compact : bool
            use exactly one line per tip

        Returns
        -------
        str
            an ASCII formatted version of the tree

        Examples
        --------
        >>> from skbio import TreeNode
        >>> tree = TreeNode.read(["((a,b)c,(d,e)f)root;"])
        >>> print(tree.ascii_art())
                            /-a
                  /c-------|
                 |          \-b
        -root----|
                 |          /-d
                  \f-------|
                            \-e

        """
        (lines, mid) = self._ascii_art(show_internal=show_internal, compact=compact)
        return "\n".join(lines)

    # ------------------------------------------------
    # Format conversion
    # ------------------------------------------------

    def _balanced_distance_to_tip(self):
        """Return the distance to tip from this node.

        The distance to every tip from this node must be equal for this to
        return a correct result.

        Returns
        -------
        float
            The distance to tip of a length-balanced tree.

        """
        node = self
        distance = 0.0
        while node.has_children():
            distance += node.children[0].length
            node = node.children[0]
        return distance

    @classonlymethod
    def from_linkage_matrix(cls, linkage_matrix, id_list):
        r"""Return tree from SciPy linkage matrix.

        Parameters
        ----------
        linkage_matrix : ndarray
            A linkage matrix generated by ``scipy.cluster.hierarchy.linkage``.
        id_list : list
            Corresponding IDs of the indices in the linkage matrix.

        Returns
        -------
        TreeNode
            An unrooted bifurcated tree.

        See Also
        --------
        scipy.cluster.hierarchy.linkage

        """
        tip_width = len(id_list)
        cluster_count = len(linkage_matrix)
        lookup_len = cluster_count + tip_width
        node_lookup = np.empty(lookup_len, dtype=cls)

        for i, name in enumerate(id_list):
            node_lookup[i] = cls(name=name)

        for i in range(tip_width, lookup_len):
            node_lookup[i] = cls()

        newest_cluster_index = cluster_count + 1
        for link in linkage_matrix:
            child_a = node_lookup[int(link[0])]
            child_b = node_lookup[int(link[1])]

            path_length = link[2] / 2
            child_a.length = path_length - child_a._balanced_distance_to_tip()
            child_b.length = path_length - child_b._balanced_distance_to_tip()

            new_cluster = node_lookup[newest_cluster_index]
            new_cluster.append(child_a, uncache=False)
            new_cluster.append(child_b, uncache=False)

            newest_cluster_index += 1

        return node_lookup[-1]

    @classonlymethod
    def from_taxonomy(cls, lineage_map):
        r"""Construct a tree from a taxonomy.

        Parameters
        ----------
        lineage_map : dict, iterable of tuples, or pd.DataFrame
            Mapping of taxon IDs to lineages (iterables of taxonomic units
            from high to low in ranking).

        Returns
        -------
        TreeNode
            The constructed taxonomy.

        See Also
        --------
        from_taxdump

        Examples
        --------
        >>> from skbio.tree import TreeNode
        >>> lineages = [
        ...     ('1', ['Bacteria', 'Firmicutes', 'Clostridia']),
        ...     ('2', ['Bacteria', 'Firmicutes', 'Bacilli']),
        ...     ('3', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
        ...     ('4', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
        ...     ('5', ['Archaea', 'Euryarchaeota', 'Thermoplasmata']),
        ...     ('6', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
        ...     ('7', ['Archaea', 'Euryarchaeota', 'Halobacteria']),
        ...     ('8', ['Bacteria', 'Bacteroidetes', 'Sphingobacteria']),
        ...     ('9', ['Bacteria', 'Bacteroidetes', 'Cytophagia'])]

        >>> tree = TreeNode.from_taxonomy(lineages)
        >>> print(tree.ascii_art())
                                      /Clostridia-1
                            /Firmicutes
                           |          \Bacilli- /-2
                  /Bacteria|
                 |         |                    /-3
                 |         |          /Sphingobacteria
                 |          \Bacteroidetes      \-8
                 |                   |
        ---------|                    \Cytophagia-9
                 |
                 |                              /-4
                 |                    /Thermoplasmata
                 |                   |          \-5
                  \Archaea- /Euryarchaeota
                                     |          /-6
                                      \Halobacteria
                                                \-7

        """
        root = cls(name=None)
        root._lookup = {}

        if isinstance(lineage_map, dict):
            lineage_map = lineage_map.items()
        elif isinstance(lineage_map, pd.DataFrame):
            lineage_map = ((idx, row.tolist()) for idx, row in lineage_map.iterrows())

        for id_, lineage in lineage_map:
            cur_node = root

            # for each name, see if we've seen it, if not, add that puppy on
            for name in lineage:
                if name in cur_node._lookup:
                    cur_node = cur_node._lookup[name]
                else:
                    new_node = cls(name=name)
                    new_node._lookup = {}
                    cur_node._lookup[name] = new_node
                    cur_node.append(new_node, uncache=False)
                    cur_node = new_node

            cur_node.append(cls(name=id_), uncache=False)

        # scrub the lookups
        for node in root.non_tips(include_self=True):
            del node._lookup

        return root

    def to_taxonomy(self, allow_empty=False, filter_f=None):
        """Return a taxonomy representation of self.

        Parameters
        ----------
        allow_empty : bool, optional
            Allow gaps the taxonomy (e.g., internal nodes without names).
        filter_f : function, optional
            Specify a filtering function that returns True if the lineage is
            to be returned. This function must accept a ``TreeNode`` as its
            first parameter, and a ``list`` that represents the lineage as the
            second parameter.

        Yields
        ------
        tuple
            ``(tip, [lineage])`` where ``tip`` corresponds to a tip in the tree
            and ``[lineage]`` is the expanded names from root to tip. ``None``
            and empty strings are omitted from the lineage.

        Notes
        -----
        If ``allow_empty`` is True and the root node does not have a name, that name
        will not be included. This is because it is common to have multiple domains
        represented in the taxonomy, which would result in a root node that does not
        have a name and does not make sense to represent in the output.

        Examples
        --------
        >>> from skbio.tree import TreeNode
        >>> lineages = {'1': ['Bacteria', 'Firmicutes', 'Clostridia'],
        ...             '2': ['Bacteria', 'Firmicutes', 'Bacilli'],
        ...             '3': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
        ...             '4': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
        ...             '5': ['Archaea', 'Euryarchaeota', 'Thermoplasmata'],
        ...             '6': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
        ...             '7': ['Archaea', 'Euryarchaeota', 'Halobacteria'],
        ...             '8': ['Bacteria', 'Bacteroidetes', 'Sphingobacteria'],
        ...             '9': ['Bacteria', 'Bacteroidetes', 'Cytophagia']}
        >>> tree = TreeNode.from_taxonomy(lineages.items())
        >>> lineages = sorted([(n.name, l) for n, l in tree.to_taxonomy()])
        >>> for name, lineage in lineages:
        ...     print(name, '; '.join(lineage))
        1 Bacteria; Firmicutes; Clostridia
        2 Bacteria; Firmicutes; Bacilli
        3 Bacteria; Bacteroidetes; Sphingobacteria
        4 Archaea; Euryarchaeota; Thermoplasmata
        5 Archaea; Euryarchaeota; Thermoplasmata
        6 Archaea; Euryarchaeota; Halobacteria
        7 Archaea; Euryarchaeota; Halobacteria
        8 Bacteria; Bacteroidetes; Sphingobacteria
        9 Bacteria; Bacteroidetes; Cytophagia

        """
        if filter_f is None:

            def filter_f(a, b):
                return True

        self.assign_ids()
        seen = set()
        seen_add = seen.add
        lineage = []
        lineage_pop = lineage.pop
        lineage_append = lineage.append

        # visit internal nodes while traversing out to the tips, and on the
        # way back up
        for node in self.traverse(self_before=True, self_after=True):
            if node.is_tip():
                if filter_f(node, lineage):
                    yield (node, lineage[:])
            else:
                if allow_empty:
                    if node.is_root() and not node.name:
                        continue
                else:
                    if not node.name:
                        continue

                if node.id in seen:
                    lineage_pop()
                else:
                    lineage_append(node.name)
                    seen_add(node.id)

    @classonlymethod
    def from_taxdump(cls, nodes, names=None):
        r"""Construct a tree from the NCBI taxonomy database.

        Parameters
        ----------
        nodes : pd.DataFrame
            Taxon hierarchy.
        names : pd.DataFrame or dict, optional
            Taxon names.

        Returns
        -------
        TreeNode
            The constructed tree.

        Notes
        -----
        ``nodes`` and ``names`` correspond to "nodes.dmp" and "names.dmp" of
        the NCBI taxonomy database. The should be read into data frames using
        ``skbio.io.read`` prior to this operation. Alternatively, ``names``
        may be provided as a dictionary. If ``names`` is omitted, taxonomy IDs
        be used as taxon names.

        Raises
        ------
        ValueError
            If there is no top-level node.
        ValueError
            If there are more than one top-level node.

        See Also
        --------
        from_taxonomy
        skbio.io.format.taxdump

        Examples
        --------
        >>> import pandas as pd
        >>> from skbio.tree import TreeNode
        >>> nodes = pd.DataFrame([
        ...             [1, 1, 'no rank'],
        ...             [2, 1, 'domain'],
        ...             [3, 1, 'domain'],
        ...             [4, 2, 'phylum'],
        ...             [5, 2, 'phylum']], columns=[
        ...     'tax_id', 'parent_tax_id', 'rank']).set_index('tax_id')
        >>> names = {1: 'root', 2: 'Bacteria', 3: 'Archaea',
        ...          4: 'Firmicutes', 5: 'Bacteroidetes'}
        >>> tree = TreeNode.from_taxdump(nodes, names)
        >>> print(tree.ascii_art())
                            /-Firmicutes
                  /Bacteria|
        -root----|          \-Bacteroidetes
                 |
                  \-Archaea

        """
        # identify top level of hierarchy
        tops = nodes[nodes["parent_tax_id"] == nodes.index]

        # validate root uniqueness
        n_top = tops.shape[0]
        if n_top == 0:
            raise ValueError("There is no top-level node.")
        elif n_top > 1:
            raise ValueError("There are more than one top-level node.")

        # get root taxid
        root_id = tops.index[0]

        # get parent-to-child(ren) map
        to_children = {
            p: g.index.tolist()
            for p, g in nodes[nodes.index != root_id].groupby("parent_tax_id")
        }

        # get rank map
        ranks = nodes["rank"].to_dict()

        # get taxon-to-name map
        # if not provided, use tax_id as name
        if names is None:
            names = {x: str(x) for x in nodes.index}

        # use "scientific name" as name
        elif isinstance(names, pd.DataFrame):
            names = names[names["name_class"] == "scientific name"][
                "name_txt"
            ].to_dict()

        # initiate tree
        tree = cls(names[root_id])
        tree.id = root_id
        tree.rank = ranks[root_id]

        # helper for extending tree
        def _extend_tree(node):
            self_id = node.id
            if self_id not in to_children:
                return
            children = []
            for id_ in to_children[self_id]:
                child = TreeNode(names[id_])
                child.id = id_
                child.rank = ranks[id_]
                _extend_tree(child)
                children.append(child)
            node.extend(children, uncache=False)

        # extend tree
        _extend_tree(tree)
        return tree

    def to_array(self, attrs=None, nan_length_value=None):
        """Return an array representation of self.

        Parameters
        ----------
        attrs : list of tuple or None
            The attributes and types to return. The expected form is
            [(attribute_name, type)]. If `None`, then `name`, `length`, and
            `id` are returned.
        nan_length_value : float, optional
            If provided, replaces any `nan` in the branch length vector
            (i.e., ``result['length']``) with this value. `nan` branch lengths
            can arise from an edge not having a length (common for the root
            node parent edge), which can making summing problematic.

        Returns
        -------
        dict of array
            {id_index: {id: TreeNode},
             child_index: ((node_id, left_child_id, right_child_id)),
             attr_1: array(...),
             ...
             attr_N: array(...)}

        Notes
        -----
        Attribute arrays are in index order such that TreeNode.id can be used
        as a lookup into the array.

        Examples
        --------
        >>> from skbio import TreeNode
        >>> t = TreeNode.read(['(((a:1,b:2,c:3)x:4,(d:5)y:6)z:7);'])
        >>> res = t.to_array()
        >>> sorted(res.keys())
        ['child_index', 'id', 'id_index', 'length', 'name']
        >>> res['child_index'] # doctest: +ELLIPSIS
        array([[4, 0, 2],
               [5, 3, 3],
               [6, 4, 5],
               [7, 6, 6]]...
        >>> for k, v in res['id_index'].items():
        ...     print(k, v)
        ...
        0 a:1.0;
        <BLANKLINE>
        1 b:2.0;
        <BLANKLINE>
        2 c:3.0;
        <BLANKLINE>
        3 d:5.0;
        <BLANKLINE>
        4 (a:1.0,b:2.0,c:3.0)x:4.0;
        <BLANKLINE>
        5 (d:5.0)y:6.0;
        <BLANKLINE>
        6 ((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0;
        <BLANKLINE>
        7 (((a:1.0,b:2.0,c:3.0)x:4.0,(d:5.0)y:6.0)z:7.0);
        <BLANKLINE>
        >>> res['id']
        array([0, 1, 2, 3, 4, 5, 6, 7])
        >>> res['name']
        array(['a', 'b', 'c', 'd', 'x', 'y', 'z', None], dtype=object)

        """
        if attrs is None:
            attrs = [("name", object), ("length", float), ("id", int)]
        else:
            for attr, dtype in attrs:
                if not hasattr(self, attr):
                    raise AttributeError("Invalid attribute '%s'." % attr)

        id_index, child_index = self.index_tree()
        n = self.id + 1  # assign_ids starts at 0
        tmp = [np.zeros(n, dtype=dtype) for attr, dtype in attrs]

        for node in self.traverse(include_self=True):
            n_id = node.id
            for idx, (attr, dtype) in enumerate(attrs):
                tmp[idx][n_id] = getattr(node, attr)

        results = {"id_index": id_index, "child_index": child_index}
        results.update({attr: arr for (attr, dtype), arr in zip(attrs, tmp)})
        if nan_length_value is not None:
            length_v = results["length"]
            length_v[np.isnan(length_v)] = nan_length_value
        return results