File: test_nj.py

package info (click to toggle)
python-skbio 0.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,924 kB
  • sloc: python: 67,527; ansic: 672; makefile: 225
file content (165 lines) | stat: -rw-r--r-- 7,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE.txt, distributed with this software.
# ----------------------------------------------------------------------------

import io
from unittest import TestCase, main

import numpy.testing as npt

from skbio import DistanceMatrix, TreeNode
from skbio.tree._nj import nj, _tree_from_linkmat


class NjTests(TestCase):

    def setUp(self):
        data1 = [[0,  5,  9,  9,  8],
                 [5,  0, 10, 10,  9],
                 [9, 10,  0,  8,  7],
                 [9, 10,  8,  0,  3],
                 [8,  9,  7,  3,  0]]
        ids1 = list('abcde')
        self.dm1 = DistanceMatrix(data1, ids1)
        # this newick string was confirmed against http://www.trex.uqam.ca/
        # which generated the following (isomorphic) newick string:
        # (d:2.0000,e:1.0000,(c:4.0000,(a:2.0000,b:3.0000):3.0000):2.0000);
        self.expected1_str = ("(d:2.000000, (c:4.000000, (b:3.000000,"
                              " a:2.000000):3.000000):2.000000, e:1.000000);")
        self.expected1_TreeNode = TreeNode.read(
                io.StringIO(self.expected1_str))

        # this example was pulled from the Phylip manual
        # https://phylipweb.github.io/phylip/doc/neighbor.html
        data2 = [[0.0000, 1.6866, 1.7198, 1.6606, 1.5243, 1.6043, 1.5905],
                 [1.6866, 0.0000, 1.5232, 1.4841, 1.4465, 1.4389, 1.4629],
                 [1.7198, 1.5232, 0.0000, 0.7115, 0.5958, 0.6179, 0.5583],
                 [1.6606, 1.4841, 0.7115, 0.0000, 0.4631, 0.5061, 0.4710],
                 [1.5243, 1.4465, 0.5958, 0.4631, 0.0000, 0.3484, 0.3083],
                 [1.6043, 1.4389, 0.6179, 0.5061, 0.3484, 0.0000, 0.2692],
                 [1.5905, 1.4629, 0.5583, 0.4710, 0.3083, 0.2692, 0.0000]]
        ids2 = ["Bovine", "Mouse", "Gibbon", "Orang", "Gorilla", "Chimp",
                "Human"]
        self.dm2 = DistanceMatrix(data2, ids2)
        self.expected2_str = ("(Mouse:0.76891, (Gibbon:0.35793, (Orang:0.28469"
                              ", (Gorilla:0.15393, (Chimp:0.15167, Human:0.117"
                              "53):0.03982):0.02696):0.04648):0.42027, Bovine:"
                              "0.91769);")
        self.expected2_TreeNode = TreeNode.read(
                io.StringIO(self.expected2_str))

        data3 = [[0, 5, 4, 7, 6, 8],
                 [5, 0, 7, 10, 9, 11],
                 [4, 7, 0, 7, 6, 8],
                 [7, 10, 7, 0, 5, 8],
                 [6, 9, 6, 5, 0, 8],
                 [8, 11, 8, 8, 8, 0]]
        ids3 = map(str, range(6))
        self.dm3 = DistanceMatrix(data3, ids3)
        self.expected3_str = ("((((0:1.000000,1:4.000000):1.000000,2:2.000000"
                              "):1.250000,5:4.750000):0.750000,3:2.750000,4:2."
                              "250000);")
        self.expected3_TreeNode = TreeNode.read(
                io.StringIO(self.expected3_str))

        # this dm can yield negative branch lengths for nj
        data4 = [[0,  5,  9,  9,  800],
                 [5,  0, 10, 10,  9],
                 [9, 10,  0,  8,  7],
                 [9, 10,  8,  0,  3],
                 [800,  9,  7,  3,  0]]
        ids4 = list('abcde')
        self.dm4 = DistanceMatrix(data4, ids4)

    def test_nj_dm1(self):
        actual_TreeNode = nj(self.dm1)
        self.assertAlmostEqual(actual_TreeNode.compare_cophenet(
            self.expected1_TreeNode), 0.0)

    def test_nj_dm2(self):
        actual_TreeNode = nj(self.dm2)
        self.assertAlmostEqual(actual_TreeNode.compare_cophenet(
            self.expected2_TreeNode), 0.0)

    def test_nj_dm3(self):
        actual_TreeNode = nj(self.dm3)
        self.assertAlmostEqual(actual_TreeNode.compare_cophenet(
            self.expected3_TreeNode), 0.0)

    def test_nj_inplace(self):
        dm = self.dm3.copy()
        obs = nj(dm)
        exp = self.expected3_TreeNode
        self.assertAlmostEqual(obs.compare_cophenet(exp), 0.0)
        npt.assert_almost_equal(dm.data, self.dm3.data)

        obs = nj(dm, inplace=True)
        self.assertAlmostEqual(obs.compare_cophenet(exp), 0.0)
        with self.assertRaises(AssertionError):
            npt.assert_almost_equal(dm.data, self.dm3.data)

    def test_nj_zero_branch_length(self):
        # no nodes have negative branch length when we disallow negative
        # branch length. self is excluded as branch length is None
        tree = nj(self.dm4)
        for n in tree.postorder(include_self=False):
            self.assertTrue(n.length >= 0)
        # only tips associated with the large distance in the input
        # have positive branch lengths when we allow negative branch
        # length
        tree = nj(self.dm4, neg_as_zero=False)
        self.assertTrue(tree.find('a').length > 0)
        self.assertTrue(tree.find('b').length < 0)
        self.assertTrue(tree.find('c').length < 0)
        self.assertTrue(tree.find('d').length < 0)
        self.assertTrue(tree.find('e').length > 0)

        # deprecated functionality
        t2 = nj(self.dm4, disallow_negative_branch_length=False)
        self.assertAlmostEqual(tree.compare_cophenet(t2), 0.0)

    def test_nj_trivial(self):
        data = [[0, 3, 2],
                [3, 0, 3],
                [2, 3, 0]]
        dm = DistanceMatrix(data, list('abc'))
        exp = TreeNode.read(["(b:2.000000, a:1.000000, c:1.000000);"])
        self.assertAlmostEqual(nj(dm).compare_cophenet(exp), 0.0)

        # deprecated functionality
        self.assertEqual(nj(dm, result_constructor=str), "(a:1.0,b:2.0,c:1.0);\n")

    def test_nj_error(self):
        data = [[0, 3],
                [3, 0]]
        dm = DistanceMatrix(data, list('ab'))
        self.assertRaises(ValueError, nj, dm)

    def test_tree_from_linkmat(self):
        taxa = ['human', 'chimp', 'monkey', 'pig', 'mouse', 'rat', 'chicken']
        lm = [
            [5, 4, 0.065041, 0.060976],   # rat, mouse
            [6, 7, 0.457317, 0.229675],   # chicken, rat-mouse
            [3, 8, 0.161924, 0.050474],   # pig, chicken-rat-mouse
            [2, 9, 0.018293, 0.162602],   # monkey, pig-...-mouse
            [10, 1, 0.006098, 0.001016],  # chimp, monkey-...-mouse
            [0, 11, 0.003049, 0.0],       # human, chimp-...-mouse
        ]
        obs = str(_tree_from_linkmat(lm, taxa, rooted=True))
        exp = ("(human:0.003049,((monkey:0.018293,(pig:0.161924,(chicken:0.457317,"
               "(rat:0.065041,mouse:0.060976):0.229675):0.050474):0.162602):0.006098,"
               "chimp:0.001016):0.0);\n")
        self.assertEqual(str(obs), exp)
        obs = str(_tree_from_linkmat(lm, taxa, rooted=False))
        exp = ("(human:0.003049,(monkey:0.018293,(pig:0.161924,(chicken:0.457317,"
               "(rat:0.065041,mouse:0.060976):0.229675):0.050474):0.162602):0.006098,"
               "chimp:0.001016);\n")
        self.assertEqual(str(obs), exp)


if __name__ == "__main__":
    main()