1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
.. remove right sidebar
:html_theme.sidebar_secondary.remove:
.. page style and classes
.. raw:: html
<style>
.bd-main .bd-content .bd-article-container {
max-width: 100%;
}
details > summary {
font-weight: bold;
}
.centered {
text-align: center;
}
.subtitle {
text-align: center;
font-size: 1.2em;
margin: 20px;
}
.heading {
text-align: center;
font-size: 1.5em;
font-weight: 900;
}
.no-top-pardding {
margin-top: 0;
padding-top: 0;
}
</style>
.. hidden page title
.. title:: scikit-bio: Bioinformatics in Python
.. light/dark logo image
.. image:: _static/img/logo.svg
:class: only-light
:width: 600 px
:align: center
.. image:: _static/img/logo_inv.svg
:class: only-dark
:width: 600 px
:align: center
.. brief description of the project
.. rst-class:: subtitle
A community-driven Python library for bioinformatics, providing versatile data structures, algorithms and educational resources.
.. toctree hidden from document but provides header links
.. toctree::
:hidden:
:maxdepth: 1
Install <install>
Learn <learn>
Documentation <https://scikit.bio/docs/latest/index.html>
Contribute <contribute>
Community <https://github.com/scikit-bio/scikit-bio/discussions>
Releases <https://github.com/scikit-bio/scikit-bio/blob/main/CHANGELOG.md>
About <about>
.. grid:: 1 1 1 3
.. grid-item-card::
:class-header: centered
**For Researchers** :octicon:`beaker;1.2em;sd-text-danger`
^^^
Robust, performant and scalable algorithms tailored for the vast landscape of biological data analysis spanning genomics, microbiomics, ecology, evolutionary biology and more. Built to unveil the insights hidden in complex, multi-omic data.
+++
.. dropdown example code, implemented using raw html details instead of sphinx-design's dropdown, because the latter has extra edges
.. raw:: html
<details>
<summary>Example</summary>
.. code-block:: python
from skbio.tree import TreeNode
from skbio.diversity import beta_diversity
from skbio.stats.ordination import pcoa
data = pd.read_table('data.tsv', index_col=0)
metadata = pd.read_table('metadata.tsv', index_col=0)
tree = TreeNode.read('tree.nwk')
bdiv = beta_diversity(
'weighted_unifrac', data, ids=data.index, otu_ids=data.columns, tree=tree
)
ordi = pcoa(bdiv, number_of_dimensions=3)
ordi.plot(metadata, column='bodysite')
.. image:: _static/img/hmp1_pcoa.png
:alt: PCoA plot
.. raw:: html
</details>
.. grid-item-card::
:class-header: centered
**For Educators** :octicon:`mortar-board;1.2em;sd-text-info`
^^^
Fundamental bioinformatics algorithms enriched by comprehensive documentation, examples and references, offering a rich resource for classroom and laboratory education (with proven `success <https://readiab.org/>`_). Designed to spark curiosity and foster innovation.
+++
.. raw:: html
<details>
<summary>Example</summary>
.. code-block:: python
from skbio.alignment import global_pairwise_align_protein
from skbio.sequence.distance import hamming
from skbio.stats.distance import DistanceMatrix
from skbio.tree import nj
def align_dist(seq1, seq2):
aln = global_pairwise_align_protein(seq1, seq2)[0]
return hamming(aln[0], aln[1])
dm = DistanceMatrix.from_iterable(
seqs, align_dist, keys=ids, validate=False
)
tree = nj(dm).root_at_midpoint()
print(tree.ascii_art())
::
/-chicken
|
-root----| /-rat
| /--------|
| | \-mouse
\--------|
| /-pig
| |
\--------| /-chimp
| /--------|
\--------| \-human
|
\-monkey
.. raw:: html
</details>
.. grid-item-card::
:class-header: centered
**For Developers** :octicon:`git-merge;1.2em;sd-text-warning`
^^^
Industry-standard, production-ready Python codebase featuring a stable, unit-tested API that streamlines development and integration. Licensed under the :repo:`3-Clause BSD <blob/main/LICENSE.txt>`, it provides an expansive platform for both academic research and commercial ventures.
+++
.. raw:: html
<details>
<summary>Example</summary>
.. code-block:: python
def centralize(mat):
r"""Center data around its geometric average.
Parameters
----------
mat : array_like of shape (n_compositions, n_components)
A matrix of proportions.
Returns
-------
ndarray of shape (n_compositions, n_components)
centered composition matrix.
Examples
--------
>>> import numpy as np
>>> from skbio.stats.composition import centralize
>>> X = np.array([[.1, .3, .4, .2], [.2, .2, .2, .4]])
>>> centralize(X)
array([[ 0.17445763, 0.30216948, 0.34891526, 0.17445763],
[ 0.32495488, 0.18761279, 0.16247744, 0.32495488]])
"""
mat = closure(mat)
cen = gmean(mat, axis=0)
return perturb_inv(mat, cen)
.. raw:: html
</details>
----
.. grid:: 1 1 1 2
.. grid-item::
:columns: 12 12 5 5
:padding: 0 0 4 4
.. rst-class:: heading
Install
.. tab-set::
:class: no-top-pardding
.. tab-item:: Conda
.. code-block:: bash
conda install -c conda-forge scikit-bio
.. tab-item:: PyPI
.. code-block:: bash
pip install scikit-bio
.. tab-item:: Dev
.. code-block:: bash
pip install git+https://github.com/scikit-bio/scikit-bio.git
.. tab-item:: More
See detailed :doc:`instructions <install>` on installing scikit-bio on various platforms.
.. grid-item::
:columns: 12 12 7 7
:padding: 0 0 4 4
.. rst-class:: heading
News
.. card-carousel:: 3
.. card::
Latest release (2025-01-13):
.. button-link:: https://github.com/scikit-bio/scikit-bio/releases/tag/0.6.3
:color: success
:shadow:
scikit-bio 0.6.3
.. card::
Thrilled with completion of `scikit-bio workshop <https://www.iscb.org/ismb2024/programme-schedule/tutorials#ip3>`_ at ISMB 2024. Materials are `publicly available <https://github.com/scikit-bio/scikit-bio-tutorials>`_.
.. card::
New `DOE award <https://genomicscience.energy.gov/compbioawards2023/#Expanding>`_ for scikit-bio development in multi-omics and complex modeling.
.. card::
New website: `scikit.bio <https://scikit.bio>`_ and organization: https://github.com/scikit-bio are online.
----
.. rst-class:: heading
Feature Highlights
.. grid:: 1 2 3 3
:padding: 0 0 4 4
:gutter: 3
.. grid-item-card::
:fa:`dna;fa-2x sd-text-success`
**Biological sequences**: Efficient data structure with a :docs:`flexible grammar <sequence.GrammaredSequence>` for easy manipulation, :docs:`annotation <sequence.GrammaredSequence.has_positional_metadata>`, :docs:`alignment <alignment.global_pairwise_align>`, and conversion into :docs:`motifs <sequence.GrammaredSequence.find_motifs>` or :docs:`k-mers <sequence.GrammaredSequence.iter_kmers>` for in-depth analysis.
.. grid-item-card::
:fa:`tree;fa-2x sd-text-success`
**Phylogenetic trees**: Scalable :docs:`tree structure <tree.TreeNode>` tailored for evolutionary biology, supporting diverse operations in :docs:`navigation <tree.TreeNode.lca>`, :docs:`manipulation <tree.TreeNode.root_at_midpoint>`, :docs:`comparison <tree.TreeNode.compare_rfd>`, and :docs:`construction <tree.nj>`.
.. grid-item-card::
:fa:`chart-column;fa-2x sd-text-success`
**Community diversity** analysis for ecological studies, with an extensive suite of metrics such as :docs:`UniFrac <diversity.beta.weighted_unifrac>` and :docs:`PD <diversity.alpha.faith_pd>`, optimized to handle large-scale community datasets.
.. grid-item-card::
:fa:`compass-drafting;fa-2x sd-text-success`
**Ordination methods**, such as :docs:`PCoA <stats.ordination.pcoa>`, :docs:`CA <stats.ordination.ca>`, and :docs:`RDA <stats.ordination.rda>`, to uncover patterns underlying high-dimensional data, facilitating insightful visualization.
.. grid-item-card::
:fa:`arrow-up-right-dots;fa-2x sd-text-success`
**Multivariate statistical tests**, such as :docs:`PERMANOVA <stats.distance.permanova>`, :docs:`BIOENV <stats.distance.bioenv>`, and :docs:`Mantel <stats.distance.mantel>`, to decode complex relationships across data matrices and sample properties.
.. grid-item-card::
:fa:`chart-pie;fa-2x sd-text-success`
**Compositional data** processing and analysis, such as :docs:`CLR <stats.composition.clr>` transform and :docs:`ANCOM <stats.composition.ancom>`, built for various omic data types from high-throughput experiments.
|