File: _common.py

package info (click to toggle)
python-sparse 0.16.0a9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,948 kB
  • sloc: python: 9,959; makefile: 8; sh: 3
file content (2236 lines) | stat: -rw-r--r-- 69,286 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
import builtins
import warnings
from collections.abc import Iterable
from functools import reduce, wraps
from itertools import chain
from operator import index, mul

import numba
from numba import literal_unroll

import numpy as np

from ._coo.common import asCOO
from ._sparse_array import SparseArray
from ._utils import (
    _zero_of_dtype,
    check_zero_fill_value,
    equivalent,
    normalize_axis,
)


def _is_scipy_sparse_obj(x):
    """
    Tests if the supplied argument is a SciPy sparse object.
    """
    if hasattr(x, "__module__") and x.__module__.startswith("scipy.sparse"):
        return True
    return False


def _check_device(func):
    @wraps(func)
    def wrapped(*args, **kwargs):
        device = kwargs.get("device", None)
        if device not in {"cpu", None}:
            raise ValueError("Device must be `'cpu'` or `None`.")
        return func(*args, **kwargs)

    return wrapped


def _is_sparse(x):
    """
    Tests if the supplied argument is a SciPy sparse object, or one from this library.
    """
    return isinstance(x, SparseArray) or _is_scipy_sparse_obj(x)


@numba.njit
def nan_check(*args):
    """
    Check for the NaN values in Numpy Arrays

    Parameters
    ----------
    Union[Numpy Array, Integer, Float]

    Returns
    -------
    Boolean Whether Numpy Array Contains NaN

    """
    for i in literal_unroll(args):
        ia = np.asarray(i)
        if ia.size != 0 and np.isnan(np.min(ia)):
            return True
    return False


def check_class_nan(test):
    """
    Check NaN for Sparse Arrays

    Parameters
    ----------
    test : Union[sparse.COO, sparse.GCXS, scipy.sparse.spmatrix, Numpy Ndarrays]

    Returns
    -------
    Boolean Whether Sparse Array Contains NaN

    """
    from ._compressed import GCXS
    from ._coo import COO

    if isinstance(test, GCXS | COO):
        return nan_check(test.fill_value, test.data)
    if _is_scipy_sparse_obj(test):
        return nan_check(test.data)
    return nan_check(test)


def tensordot(a, b, axes=2, *, return_type=None):
    """
    Perform the equivalent of :obj:`numpy.tensordot`.

    Parameters
    ----------
    a, b : Union[SparseArray, np.ndarray, scipy.sparse.spmatrix]
        The arrays to perform the :code:`tensordot` operation on.
    axes : tuple[Union[int, tuple[int], Union[int, tuple[int]], optional
        The axes to match when performing the sum.
    return_type : {None, COO, np.ndarray}, optional
        Type of returned array.

    Returns
    -------
    Union[SparseArray, numpy.ndarray]
        The result of the operation.

    Raises
    ------
    ValueError
        If all arguments don't have zero fill-values.

    See Also
    --------
    numpy.tensordot : NumPy equivalent function
    """
    from ._compressed import GCXS

    # Much of this is stolen from numpy/core/numeric.py::tensordot
    # Please see license at https://github.com/numpy/numpy/blob/main/LICENSE.txt
    check_zero_fill_value(a, b)

    if _is_scipy_sparse_obj(a):
        a = GCXS.from_scipy_sparse(a)
    if _is_scipy_sparse_obj(b):
        b = GCXS.from_scipy_sparse(b)

    try:
        iter(axes)
    except TypeError:
        axes_a = list(range(-axes, 0))
        axes_b = list(range(axes))
    else:
        axes_a, axes_b = axes
    try:
        na = len(axes_a)
        axes_a = list(axes_a)
    except TypeError:
        axes_a = [axes_a]
        na = 1
    try:
        nb = len(axes_b)
        axes_b = list(axes_b)
    except TypeError:
        axes_b = [axes_b]
        nb = 1

    # a, b = asarray(a), asarray(b)  # <--- modified
    as_ = a.shape
    nda = a.ndim
    bs = b.shape
    ndb = b.ndim
    equal = True
    if nda == 0 or ndb == 0:
        pos = int(nda != 0)
        raise ValueError(f"Input {pos} operand does not have enough dimensions")
    if na != nb:
        equal = False
    else:
        for k in range(na):
            if as_[axes_a[k]] != bs[axes_b[k]]:
                equal = False
                break
            if axes_a[k] < 0:
                axes_a[k] += nda
            if axes_b[k] < 0:
                axes_b[k] += ndb
    if not equal:
        raise ValueError("shape-mismatch for sum")

    # Move the axes to sum over to the end of "a"
    # and to the front of "b"
    notin = [k for k in range(nda) if k not in axes_a]
    newaxes_a = notin + axes_a
    N2 = 1
    for axis in axes_a:
        N2 *= as_[axis]
    newshape_a = (-1, N2)
    olda = [as_[axis] for axis in notin]

    notin = [k for k in range(ndb) if k not in axes_b]
    newaxes_b = axes_b + notin
    N2 = 1
    for axis in axes_b:
        N2 *= bs[axis]
    newshape_b = (N2, -1)
    oldb = [bs[axis] for axis in notin]

    if builtins.any(dim == 0 for dim in chain(newshape_a, newshape_b)):
        res = asCOO(np.empty(olda + oldb), check=False)
        if isinstance(a, np.ndarray) or isinstance(b, np.ndarray):
            res = res.todense()

        return res

    at = a.transpose(newaxes_a).reshape(newshape_a)
    bt = b.transpose(newaxes_b).reshape(newshape_b)
    res = _dot(at, bt, return_type)
    return res.reshape(olda + oldb)


def matmul(a, b):
    """Perform the equivalent of :obj:`numpy.matmul` on two arrays.

    Parameters
    ----------
    a, b : Union[SparseArray, np.ndarray, scipy.sparse.spmatrix]
        The arrays to perform the :code:`matmul` operation on.

    Returns
    -------
    Union[SparseArray, numpy.ndarray]
        The result of the operation.

    Raises
    ------
    ValueError
        If all arguments don't have zero fill-values, or the shape of the two arrays is not broadcastable.

    See Also
    --------
    numpy.matmul : NumPy equivalent function.
    COO.__matmul__ : Equivalent function for COO objects.
    """
    check_zero_fill_value(a, b)
    if not hasattr(a, "ndim") or not hasattr(b, "ndim"):
        raise TypeError(f"Cannot perform dot product on types {type(a)}, {type(b)}")

    if check_class_nan(a) or check_class_nan(b):
        warnings.warn("Nan will not be propagated in matrix multiplication", RuntimeWarning, stacklevel=1)

    # When b is 2-d, it is equivalent to dot
    if b.ndim <= 2:
        return dot(a, b)

    # when a is 2-d, we need to transpose result after dot
    if a.ndim <= 2:
        res = dot(a, b)
        axes = list(range(res.ndim))
        axes.insert(-1, axes.pop(0))
        return res.transpose(axes)

    # If a can be squeeze to a vector, use dot will be faster
    if a.ndim <= b.ndim and np.prod(a.shape[:-1]) == 1:
        res = dot(a.reshape(-1), b)
        shape = list(res.shape)
        shape.insert(-1, 1)
        return res.reshape(shape)

    # If b can be squeeze to a matrix, use dot will be faster
    if b.ndim <= a.ndim and np.prod(b.shape[:-2]) == 1:
        return dot(a, b.reshape(b.shape[-2:]))

    if a.ndim < b.ndim:
        a = a[(None,) * (b.ndim - a.ndim)]
    if a.ndim > b.ndim:
        b = b[(None,) * (a.ndim - b.ndim)]
    for i, j in zip(a.shape[:-2], b.shape[:-2], strict=True):
        if i != 1 and j != 1 and i != j:
            raise ValueError("shapes of a and b are not broadcastable")

    def _matmul_recurser(a, b):
        if a.ndim == 2:
            return dot(a, b)
        res = []
        for i in range(builtins.max(a.shape[0], b.shape[0])):
            a_i = a[0] if a.shape[0] == 1 else a[i]
            b_i = b[0] if b.shape[0] == 1 else b[i]
            res.append(_matmul_recurser(a_i, b_i))
        mask = [isinstance(x, SparseArray) for x in res]
        if builtins.all(mask):
            return stack(res)

        res = [x.todense() if isinstance(x, SparseArray) else x for x in res]
        return np.stack(res)

    return _matmul_recurser(a, b)


def dot(a, b):
    """
    Perform the equivalent of :obj:`numpy.dot` on two arrays.

    Parameters
    ----------
    a, b : Union[SparseArray, np.ndarray, scipy.sparse.spmatrix]
        The arrays to perform the :code:`dot` operation on.

    Returns
    -------
    Union[SparseArray, numpy.ndarray]
        The result of the operation.

    Raises
    ------
    ValueError
        If all arguments don't have zero fill-values.

    See Also
    --------
    numpy.dot : NumPy equivalent function.
    COO.dot : Equivalent function for COO objects.
    """
    check_zero_fill_value(a, b)
    if not hasattr(a, "ndim") or not hasattr(b, "ndim"):
        raise TypeError(f"Cannot perform dot product on types {type(a)}, {type(b)}")

    if a.ndim == 1 and b.ndim == 1:
        if isinstance(a, SparseArray):
            a = asCOO(a)
        if isinstance(b, SparseArray):
            b = asCOO(b)
        return (a * b).sum()

    a_axis = -1
    b_axis = -2

    if b.ndim == 1:
        b_axis = -1
    return tensordot(a, b, axes=(a_axis, b_axis))


def _dot(a, b, return_type=None):
    from ._compressed import GCXS
    from ._coo import COO
    from ._sparse_array import SparseArray

    out_shape = (a.shape[0], b.shape[1])
    if builtins.all(isinstance(arr, SparseArray) for arr in [a, b]) and builtins.any(
        isinstance(arr, GCXS) for arr in [a, b]
    ):
        a = a.asformat("gcxs")
        b = b.asformat("gcxs", compressed_axes=a.compressed_axes)

    if isinstance(a, GCXS) and isinstance(b, GCXS):
        if a.nbytes > b.nbytes:
            b = b.change_compressed_axes(a.compressed_axes)
        else:
            a = a.change_compressed_axes(b.compressed_axes)

        if a.compressed_axes == (0,):  # csr @ csr
            compressed_axes = (0,)
            data, indices, indptr = _dot_csr_csr_type(a.dtype, b.dtype)(
                out_shape, a.data, b.data, a.indices, b.indices, a.indptr, b.indptr
            )
        elif a.compressed_axes == (1,):  # csc @ csc
            # a @ b = (b.T @ a.T).T
            compressed_axes = (1,)
            data, indices, indptr = _dot_csr_csr_type(b.dtype, a.dtype)(
                out_shape[::-1],
                b.data,
                a.data,
                b.indices,
                a.indices,
                b.indptr,
                a.indptr,
            )
        out = GCXS(
            (data, indices, indptr),
            shape=out_shape,
            compressed_axes=compressed_axes,
            prune=True,
        )
        if return_type == np.ndarray:
            return out.todense()
        if return_type == COO:
            return out.tocoo()
        return out

    if isinstance(a, GCXS) and isinstance(b, np.ndarray):
        if a.compressed_axes == (0,):  # csr @ ndarray
            if return_type is None or return_type == np.ndarray:
                return _dot_csr_ndarray_type(a.dtype, b.dtype)(out_shape, a.data, a.indices, a.indptr, b)
            data, indices, indptr = _dot_csr_ndarray_type_sparse(a.dtype, b.dtype)(
                out_shape, a.data, a.indices, a.indptr, b
            )
            out = GCXS(
                (data, indices, indptr),
                shape=out_shape,
                compressed_axes=(0,),
                prune=True,
            )
            if return_type == COO:
                return out.tocoo()
            return out
        if return_type is None or return_type == np.ndarray:  # csc @ ndarray
            return _dot_csc_ndarray_type(a.dtype, b.dtype)(a.shape, b.shape, a.data, a.indices, a.indptr, b)
        data, indices, indptr = _dot_csc_ndarray_type_sparse(a.dtype, b.dtype)(
            a.shape, b.shape, a.data, a.indices, a.indptr, b
        )
        compressed_axes = (1,)
        out = GCXS(
            (data, indices, indptr),
            shape=out_shape,
            compressed_axes=compressed_axes,
            prune=True,
        )
        if return_type == COO:
            return out.tocoo()
        return out

    if isinstance(a, np.ndarray) and isinstance(b, GCXS):
        at = a.view(type=np.ndarray).T
        bt = b.T  # constant-time transpose
        if b.compressed_axes == (0,):
            if return_type is None or return_type == np.ndarray:
                out = _dot_csc_ndarray_type(bt.dtype, at.dtype)(bt.shape, at.shape, bt.data, bt.indices, bt.indptr, at)
                return out.T
            data, indices, indptr = _dot_csc_ndarray_type_sparse(bt.dtype, at.dtype)(
                bt.shape, at.shape, bt.data, b.indices, b.indptr, at
            )
            out = GCXS(
                (data, indices, indptr),
                shape=out_shape,
                compressed_axes=(0,),
                prune=True,
            )
            if return_type == COO:
                return out.tocoo()
            return out

        # compressed_axes == (1,)
        if return_type is None or return_type == np.ndarray:
            out = _dot_csr_ndarray_type(bt.dtype, at.dtype)(out_shape[::-1], bt.data, bt.indices, bt.indptr, at)
            return out.T
        data, indices, indptr = _dot_csr_ndarray_type_sparse(bt.dtype, at.dtype)(
            out_shape[::-1], bt.data, bt.indices, bt.indptr, at
        )
        out = GCXS((data, indices, indptr), shape=out_shape, compressed_axes=(1,), prune=True)
        if return_type == COO:
            return out.tocoo()
        return out

    if isinstance(a, COO) and isinstance(b, COO):
        # convert to csr
        a_indptr = np.empty(a.shape[0] + 1, dtype=np.intp)
        a_indptr[0] = 0
        np.cumsum(np.bincount(a.coords[0], minlength=a.shape[0]), out=a_indptr[1:])

        b_indptr = np.empty(b.shape[0] + 1, dtype=np.intp)
        b_indptr[0] = 0
        np.cumsum(np.bincount(b.coords[0], minlength=b.shape[0]), out=b_indptr[1:])
        coords, data = _dot_coo_coo_type(a.dtype, b.dtype)(
            out_shape, a.coords, b.coords, a.data, b.data, a_indptr, b_indptr
        )
        out = COO(
            coords,
            data,
            shape=out_shape,
            has_duplicates=False,
            sorted=False,
            prune=True,
        )

        if return_type == np.ndarray:
            return out.todense()
        if return_type == GCXS:
            return out.asformat("gcxs")
        return out

    if isinstance(a, COO) and isinstance(b, np.ndarray):
        b = b.view(type=np.ndarray).T

        if return_type is None or return_type == np.ndarray:
            return _dot_coo_ndarray_type(a.dtype, b.dtype)(a.coords, a.data, b, out_shape)
        coords, data = _dot_coo_ndarray_type_sparse(a.dtype, b.dtype)(a.coords, a.data, b, out_shape)
        out = COO(coords, data, shape=out_shape, has_duplicates=False, sorted=True)
        if return_type == GCXS:
            return out.asformat("gcxs")
        return out

    if isinstance(a, np.ndarray) and isinstance(b, COO):
        a = a.view(type=np.ndarray)

        if return_type is None or return_type == np.ndarray:
            return _dot_ndarray_coo_type(a.dtype, b.dtype)(a, b.coords, b.data, out_shape)
        b = b.T
        coords, data = _dot_ndarray_coo_type_sparse(a.dtype, b.dtype)(a, b.coords, b.data, out_shape)
        out = COO(coords, data, shape=out_shape, has_duplicates=False, sorted=True, prune=True)
        if return_type == GCXS:
            return out.asformat("gcxs")
        return out

    if isinstance(a, np.ndarray) and isinstance(b, np.ndarray):
        return np.dot(a, b)

    raise TypeError("Unsupported types.")


def _memoize_dtype(f):
    """
    Memoizes a function taking in NumPy dtypes.

    Parameters
    ----------
    f : Callable

    Returns
    -------
    wrapped : Callable

    Examples
    --------
    >>> def func(dt1):
    ...     return object()
    >>> func = _memoize_dtype(func)
    >>> func(np.dtype("i8")) is func(np.dtype("int64"))
    True
    >>> func(np.dtype("i8")) is func(np.dtype("i4"))
    False
    """
    cache = {}

    @wraps(f)
    def wrapped(*args):
        key = tuple(arg.name for arg in args)
        if key in cache:
            return cache[key]

        result = f(*args)
        cache[key] = result
        return result

    return wrapped


@numba.jit(nopython=True, nogil=True)
def _csr_csr_count_nnz(out_shape, a_indices, b_indices, a_indptr, b_indptr):  # pragma: no cover
    """
    A function for computing the number of nonzero values in the resulting
    array from multiplying an array with compressed rows with an array
    with compressed rows: (a @ b).nnz.

    Parameters
    ----------
    out_shape : tuple
        The shape of the output array.
    a_indices, a_indptr : np.ndarray
        The indices and index pointer array of ``a``.
    b_data, b_indices, b_indptr : np.ndarray
        The indices and index pointer array of ``b``.
    """
    n_row, n_col = out_shape
    nnz = 0
    mask = np.full(n_col, -1)
    for i in range(n_row):
        row_nnz = 0
        for j in a_indices[a_indptr[i] : a_indptr[i + 1]]:
            for k in b_indices[b_indptr[j] : b_indptr[j + 1]]:
                if mask[k] != i:
                    mask[k] = i
                    row_nnz += 1
        nnz += row_nnz
    return nnz


@numba.jit(nopython=True, nogil=True)
def _csr_ndarray_count_nnz(out_shape, indptr, a_indices, a_indptr, b):  # pragma: no cover
    """
    A function for computing the number of nonzero values in the resulting
    array from multiplying an array with compressed rows with a dense
    numpy array: (a @ b).nnz.

    Parameters
    ----------
    out_shape : tuple
        The shape of the output array.
    indptr : ndarray
        The empty index pointer array for the output.
    a_indices, a_indptr : np.ndarray
        The indices and index pointer array of ``a``.
    b : np.ndarray
        The second input array ``b``.
    """
    nnz = 0
    for i in range(out_shape[0]):
        cur_row = a_indices[a_indptr[i] : a_indptr[i + 1]]
        for j in range(out_shape[1]):
            for k in cur_row:
                if b[k, j] != 0:
                    nnz += 1
                    break
        indptr[i + 1] = nnz
    return nnz


@numba.jit(nopython=True, nogil=True)
def _csc_ndarray_count_nnz(a_shape, b_shape, indptr, a_indices, a_indptr, b):  # pragma: no cover
    """
    A function for computing the number of nonzero values in the resulting
    array from multiplying an array with compressed columns with a dense
    numpy array: (a @ b).nnz.

    Parameters
    ----------
    a_shape, b_shape : tuple
        The shapes of the input arrays.
    indptr : ndarray
        The empty index pointer array for the output.
    a_indices, a_indptr : np.ndarray
        The indices and index pointer array of ``a``.
    b : np.ndarray
        The second input array ``b``.
    """
    nnz = 0
    mask = np.full(a_shape[0], -1)
    for i in range(b_shape[1]):
        col_nnz = 0
        for j in range(b_shape[0]):
            for k in a_indices[a_indptr[j] : a_indptr[j + 1]]:
                if b[j, i] != 0 and mask[k] != i:
                    mask[k] = i
                    col_nnz += 1
        nnz += col_nnz
        indptr[i + 1] = nnz
    return nnz


def _dot_dtype(dt1, dt2):
    return (np.zeros((), dtype=dt1) * np.zeros((), dtype=dt2)).dtype


@_memoize_dtype
def _dot_csr_csr_type(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_csr_csr(out_shape, a_data, b_data, a_indices, b_indices, a_indptr, b_indptr):  # pragma: no cover
        """
        Utility function taking in two ``GCXS`` objects and calculating
        their dot product: a @ b for a and b with compressed rows.

        Parameters
        ----------
        out_shape : tuple
            The shape of the output array.
        a_data, a_indices, a_indptr : np.ndarray
            The data, indices, and index pointer arrays of ``a``.
        b_data, b_indices, b_indptr : np.ndarray
            The data, indices, and index pointer arrays of ``b``.
        """

        # much of this is borrowed from:
        # https://github.com/scipy/scipy/blob/main/scipy/sparse/sparsetools/csr.h

        # calculate nnz before multiplying so we can use static arrays
        nnz = _csr_csr_count_nnz(out_shape, a_indices, b_indices, a_indptr, b_indptr)
        n_row, n_col = out_shape
        indptr = np.empty(n_row + 1, dtype=np.intp)
        indptr[0] = 0
        indices = np.empty(nnz, dtype=np.intp)
        data = np.empty(nnz, dtype=dtr)
        next_ = np.full(n_col, -1)
        sums = np.zeros(n_col, dtype=dtr)
        nnz = 0

        for i in range(n_row):
            head = -2
            length = 0
            next_[:] = -1
            for j, av in zip(  # noqa: B905
                a_indices[a_indptr[i] : a_indptr[i + 1]],
                a_data[a_indptr[i] : a_indptr[i + 1]],
            ):
                for k, bv in zip(  # noqa: B905
                    b_indices[b_indptr[j] : b_indptr[j + 1]],
                    b_data[b_indptr[j] : b_indptr[j + 1]],
                ):
                    sums[k] += av * bv
                    if next_[k] == -1:
                        next_[k] = head
                        head = k
                        length += 1

            for _ in range(length):
                if next_[head] != -1:
                    indices[nnz] = head
                    data[nnz] = sums[head]
                    nnz += 1

                temp = head
                head = next_[head]

                next_[temp] = -1
                sums[temp] = 0

            indptr[i + 1] = nnz

        if len(indices) == (n_col * n_row):
            for i in range(len(indices) // n_col):
                j = n_col * i
                k = n_col * (1 + i)
                data[j:k] = data[j:k][::-1]
                indices[j:k] = indices[j:k][::-1]
        return data, indices, indptr

    return _dot_csr_csr


@_memoize_dtype
def _dot_csr_ndarray_type(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_csr_ndarray(out_shape, a_data, a_indices, a_indptr, b):  # pragma: no cover
        """
        Utility function taking in one `GCXS` and one ``ndarray`` and
        calculating their dot product: a @ b for a with compressed rows.
        Returns a dense result.

        Parameters
        ----------
        a_data, a_indices, a_indptr : np.ndarray
            The data, indices, and index pointers of ``a``.
        b : np.ndarray
            The second input array ``b``.
        out_shape : Tuple[int]
            The shape of the output array.
        """
        b = np.ascontiguousarray(b)  # ensure memory aligned
        out = np.zeros(out_shape, dtype=dtr)
        for i in range(out_shape[0]):
            val = out[i]
            for k in range(a_indptr[i], a_indptr[i + 1]):
                ind = a_indices[k]
                v = a_data[k]
                for j in range(out_shape[1]):
                    val[j] += v * b[ind, j]
        return out

    return _dot_csr_ndarray


@_memoize_dtype
def _dot_csr_ndarray_type_sparse(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_csr_ndarray_sparse(out_shape, a_data, a_indices, a_indptr, b):  # pragma: no cover
        """
        Utility function taking in one `GCXS` and one ``ndarray`` and
        calculating their dot product: a @ b for a with compressed rows.
        Returns a sparse result.

        Parameters
        ----------
        a_data, a_indices, a_indptr : np.ndarray
            The data, indices, and index pointers of ``a``.
        b : np.ndarray
            The second input array ``b``.
        out_shape : Tuple[int]
            The shape of the output array.
        """
        indptr = np.empty(out_shape[0] + 1, dtype=np.intp)
        indptr[0] = 0
        nnz = _csr_ndarray_count_nnz(out_shape, indptr, a_indices, a_indptr, b)
        indices = np.empty(nnz, dtype=np.intp)
        data = np.empty(nnz, dtype=dtr)
        current = 0
        for i in range(out_shape[0]):
            for j in range(out_shape[1]):
                val = 0
                nonzero = False
                for k in range(a_indptr[i], a_indptr[i + 1]):
                    ind = a_indices[k]
                    v = a_data[k]
                    val += v * b[ind, j]
                    if b[ind, j] != 0:
                        nonzero = True
                if nonzero:
                    data[current] = val
                    indices[current] = j
                    current += 1
        return data, indices, indptr

    return _dot_csr_ndarray_sparse


@_memoize_dtype
def _dot_csc_ndarray_type_sparse(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_csc_ndarray_sparse(a_shape, b_shape, a_data, a_indices, a_indptr, b):  # pragma: no cover
        """
        Utility function taking in one `GCXS` and one ``ndarray`` and
        calculating their dot product: a @ b for a with compressed columns.
        Returns a sparse result.

        Parameters
        ----------
        a_data, a_indices, a_indptr : np.ndarray
            The data, indices, and index pointers of ``a``.
        b : np.ndarray
            The second input array ``b``.
        a_shape, b_shape : Tuple[int]
            The shapes of the input arrays.
        """
        indptr = np.empty(b_shape[1] + 1, dtype=np.intp)
        nnz = _csc_ndarray_count_nnz(a_shape, b_shape, indptr, a_indices, a_indptr, b)
        indices = np.empty(nnz, dtype=np.intp)
        data = np.empty(nnz, dtype=dtr)
        sums = np.zeros(a_shape[0])
        mask = np.full(a_shape[0], -1)
        nnz = 0
        indptr[0] = 0
        for i in range(b_shape[1]):
            head = -2
            length = 0
            for j in range(b_shape[0]):
                u = b[j, i]
                if u != 0:
                    for k in range(a_indptr[j], a_indptr[j + 1]):
                        ind = a_indices[k]
                        v = a_data[k]
                        sums[ind] += u * v
                        if mask[ind] == -1:
                            mask[ind] = head
                            head = ind
                            length += 1
            for _ in range(length):
                if sums[head] != 0:
                    indices[nnz] = head
                    data[nnz] = sums[head]
                    nnz += 1

                temp = head
                head = mask[head]

                mask[temp] = -1
                sums[temp] = 0
        return data, indices, indptr

    return _dot_csc_ndarray_sparse


@_memoize_dtype
def _dot_csc_ndarray_type(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_csc_ndarray(a_shape, b_shape, a_data, a_indices, a_indptr, b):  # pragma: no cover
        """
        Utility function taking in one `GCXS` and one ``ndarray`` and
        calculating their dot product: a @ b for a with compressed columns.
        Returns a dense result.

        Parameters
        ----------
        a_data, a_indices, a_indptr : np.ndarray
            The data, indices, and index pointers of ``a``.
        b : np.ndarray
            The second input array ``b``.
        a_shape, b_shape : Tuple[int]
            The shapes of the input arrays.
        """
        b = np.ascontiguousarray(b)  # ensure memory aligned
        out = np.zeros((a_shape[0], b_shape[1]), dtype=dtr)
        for i in range(b_shape[0]):
            for k in range(a_indptr[i], a_indptr[i + 1]):
                ind = a_indices[k]
                v = a_data[k]
                val = out[ind]
                for j in range(b_shape[1]):
                    val[j] += v * b[i, j]
        return out

    return _dot_csc_ndarray


@_memoize_dtype
def _dot_coo_coo_type(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_coo_coo(out_shape, a_coords, b_coords, a_data, b_data, a_indptr, b_indptr):  # pragma: no cover
        """
        Utility function taking in two ``COO`` objects and calculating
        their dot product: a @ b.

        Parameters
        ----------
        a_shape, b_shape : tuple
            The shapes of the input arrays.
        a_data, a_coords : np.ndarray
            The data and coordinates of ``a``.
        b_data, b_coords : np.ndarray
            The data and coordinates of ``b``.
        """

        # much of this is borrowed from:
        # https://github.com/scipy/scipy/blob/main/scipy/sparse/sparsetools/csr.h

        n_row, n_col = out_shape
        # calculate nnz before multiplying so we can use static arrays
        nnz = _csr_csr_count_nnz(out_shape, a_coords[1], b_coords[1], a_indptr, b_indptr)
        coords = np.empty((2, nnz), dtype=np.intp)
        data = np.empty(nnz, dtype=dtr)
        next_ = np.full(n_col, -1)
        sums = np.zeros(n_col, dtype=dtr)
        nnz = 0

        for i in range(n_row):
            head = -2
            length = 0
            next_[:] = -1
            for j, av in zip(  # noqa: B905
                a_coords[1, a_indptr[i] : a_indptr[i + 1]],
                a_data[a_indptr[i] : a_indptr[i + 1]],
            ):
                for k, bv in zip(  # noqa: B905
                    b_coords[1, b_indptr[j] : b_indptr[j + 1]],
                    b_data[b_indptr[j] : b_indptr[j + 1]],
                ):
                    sums[k] += av * bv
                    if next_[k] == -1:
                        next_[k] = head
                        head = k
                        length += 1

            for _ in range(length):
                if next_[head] != -1:
                    coords[0, nnz] = i
                    coords[1, nnz] = head
                    data[nnz] = sums[head]
                    nnz += 1

                temp = head
                head = next_[head]

                next_[temp] = -1
                sums[temp] = 0

        return coords, data

    return _dot_coo_coo


@_memoize_dtype
def _dot_coo_ndarray_type(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(nopython=True, nogil=True)
    def _dot_coo_ndarray(coords1, data1, array2, out_shape):  # pragma: no cover
        """
        Utility function taking in one `COO` and one ``ndarray`` and
        calculating a "sense" of their dot product. Acually computes
        ``s1 @ x2.T``.

        Parameters
        ----------
        data1, coords1 : np.ndarray
            The data and coordinates of ``s1``.
        array2 : np.ndarray
            The second input array ``x2``.
        out_shape : Tuple[int]
            The output shape.
        """
        out = np.zeros(out_shape, dtype=dtr)
        didx1 = 0

        while didx1 < len(data1):
            oidx1 = coords1[0, didx1]
            didx1_curr = didx1

            for oidx2 in range(out_shape[1]):
                didx1 = didx1_curr
                while didx1 < len(data1) and coords1[0, didx1] == oidx1:
                    out[oidx1, oidx2] += data1[didx1] * array2[oidx2, coords1[1, didx1]]
                    didx1 += 1

        return out

    return _dot_coo_ndarray


@_memoize_dtype
def _dot_coo_ndarray_type_sparse(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_coo_ndarray(coords1, data1, array2, out_shape):  # pragma: no cover
        """
        Utility function taking in one `COO` and one ``ndarray`` and
        calculating a "sense" of their dot product. Acually computes
        ``s1 @ x2.T``.

        Parameters
        ----------
        data1, coords1 : np.ndarray
            The data and coordinates of ``s1``.
        array2 : np.ndarray
            The second input array ``x2``.
        out_shape : Tuple[int]
            The output shape.
        """

        out_data = []
        out_coords = []

        # coords1.shape = (2, len(data1))
        # coords1[0, :] = rows, sorted
        # coords1[1, :] = columns

        didx1 = 0
        while didx1 < len(data1):
            current_row = coords1[0, didx1]

            cur_didx1 = didx1
            oidx2 = 0
            while oidx2 < out_shape[1]:
                cur_didx1 = didx1
                data_curr = 0
                while cur_didx1 < len(data1) and coords1[0, cur_didx1] == current_row:
                    data_curr += data1[cur_didx1] * array2[oidx2, coords1[1, cur_didx1]]
                    cur_didx1 += 1
                if data_curr != 0:
                    out_data.append(data_curr)
                    out_coords.append((current_row, oidx2))
                oidx2 += 1
            didx1 = cur_didx1

        if len(out_data) == 0:
            return np.empty((2, 0), dtype=np.intp), np.empty((0,), dtype=dtr)

        return np.array(out_coords).T, np.array(out_data)

    return _dot_coo_ndarray


@_memoize_dtype
def _dot_ndarray_coo_type(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(nopython=True, nogil=True)
    def _dot_ndarray_coo(array1, coords2, data2, out_shape):  # pragma: no cover
        """
        Utility function taking in two one ``ndarray`` and one ``COO`` and
        calculating a "sense" of their dot product. Acually computes ``x1 @ s2.T``.

        Parameters
        ----------
        array1 : np.ndarray
            The input array ``x1``.
        data2, coords2 : np.ndarray
            The data and coordinates of ``s2``.
        out_shape : Tuple[int]
            The output shape.
        """
        out = np.zeros(out_shape, dtype=dtr)

        for oidx1 in range(out_shape[0]):
            for didx2 in range(len(data2)):
                oidx2 = coords2[1, didx2]
                out[oidx1, oidx2] += array1[oidx1, coords2[0, didx2]] * data2[didx2]

        return out

    return _dot_ndarray_coo


@_memoize_dtype
def _dot_ndarray_coo_type_sparse(dt1, dt2):
    dtr = _dot_dtype(dt1, dt2)

    @numba.jit(
        nopython=True,
        nogil=True,
        locals={"data_curr": numba.np.numpy_support.from_dtype(dtr)},
    )
    def _dot_ndarray_coo(array1, coords2, data2, out_shape):  # pragma: no cover
        """
        Utility function taking in two one ``ndarray`` and one ``COO`` and
        calculating a "sense" of their dot product. Acually computes ``x1 @ s2.T``.

        Parameters
        ----------
        array1 : np.ndarray
            The input array ``x1``.
        data2, coords2 : np.ndarray
            The data and coordinates of ``s2``.
        out_shape : Tuple[int]
            The output shape.
        """
        out_data = []
        out_coords = []

        # coords2.shape = (2, len(data2))
        # coords2[0, :] = columns, sorted
        # coords2[1, :] = rows

        for oidx1 in range(out_shape[0]):
            data_curr = 0
            current_col = 0
            for didx2 in range(len(data2)):
                if coords2[0, didx2] != current_col:
                    if data_curr != 0:
                        out_data.append(data_curr)
                        out_coords.append([oidx1, current_col])
                        data_curr = 0
                    current_col = coords2[0, didx2]

                data_curr += array1[oidx1, coords2[1, didx2]] * data2[didx2]

            if data_curr != 0:
                out_data.append(data_curr)
                out_coords.append([oidx1, current_col])

        if len(out_data) == 0:
            return np.empty((2, 0), dtype=np.intp), np.empty((0,), dtype=dtr)

        return np.array(out_coords).T, np.array(out_data)

    return _dot_ndarray_coo


# Copied from : https://github.com/numpy/numpy/blob/59fec4619403762a5d785ad83fcbde5a230416fc/numpy/core/einsumfunc.py#L523
# under BSD-3-Clause license : https://github.com/numpy/numpy/blob/v1.24.0/LICENSE.txt
def _parse_einsum_input(operands):
    """
    A copy of the numpy parse_einsum_input that
    does not cast the operands to numpy array.

    Returns
    -------
    input_strings : str
        Parsed input strings
    output_string : str
        Parsed output string
    operands : list of array_like
        The operands to use in the numpy contraction
    Examples
    --------
    The operand list is simplified to reduce printing:
    >>> np.random.seed(123)
    >>> a = np.random.rand(4, 4)
    >>> b = np.random.rand(4, 4, 4)
    >>> _parse_einsum_input(("...a,...a->...", a, b))
    ('za,xza', 'xz', [a, b]) # may vary
    >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
    ('za,xza', 'xz', [a, b]) # may vary
    """

    if len(operands) == 0:
        raise ValueError("No input operands")

    if isinstance(operands[0], str):
        subscripts = operands[0].replace(" ", "")
        operands = operands[1:]

        # Ensure all characters are valid
        for s in subscripts:
            if s in ".,->":
                continue
            if s not in np.core.einsumfunc.einsum_symbols:
                raise ValueError(f"Character {s} is not a valid symbol.")

    else:
        tmp_operands = list(operands)
        operand_list = []
        subscript_list = []
        for _ in range(len(operands) // 2):
            operand_list.append(tmp_operands.pop(0))
            subscript_list.append(tmp_operands.pop(0))

        output_list = tmp_operands[-1] if len(tmp_operands) else None
        operands = operand_list
        subscripts = ""
        last = len(subscript_list) - 1
        for num, sub in enumerate(subscript_list):
            for s in sub:
                if s is Ellipsis:
                    subscripts += "..."
                else:
                    try:
                        s = index(s)
                    except TypeError as e:
                        raise TypeError("For this input type lists must contain either int or Ellipsis") from e
                    subscripts += np.core.einsumfunc.einsum_symbols[s]
            if num != last:
                subscripts += ","

        if output_list is not None:
            subscripts += "->"
            for s in output_list:
                if s is Ellipsis:
                    subscripts += "..."
                else:
                    try:
                        s = index(s)
                    except TypeError as e:
                        raise TypeError("For this input type lists must contain either int or Ellipsis") from e
                    subscripts += np.core.einsumfunc.einsum_symbols[s]
    # Check for proper "->"
    if ("-" in subscripts) or (">" in subscripts):
        invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
        if invalid or (subscripts.count("->") != 1):
            raise ValueError("Subscripts can only contain one '->'.")

    # Parse ellipses
    if "." in subscripts:
        used = subscripts.replace(".", "").replace(",", "").replace("->", "")
        unused = list(np.core.einsumfunc.einsum_symbols_set - set(used))
        ellipse_inds = "".join(unused)
        longest = 0

        if "->" in subscripts:
            input_tmp, output_sub = subscripts.split("->")
            split_subscripts = input_tmp.split(",")
            out_sub = True
        else:
            split_subscripts = subscripts.split(",")
            out_sub = False

        for num, sub in enumerate(split_subscripts):
            if "." in sub:
                if (sub.count(".") != 3) or (sub.count("...") != 1):
                    raise ValueError("Invalid Ellipses.")

                # Take into account numerical values
                if operands[num].shape == ():
                    ellipse_count = 0
                else:
                    ellipse_count = builtins.max(operands[num].ndim, 1)
                    ellipse_count -= len(sub) - 3

                if ellipse_count > longest:
                    longest = ellipse_count

                if ellipse_count < 0:
                    raise ValueError("Ellipses lengths do not match.")
                if ellipse_count == 0:
                    split_subscripts[num] = sub.replace("...", "")
                else:
                    rep_inds = ellipse_inds[-ellipse_count:]
                    split_subscripts[num] = sub.replace("...", rep_inds)

        subscripts = ",".join(split_subscripts)
        out_ellipse = "" if longest == 0 else ellipse_inds[-longest:]

        if out_sub:
            subscripts += "->" + output_sub.replace("...", out_ellipse)
        else:
            # Special care for outputless ellipses
            output_subscript = ""
            tmp_subscripts = subscripts.replace(",", "")
            for s in sorted(set(tmp_subscripts)):
                if s not in (np.core.einsumfunc.einsum_symbols):
                    raise ValueError(f"Character {s} is not a valid symbol.")
                if tmp_subscripts.count(s) == 1:
                    output_subscript += s
            normal_inds = "".join(sorted(set(output_subscript) - set(out_ellipse)))

            subscripts += "->" + out_ellipse + normal_inds

    # Build output string if does not exist
    if "->" in subscripts:
        input_subscripts, output_subscript = subscripts.split("->")
    else:
        input_subscripts = subscripts
        # Build output subscripts
        tmp_subscripts = subscripts.replace(",", "")
        output_subscript = ""
        for s in sorted(set(tmp_subscripts)):
            if s not in np.core.einsumfunc.einsum_symbols:
                raise ValueError(f"Character {s} is not a valid symbol.")
            if tmp_subscripts.count(s) == 1:
                output_subscript += s

    # Make sure output subscripts are in the input
    for char in output_subscript:
        if char not in input_subscripts:
            raise ValueError(f"Output character {char} did not appear in the input")

    # Make sure number operands is equivalent to the number of terms
    if len(input_subscripts.split(",")) != len(operands):
        raise ValueError("Number of einsum subscripts must be equal to the number of operands.")

    return (input_subscripts, output_subscript, operands)


def _einsum_single(lhs, rhs, operand):
    """Perform a single term einsum, i.e. any combination of transposes, sums
    and traces of dimensions.

    Parameters
    ----------
    lhs : str
        The indices of the input array.
    rhs : str
        The indices of the output array.
    operand : SparseArray
        The array to perform the einsum on.

    Returns
    -------
    output : SparseArray
    """
    from ._coo import COO

    if lhs == rhs:
        if not rhs:
            # ensure scalar output
            return operand.sum()
        return operand

    if not isinstance(operand, SparseArray):
        # just use numpy for dense input
        return np.einsum(f"{lhs}->{rhs}", operand)

    # else require COO for operations, but check if should convert back
    to_output_format = getattr(operand, "from_coo", lambda x: x)
    operand = asCOO(operand)

    # check if repeated / 'trace' indices mean we are only taking a subset
    where = {}
    for i, ix in enumerate(lhs):
        where.setdefault(ix, []).append(i)

    selector = None
    for locs in where.values():
        loc0, *rlocs = locs
        if rlocs:
            # repeated index
            if len({operand.shape[loc] for loc in locs}) > 1:
                raise ValueError("Repeated indices must have the same dimension.")

            # only select data where all indices match
            subselector = (operand.coords[loc0] == operand.coords[rlocs]).all(axis=0)
            if selector is None:
                selector = subselector
            else:
                selector &= subselector

    # indices that are removed (i.e. not in the output / `perm`)
    # are handled by `has_duplicates=True` below
    perm = [lhs.index(ix) for ix in rhs]
    new_shape = tuple(operand.shape[i] for i in perm)

    # select the new COO data
    if selector is not None:
        new_coords = operand.coords[:, selector][perm]
        new_data = operand.data[selector]
    else:
        new_coords = operand.coords[perm]
        new_data = operand.data

    if not rhs:
        # scalar output - match numpy behaviour by not wrapping as array
        return new_data.sum()

    return to_output_format(COO(new_coords, new_data, shape=new_shape, has_duplicates=True))


def einsum(*operands, **kwargs):
    """
    Perform the equivalent of :obj:`numpy.einsum`.

    Parameters
    ----------
    subscripts : str
        Specifies the subscripts for summation as comma separated list of
        subscript labels. An implicit (classical Einstein summation)
        calculation is performed unless the explicit indicator '->' is
        included as well as subscript labels of the precise output form.
    operands : sequence of SparseArray
        These are the arrays for the operation.
    dtype : data-type, optional
        If provided, forces the calculation to use the data type specified.
        Default is ``None``.
    **kwargs : dict, optional
        Any additional arguments to pass to the function.

    Returns
    -------
    output : SparseArray
        The calculation based on the Einstein summation convention.
    """

    lhs, rhs, operands = _parse_einsum_input(operands)  # Parse input

    check_zero_fill_value(*operands)

    if "dtype" in kwargs and kwargs["dtype"] is not None:
        operands = [o.astype(kwargs["dtype"]) for o in operands]

    if len(operands) == 1:
        return _einsum_single(lhs, rhs, operands[0])

    # if multiple arrays: align, broadcast multiply and then use single einsum
    # for example:
    #     "aab,cbd->dac"
    # we first perform single term reductions and align:
    #     aab -> ab..
    #     cbd -> .bcd
    # (where dots represent broadcastable size 1 dimensions), then multiply all
    # to form the 'minimal outer product' and do a final single term einsum:
    #     abcd -> dac

    # get ordered union of indices from all terms, indicies that only appear
    # on a single term will be removed in the 'preparation' step below
    terms = lhs.split(",")
    total = {}
    sizes = {}
    for t, term in enumerate(terms):
        shape = operands[t].shape
        for ix, d in zip(term, shape, strict=False):
            if d != sizes.setdefault(ix, d):
                raise ValueError(f"Inconsistent shape for index '{ix}'.")
            total.setdefault(ix, set()).add(t)
    for ix in rhs:
        total[ix].add(-1)
    aligned_term = "".join(ix for ix, apps in total.items() if len(apps) > 1)

    # NB: if every index appears exactly twice,
    # we could identify and dispatch to tensordot here?

    parrays = []
    for term, array in zip(terms, operands, strict=True):
        # calc the target indices for this term
        pterm = "".join(ix for ix in aligned_term if ix in term)
        if pterm != term:
            # perform necessary transpose and reductions
            array = _einsum_single(term, pterm, array)
        # calc broadcastable shape
        shape = tuple(array.shape[pterm.index(ix)] if ix in pterm else 1 for ix in aligned_term)
        parrays.append(array.reshape(shape) if array.shape != shape else array)

    aligned_array = reduce(mul, parrays)

    return _einsum_single(aligned_term, rhs, aligned_array)


def stack(arrays, axis=0, compressed_axes=None):
    """
    Stack the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[SparseArray]
        The input arrays to stack.
    axis : int, optional
        The axis along which to stack the input arrays.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    SparseArray
        The output stacked array.

    Raises
    ------
    ValueError
        If all elements of :code:`arrays` don't have the same fill-value.

    See Also
    --------
    numpy.stack : NumPy equivalent function
    """
    from ._compressed import GCXS

    if not builtins.all(isinstance(arr, GCXS) for arr in arrays):
        from ._coo import stack as coo_stack

        return coo_stack(arrays, axis)

    from ._compressed import stack as gcxs_stack

    return gcxs_stack(arrays, axis, compressed_axes)


def concatenate(arrays, axis=0, compressed_axes=None):
    """
    Concatenate the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[SparseArray]
        The input arrays to concatenate.
    axis : int, optional
        The axis along which to concatenate the input arrays. The default is zero.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    SparseArray
        The output concatenated array.

    Raises
    ------
    ValueError
        If all elements of :code:`arrays` don't have the same fill-value.

    See Also
    --------
    numpy.concatenate : NumPy equivalent function
    """
    from ._compressed import GCXS

    if not builtins.all(isinstance(arr, GCXS) for arr in arrays):
        from ._coo import concatenate as coo_concat

        return coo_concat(arrays, axis)

    from ._compressed import concatenate as gcxs_concat

    return gcxs_concat(arrays, axis, compressed_axes)


concat = concatenate


@_check_device
def eye(N, M=None, k=0, dtype=float, format="coo", *, device=None, **kwargs):
    """Return a 2-D array in the specified format with ones on the diagonal and zeros elsewhere.

    Parameters
    ----------
    N : int
        Number of rows in the output.
    M : int, optional
        Number of columns in the output. If None, defaults to `N`.
    k : int, optional
        Index of the diagonal: 0 (the default) refers to the main diagonal,
        a positive value refers to an upper diagonal, and a negative value
        to a lower diagonal.
    dtype : data-type, optional
        Data-type of the returned array.
    format : str, optional
        A format string.

    Returns
    -------
    I : SparseArray of shape (N, M)
        An array where all elements are equal to zero, except for the `k`-th
        diagonal, whose values are equal to one.

    Examples
    --------
    >>> eye(2, dtype=int).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[1, 0],
           [0, 1]])
    >>> eye(3, k=1).todense()  # doctest: +SKIP
    array([[0., 1., 0.],
           [0., 0., 1.],
           [0., 0., 0.]])
    """
    from ._coo import COO

    if M is None:
        M = N

    N = int(N)
    M = int(M)
    k = int(k)

    data_length = builtins.min(N, M)

    if k > 0:
        data_length = builtins.max(builtins.min(data_length, M - k), 0)
        n_coords = np.arange(data_length, dtype=np.intp)
        m_coords = n_coords + k
    elif k < 0:
        data_length = builtins.max(builtins.min(data_length, N + k), 0)
        m_coords = np.arange(data_length, dtype=np.intp)
        n_coords = m_coords - k
    else:
        n_coords = m_coords = np.arange(data_length, dtype=np.intp)

    coords = np.stack([n_coords, m_coords])
    data = np.array(1, dtype=dtype)

    return COO(coords, data=data, shape=(N, M), has_duplicates=False, sorted=True).asformat(format, **kwargs)


@_check_device
def full(shape, fill_value, dtype=None, format="coo", order="C", *, device=None, **kwargs):
    """Return a SparseArray of given shape and type, filled with `fill_value`.

    Parameters
    ----------
    shape : int or tuple of ints
        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
    fill_value : scalar
        Fill value.
    dtype : data-type, optional
        The desired data-type for the array. The default, `None`, means
        `np.array(fill_value).dtype`.
    format : str, optional
        A format string.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.
    order : {'C', None}
        Values except these are not currently supported and raise a
        NotImplementedError.

    Returns
    -------
    out : SparseArray
        Array of `fill_value` with the given shape and dtype.

    Examples
    --------
    >>> full(5, 9).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([9, 9, 9, 9, 9])

    >>> full((2, 2), 9, dtype=float).todense()  # doctest: +SKIP
    array([[9., 9.],
           [9., 9.]])
    """
    from sparse import COO

    if dtype is None:
        dtype = np.array(fill_value).dtype
    if not isinstance(shape, tuple):
        shape = (shape,)
    if order not in {"C", None}:
        raise NotImplementedError("Currently, only 'C' and None are supported.")
    data = np.empty(0, dtype=dtype)
    coords = np.empty((len(shape), 0), dtype=np.intp)
    return COO(
        coords,
        data=data,
        shape=shape,
        fill_value=fill_value,
        has_duplicates=False,
        sorted=True,
    ).asformat(format, **kwargs)


@_check_device
def full_like(a, fill_value, dtype=None, shape=None, format=None, *, device=None, **kwargs):
    """Return a full array with the same shape and type as a given array.

    Parameters
    ----------
    a : array_like
        The shape and data-type of the result will match those of `a`.
    dtype : data-type, optional
        Overrides the data type of the result.
    format : str, optional
        A format string.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    out : SparseArray
        Array of `fill_value` with the same shape and type as `a`.

    Examples
    --------
    >>> x = np.ones((2, 3), dtype="i8")
    >>> full_like(x, 9.0).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[9, 9, 9],
           [9, 9, 9]])
    """
    if format is None and not isinstance(a, np.ndarray):
        format = type(a).__name__.lower()
    elif format is None:
        format = "coo"

    compressed_axes = kwargs.pop("compressed_axes", None)
    if hasattr(a, "compressed_axes") and compressed_axes is None:
        compressed_axes = a.compressed_axes
    return full(
        a.shape if shape is None else shape,
        fill_value,
        dtype=(a.dtype if dtype is None else dtype),
        format=format,
        **kwargs,
    )


def zeros(shape, dtype=float, format="coo", *, device=None, **kwargs):
    """Return a SparseArray of given shape and type, filled with zeros.

    Parameters
    ----------
    shape : int or tuple of ints
        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
    dtype : data-type, optional
        The desired data-type for the array, e.g., `numpy.int8`.  Default is
        `numpy.float64`.
    format : str, optional
        A format string.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    out : SparseArray
        Array of zeros with the given shape and dtype.

    Examples
    --------
    >>> zeros(5).todense()  # doctest: +SKIP
    array([0., 0., 0., 0., 0.])

    >>> zeros((2, 2), dtype=int).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 0],
           [0, 0]])
    """
    return full(shape, fill_value=0, dtype=np.dtype(dtype), format=format, device=device, **kwargs)


def zeros_like(a, dtype=None, shape=None, format=None, *, device=None, **kwargs):
    """Return a SparseArray of zeros with the same shape and type as ``a``.

    Parameters
    ----------
    a : array_like
        The shape and data-type of the result will match those of `a`.
    dtype : data-type, optional
        Overrides the data type of the result.
    format : str, optional
        A format string.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    out : SparseArray
        Array of zeros with the same shape and type as `a`.

    Examples
    --------
    >>> x = np.ones((2, 3), dtype="i8")
    >>> zeros_like(x).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 0, 0],
           [0, 0, 0]])
    """
    return full_like(a, fill_value=0, dtype=dtype, shape=shape, format=format, device=device, **kwargs)


def ones(shape, dtype=float, format="coo", *, device=None, **kwargs):
    """Return a SparseArray of given shape and type, filled with ones.

    Parameters
    ----------
    shape : int or tuple of ints
        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
    dtype : data-type, optional
        The desired data-type for the array, e.g., `numpy.int8`.  Default is
        `numpy.float64`.
    format : str, optional
        A format string.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    out : SparseArray
        Array of ones with the given shape and dtype.

    Examples
    --------
    >>> ones(5).todense()  # doctest: +SKIP
    array([1., 1., 1., 1., 1.])

    >>> ones((2, 2), dtype=int).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[1, 1],
           [1, 1]])
    """
    return full(shape, fill_value=1, dtype=np.dtype(dtype), format=format, device=device, **kwargs)


def ones_like(a, dtype=None, shape=None, format=None, *, device=None, **kwargs):
    """Return a SparseArray of ones with the same shape and type as ``a``.

    Parameters
    ----------
    a : array_like
        The shape and data-type of the result will match those of `a`.
    dtype : data-type, optional
        Overrides the data type of the result.
    format : str, optional
        A format string.
    compressed_axes : iterable, optional
        The axes to compress if returning a GCXS array.

    Returns
    -------
    out : SparseArray
        Array of ones with the same shape and type as `a`.

    Examples
    --------
    >>> x = np.ones((2, 3), dtype="i8")
    >>> ones_like(x).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[1, 1, 1],
           [1, 1, 1]])
    """
    return full_like(a, fill_value=1, dtype=dtype, shape=shape, format=format, device=device, **kwargs)


def empty(shape, dtype=float, format="coo", *, device=None, **kwargs):
    return full(shape, fill_value=0, dtype=np.dtype(dtype), format=format, device=device, **kwargs)


empty.__doc__ = zeros.__doc__


def empty_like(a, dtype=None, shape=None, format=None, *, device=None, **kwargs):
    return full_like(a, fill_value=0, dtype=dtype, shape=shape, format=format, device=device, **kwargs)


empty_like.__doc__ = zeros_like.__doc__


def outer(a, b, out=None):
    """
    Return outer product of two sparse arrays.

    Parameters
    ----------
    a, b : sparse.SparseArray
        The input arrays.
    out : sparse.SparseArray
        The output array.

    Examples
    --------
    >>> import numpy as np
    >>> import sparse
    >>> a = sparse.COO(np.arange(4))
    >>> o = sparse.outer(a, a)
    >>> o.todense()
    array([[0, 0, 0, 0],
           [0, 1, 2, 3],
           [0, 2, 4, 6],
           [0, 3, 6, 9]])
    """
    from ._coo import COO
    from ._sparse_array import SparseArray

    if isinstance(a, SparseArray):
        a = COO(a)
    if isinstance(b, SparseArray):
        b = COO(b)
    return np.multiply.outer(a.flatten(), b.flatten(), out=out)


def asnumpy(a, dtype=None, order=None):
    """Returns a dense numpy array from an arbitrary source array.

    Args:
        a: Arbitrary object that can be converted to :class:`numpy.ndarray`.
        order ({'C', 'F', 'A'}): The desired memory layout of the output
            array. When ``order`` is 'A', it uses 'F' if ``a`` is
            fortran-contiguous and 'C' otherwise.
    Returns:
        numpy.ndarray: Converted array on the host memory.
    """
    from ._sparse_array import SparseArray

    if isinstance(a, SparseArray):
        a = a.todense()
    return np.asarray(a, dtype=dtype, order=order)


# this code was taken from numpy.moveaxis
# (cf. numpy/core/numeric.py, lines 1340-1409, v1.18.4)
# https://github.com/numpy/numpy/blob/v1.18.4/numpy/core/numeric.py#L1340-L1409
def moveaxis(a, source, destination):
    """
    Move axes of an array to new positions.

    Other axes remain in their original order.

    Parameters
    ----------
    a : SparseArray
        The array whose axes should be reordered.
    source : int or List[int]
        Original positions of the axes to move. These must be unique.
    destination : int or List[int]
        Destination positions for each of the original axes. These must also be unique.

    Returns
    -------
    SparseArray
        Array with moved axes.

    Examples
    --------
    >>> import numpy as np
    >>> import sparse
    >>> x = sparse.COO.from_numpy(np.ones((2, 3, 4, 5)))
    >>> sparse.moveaxis(x, (0, 1), (2, 3))
    <COO: shape=(4, 5, 2, 3), dtype=float64, nnz=120, fill_value=0.0>
    """

    if not isinstance(source, Iterable):
        source = (source,)
    if not isinstance(destination, Iterable):
        destination = (destination,)

    source = normalize_axis(source, a.ndim)
    destination = normalize_axis(destination, a.ndim)

    if len(source) != len(destination):
        raise ValueError("`source` and `destination` arguments must have the same number of elements")

    order = [n for n in range(a.ndim) if n not in source]

    for dest, src in sorted(zip(destination, source, strict=True)):
        order.insert(dest, src)

    return a.transpose(order)


def pad(array, pad_width, mode="constant", **kwargs):
    """
    Performs the equivalent of :obj:`numpy.pad` for :obj:`SparseArray`. Note that
    this function returns a new array instead of a view.

    Parameters
    ----------
    array : SparseArray
        Sparse array which is to be padded.

    pad_width : {sequence, array_like, int}
        Number of values padded to the edges of each axis. ((before_1, after_1), … (before_N, after_N)) unique pad
        widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a
        shortcut for before = after = pad width for all axes.

    mode : str
        Pads to a constant value which is fill value. Currently only constant mode is implemented

    constant_values : int
        The values to set the padded values for each axis. Default is 0. This must be same as fill value.

    Returns
    -------
    SparseArray
        The padded sparse array.

    Raises
    ------
    NotImplementedError
        If mode != 'constant' or there are unknown arguments.

    ValueError
        If constant_values != self.fill_value

    See Also
    --------
    :obj:`numpy.pad` : NumPy equivalent function

    """
    if not isinstance(array, SparseArray):
        raise NotImplementedError("Input array is not compatible.")

    if mode.lower() != "constant":
        raise NotImplementedError(f"Mode '{mode}' is not yet supported.")

    if not equivalent(kwargs.pop("constant_values", _zero_of_dtype(array.dtype)), array.fill_value):
        raise ValueError("constant_values can only be equal to fill value.")

    if kwargs:
        raise NotImplementedError("Additional Unknown arguments present.")

    from ._coo import COO

    array = array.asformat("coo")

    pad_width = np.broadcast_to(pad_width, (len(array.shape), 2))
    new_coords = array.coords + pad_width[:, 0:1]
    new_shape = tuple([array.shape[i] + pad_width[i, 0] + pad_width[i, 1] for i in range(len(array.shape))])
    new_data = array.data
    return COO(new_coords, new_data, new_shape, fill_value=array.fill_value)


def format_to_string(format):
    if isinstance(format, type):
        if not issubclass(format, SparseArray):
            raise ValueError(f"invalid format: {format}")
        format = format.__name__.lower()

    if isinstance(format, str):
        return format

    raise ValueError(f"invalid format: {format}")


@_check_device
def asarray(obj, /, *, dtype=None, format="coo", copy=False, device=None):
    """
    Convert the input to a sparse array.

    Parameters
    ----------
    obj : array_like
        Object to be converted to an array.
    dtype : dtype, optional
        Output array data type.
    format : str, optional
        Output array sparse format.
    device : str, optional
        Device on which to place the created array.
    copy : bool, optional
        Boolean indicating whether or not to copy the input.

    Returns
    -------
    out : Union[SparseArray, numpy.ndarray]
        Sparse or 0-D array containing the data from `obj`.

    Examples
    --------
    >>> x = np.eye(8, dtype="i8")
    >>> sparse.asarray(x, format="COO")
    <COO: shape=(8, 8), dtype=int64, nnz=8, fill_value=0>
    """

    if format not in {"coo", "dok", "gcxs", "csc", "csr"}:
        raise ValueError(f"{format} format not supported.")

    from ._compressed import CSC, CSR, GCXS
    from ._coo import COO
    from ._dok import DOK

    format_dict = {"coo": COO, "dok": DOK, "gcxs": GCXS, "csc": CSC, "csr": CSR}

    if isinstance(obj, COO | DOK | GCXS | CSC | CSR):
        return obj.asformat(format)

    if _is_scipy_sparse_obj(obj):
        sparse_obj = format_dict[format].from_scipy_sparse(obj)
        if dtype is None:
            dtype = sparse_obj.dtype
        return sparse_obj.astype(dtype=dtype, copy=copy)

    if np.isscalar(obj) or isinstance(obj, np.ndarray | Iterable):
        sparse_obj = format_dict[format].from_numpy(np.asarray(obj))
        if dtype is None:
            dtype = sparse_obj.dtype
        return sparse_obj.astype(dtype=dtype, copy=copy)

    raise ValueError(f"{type(obj)} not supported.")


def _support_numpy(func):
    """
    In case a NumPy array is passed to `sparse` namespace function
    we want to flag it and dispatch to NumPy.
    """

    @wraps(func)
    def wrapper_func(*args, **kwargs):
        x = args[0]
        if isinstance(x, np.ndarray | np.number):
            warnings.warn(
                f"Sparse {func.__name__} received dense NumPy array instead "
                "of sparse array. Dispatching to NumPy function.",
                RuntimeWarning,
                stacklevel=2,
            )
            return getattr(np, func.__name__)(*args, **kwargs)

        return func(*args, **kwargs)

    return wrapper_func


def all(x, /, *, axis=None, keepdims=False):
    return x.all(axis=axis, keepdims=keepdims)


def any(x, /, *, axis=None, keepdims=False):
    return x.any(axis=axis, keepdims=keepdims)


def permute_dims(x, /, axes=None):
    return x.transpose(axes=axes)


def max(x, /, *, axis=None, keepdims=False):
    return x.max(axis=axis, keepdims=keepdims)


def mean(x, /, *, axis=None, keepdims=False, dtype=None):
    return x.mean(axis=axis, keepdims=keepdims, dtype=dtype)


def min(x, /, *, axis=None, keepdims=False):
    return x.min(axis=axis, keepdims=keepdims)


def prod(x, /, *, axis=None, dtype=None, keepdims=False):
    return x.prod(axis=axis, keepdims=keepdims, dtype=dtype)


def std(x, /, *, axis=None, correction=0.0, keepdims=False):
    return x.std(axis=axis, ddof=correction, keepdims=keepdims)


def sum(x, /, *, axis=None, dtype=None, keepdims=False):
    return x.sum(axis=axis, keepdims=keepdims, dtype=dtype)


def var(x, /, *, axis=None, correction=0.0, keepdims=False):
    return x.var(axis=axis, ddof=correction, keepdims=keepdims)


def abs(x, /):
    return x.__abs__()


def reshape(x, /, shape, *, copy=None):
    return x.reshape(shape=shape)


def astype(x, dtype, /, *, copy=True):
    return x.astype(dtype, copy=copy)


@_support_numpy
def squeeze(x, /, axis=None):
    """Remove singleton dimensions from array.

    Parameters
    ----------
    x : SparseArray
        Input array.
    axis : int or tuple[int, ...], optional
        The singleton axes to remove. By default all singleton axes are removed.

    Returns
    -------
    output : SparseArray
        Array with singleton dimensions removed.
    """
    return x.squeeze(axis=axis)


@_support_numpy
def broadcast_to(x, /, shape):
    return x.broadcast_to(shape)


def broadcast_arrays(*arrays):
    shape = np.broadcast_shapes(*[a.shape for a in arrays])
    return [a.broadcast_to(shape) for a in arrays]


def equal(x1, x2, /):
    return x1 == x2


@_support_numpy
def round(x, /, decimals=0, out=None):
    return x.round(decimals=decimals, out=out)


@_support_numpy
def isinf(x, /):
    return x.isinf()


@_support_numpy
def isnan(x, /):
    return x.isnan()


def nonzero(x, /):
    return x.nonzero()


def imag(x, /):
    return x.imag


def real(x, /):
    return x.real


def vecdot(x1, x2, /, *, axis=-1):
    """
    Computes the (vector) dot product of two arrays.

    Parameters
    ----------
    x1, x2 : array_like
        Input sparse arrays
    axis : int
        The axis to reduce over.

    Returns
    -------
    out : Union[SparseArray, numpy.ndarray]
        Sparse or 0-D array containing dot product.
    """
    ndmin = builtins.min((x1.ndim, x2.ndim))
    if not (-ndmin <= axis < ndmin) or x1.shape[axis] != x2.shape[axis]:
        raise ValueError("Shapes must match along `axis`.")

    if np.issubdtype(x1.dtype, np.complexfloating):
        x1 = np.conjugate(x1)

    return np.sum(x1 * x2, axis=axis)