1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
import copy as _copy
import operator
from collections.abc import Iterable
from functools import reduce
from typing import Union
import numpy as np
from numpy.lib.mixins import NDArrayOperatorsMixin
from .._coo.common import linear_loc
from .._coo.core import COO
from .._sparse_array import SparseArray
from .._utils import (
_zero_of_dtype,
can_store,
check_compressed_axes,
check_fill_value,
equivalent,
normalize_axis,
)
from .convert import _1d_reshape, _transpose, uncompress_dimension
from .indexing import getitem
def _from_coo(x, compressed_axes=None, idx_dtype=None):
if x.ndim == 0:
if compressed_axes is not None:
raise ValueError("no axes to compress for 0d array")
return ((x.data, x.coords, []), x.shape, None, x.fill_value)
if x.ndim == 1:
if compressed_axes is not None:
raise ValueError("no axes to compress for 1d array")
return ((x.data, x.coords[0], ()), x.shape, None, x.fill_value)
compressed_axes = normalize_axis(compressed_axes, x.ndim)
if compressed_axes is None:
# defaults to best compression ratio
compressed_axes = (np.argmin(x.shape),)
check_compressed_axes(x.shape, compressed_axes)
axis_order = list(compressed_axes)
# array location where the uncompressed dimensions start
axisptr = len(compressed_axes)
axis_order.extend(np.setdiff1d(np.arange(len(x.shape)), compressed_axes))
reordered_shape = tuple(x.shape[i] for i in axis_order)
row_size = np.prod(reordered_shape[:axisptr])
col_size = np.prod(reordered_shape[axisptr:])
compressed_shape = (row_size, col_size)
shape = x.shape
if idx_dtype and not can_store(idx_dtype, max(max(compressed_shape), x.nnz)):
raise ValueError(
f"cannot store array with the compressed shape {compressed_shape} and nnz {x.nnz} with dtype {idx_dtype}."
)
if not idx_dtype:
idx_dtype = x.coords.dtype
if not can_store(idx_dtype, max(max(compressed_shape), x.nnz)):
idx_dtype = np.min_scalar_type(max(max(compressed_shape), x.nnz))
# transpose axes, linearize, reshape, and compress
linear = linear_loc(x.coords[axis_order], reordered_shape)
order = np.argsort(linear)
linear = linear[order]
coords = np.empty((2, x.nnz), dtype=idx_dtype)
strides = 1
for i, d in enumerate(compressed_shape[::-1]):
coords[-(i + 1), :] = (linear // strides) % d
strides *= d
indptr = np.empty(row_size + 1, dtype=idx_dtype)
indptr[0] = 0
np.cumsum(np.bincount(coords[0], minlength=row_size), out=indptr[1:])
indices = coords[1]
data = x.data[order]
return ((data, indices, indptr), shape, compressed_axes, x.fill_value)
class GCXS(SparseArray, NDArrayOperatorsMixin):
"""
A sparse multidimensional array.
This is stored in GCXS format, a generalization of the GCRS/GCCS formats
from 'Efficient storage scheme for n-dimensional sparse array: GCRS/GCCS':
https://ieeexplore.ieee.org/document/7237032. GCXS generalizes the CRS/CCS
sparse matrix formats.
For arrays with ndim == 2, GCXS is the same CSR/CSC.
For arrays with ndim >2, any combination of axes can be compressed,
significantly reducing storage.
GCXS consists of 3 arrays. Let the 3 arrays be RO, CO and VL. The first element
of array RO is the integer 0 and later elements are the number of
cumulative non-zero elements in each row for GCRS, column for
GCCS. CO stores column indexes of non-zero elements at each row for GCRS, column for GCCS.
VL stores the values of the non-zero array elements.
The superiority of the GCRS/GCCS over traditional (CRS/CCS) is shown by both
theoretical analysis and experimental results, outlined in the linked research paper.
Parameters
----------
arg : tuple (data, indices, indptr)
A tuple of arrays holding the data, indices, and
index pointers for the nonzero values of the array.
shape : tuple[int] (COO.ndim,)
The shape of the array.
compressed_axes : Iterable[int]
The axes to compress.
prune : bool, optional
A flag indicating whether or not we should prune any fill-values present in
the data array.
fill_value: scalar, optional
The fill value for this array.
Attributes
----------
data : numpy.ndarray (nnz,)
An array holding the nonzero values corresponding to :obj:`GCXS.indices`.
indices : numpy.ndarray (nnz,)
An array holding the coordinates of every nonzero element along uncompressed dimensions.
indptr : numpy.ndarray
An array holding the cumulative sums of the nonzeros along the compressed dimensions.
shape : tuple[int] (ndim,)
The dimensions of this array.
See Also
--------
DOK : A mostly write-only sparse array.
"""
__array_priority__ = 12
def __init__(
self,
arg,
shape=None,
compressed_axes=None,
prune=False,
fill_value=None,
idx_dtype=None,
):
from .._common import _is_scipy_sparse_obj
if _is_scipy_sparse_obj(arg):
arg = self.from_scipy_sparse(arg)
if isinstance(arg, np.ndarray):
(arg, shape, compressed_axes, fill_value) = _from_coo(COO(arg), compressed_axes)
elif isinstance(arg, COO):
(arg, shape, compressed_axes, fill_value) = _from_coo(arg, compressed_axes, idx_dtype)
elif isinstance(arg, GCXS):
if compressed_axes is not None and arg.compressed_axes != compressed_axes:
arg = arg.change_compressed_axes(compressed_axes)
(arg, shape, compressed_axes, fill_value) = (
(arg.data, arg.indices, arg.indptr),
arg.shape,
arg.compressed_axes,
arg.fill_value,
)
if shape is None:
raise ValueError("missing `shape` argument")
check_compressed_axes(len(shape), compressed_axes)
if len(shape) == 1:
compressed_axes = None
self.data, self.indices, self.indptr = arg
if self.data.ndim != 1:
raise ValueError("data must be a scalar or 1-dimensional.")
self.shape = shape
if fill_value is None:
fill_value = _zero_of_dtype(self.data.dtype)
self._compressed_axes = tuple(compressed_axes) if isinstance(compressed_axes, Iterable) else None
self.fill_value = self.data.dtype.type(fill_value)
if prune:
self._prune()
def copy(self, deep=True):
"""Return a copy of the array.
Parameters
----------
deep : boolean, optional
If True (default), the internal coords and data arrays are also
copied. Set to ``False`` to only make a shallow copy.
"""
return _copy.deepcopy(self) if deep else _copy.copy(self)
@classmethod
def from_numpy(cls, x, compressed_axes=None, fill_value=None, idx_dtype=None):
coo = COO.from_numpy(x, fill_value=fill_value, idx_dtype=idx_dtype)
return cls.from_coo(coo, compressed_axes, idx_dtype)
@classmethod
def from_coo(cls, x, compressed_axes=None, idx_dtype=None):
(arg, shape, compressed_axes, fill_value) = _from_coo(x, compressed_axes, idx_dtype)
return cls(arg, shape=shape, compressed_axes=compressed_axes, fill_value=fill_value)
@classmethod
def from_scipy_sparse(cls, x, /, *, fill_value=None):
if x.format == "csc":
return cls((x.data, x.indices, x.indptr), shape=x.shape, compressed_axes=(1,), fill_value=fill_value)
x = x.asformat("csr")
return cls((x.data, x.indices, x.indptr), shape=x.shape, compressed_axes=(0,), fill_value=fill_value)
@classmethod
def from_iter(cls, x, shape=None, compressed_axes=None, fill_value=None, idx_dtype=None):
return cls.from_coo(
COO.from_iter(x, shape, fill_value),
compressed_axes,
idx_dtype,
)
@property
def dtype(self):
"""
The datatype of this array.
Returns
-------
numpy.dtype
The datatype of this array.
See Also
--------
numpy.ndarray.dtype : Numpy equivalent property.
scipy.sparse.csr_matrix.dtype : Scipy equivalent property.
"""
return self.data.dtype
@property
def nnz(self):
"""
The number of nonzero elements in this array.
Returns
-------
int
The number of nonzero elements in this array.
See Also
--------
COO.nnz : Equivalent :obj:`COO` array property.
DOK.nnz : Equivalent :obj:`DOK` array property.
numpy.count_nonzero : A similar Numpy function.
scipy.sparse.csr_matrix.nnz : The Scipy equivalent property.
"""
return self.data.shape[0]
@property
def format(self):
"""
The storage format of this array.
Returns
-------
str
The storage format of this array.
See Also
-------
scipy.sparse.dok_matrix.format : The Scipy equivalent property.
Examples
-------
>>> import sparse
>>> s = sparse.random((5, 5), density=0.2, format="dok")
>>> s.format
'dok'
>>> t = sparse.random((5, 5), density=0.2, format="coo")
>>> t.format
'coo'
"""
return "gcxs"
@property
def nbytes(self):
"""
The number of bytes taken up by this object. Note that for small arrays,
this may undercount the number of bytes due to the large constant overhead.
Returns
-------
int
The approximate bytes of memory taken by this object.
See Also
--------
numpy.ndarray.nbytes : The equivalent Numpy property.
"""
return self.data.nbytes + self.indices.nbytes + self.indptr.nbytes
@property
def _axis_order(self):
axis_order = list(self.compressed_axes)
axis_order.extend(np.setdiff1d(np.arange(len(self.shape)), self.compressed_axes))
return axis_order
@property
def _axisptr(self):
# array location where the uncompressed dimensions start
return len(self.compressed_axes)
@property
def _compressed_shape(self):
row_size = np.prod(self._reordered_shape[: self._axisptr])
col_size = np.prod(self._reordered_shape[self._axisptr :])
return (row_size, col_size)
@property
def _reordered_shape(self):
return tuple(self.shape[i] for i in self._axis_order)
@property
def T(self):
return self.transpose()
@property
def mT(self):
if self.ndim < 2:
raise ValueError("Cannot compute matrix transpose if `ndim < 2`.")
axis = list(range(self.ndim))
axis[-1], axis[-2] = axis[-2], axis[-1]
return self.transpose(axis)
def __str__(self):
summary = (
f"<GCXS: shape={self.shape}, dtype={self.dtype}, nnz={self.nnz}, fill_value={self.fill_value}, "
f"compressed_axes={self.compressed_axes}>"
)
return self._str_impl(summary)
__repr__ = __str__
__getitem__ = getitem
def _reduce_calc(self, method, axis, keepdims=False, **kwargs):
if axis[0] is None or np.array_equal(axis, np.arange(self.ndim, dtype=np.intp)):
x = self.flatten().tocoo()
out = x.reduce(method, axis=None, keepdims=keepdims, **kwargs)
if keepdims:
return (out.reshape(np.ones(self.ndim, dtype=np.intp)),)
return (out,)
r = np.arange(self.ndim, dtype=np.intp)
compressed_axes = [a for a in r if a not in set(axis)]
x = self.change_compressed_axes(compressed_axes)
idx = np.diff(x.indptr) != 0
indptr = x.indptr[:-1][idx]
indices = (np.arange(x._compressed_shape[0], dtype=self.indptr.dtype))[idx]
data = method.reduceat(x.data, indptr, **kwargs)
counts = x.indptr[1:][idx] - x.indptr[:-1][idx]
arr_attrs = (x, compressed_axes, indices)
n_cols = x._compressed_shape[1]
return (data, counts, axis, n_cols, arr_attrs)
def _reduce_return(self, data, arr_attrs, result_fill_value):
x, compressed_axes, indices = arr_attrs
# prune data
mask = ~equivalent(data, result_fill_value)
data = data[mask]
indices = indices[mask]
out = GCXS(
(data, indices, []),
shape=(x._compressed_shape[0],),
fill_value=result_fill_value,
compressed_axes=None,
)
return out.reshape(tuple(self.shape[d] for d in compressed_axes))
def change_compressed_axes(self, new_compressed_axes):
"""
Returns a new array with specified compressed axes. This operation is similar to converting
a scipy.sparse.csc_matrix to a scipy.sparse.csr_matrix.
Returns
-------
GCXS
A new instance of the input array with compression along the specified dimensions.
"""
if new_compressed_axes == self.compressed_axes:
return self
if self.ndim == 1:
raise NotImplementedError("no axes to compress for 1d array")
new_compressed_axes = tuple(
normalize_axis(new_compressed_axes[i], self.ndim) for i in range(len(new_compressed_axes))
)
if new_compressed_axes == self.compressed_axes:
return self
if len(new_compressed_axes) >= len(self.shape):
raise ValueError("cannot compress all axes")
if len(set(new_compressed_axes)) != len(new_compressed_axes):
raise ValueError("repeated axis in compressed_axes")
arg = _transpose(self, self.shape, np.arange(self.ndim), new_compressed_axes)
return GCXS(
arg,
shape=self.shape,
compressed_axes=new_compressed_axes,
fill_value=self.fill_value,
)
def tocoo(self):
"""
Convert this :obj:`GCXS` array to a :obj:`COO`.
Returns
-------
sparse.COO
The converted COO array.
"""
if self.ndim == 0:
return COO(
np.array([]),
self.data,
shape=self.shape,
fill_value=self.fill_value,
)
if self.ndim == 1:
return COO(
self.indices[None, :],
self.data,
shape=self.shape,
fill_value=self.fill_value,
)
uncompressed = uncompress_dimension(self.indptr)
coords = np.vstack((uncompressed, self.indices))
order = np.argsort(self._axis_order)
return (
COO(
coords,
self.data,
shape=self._compressed_shape,
fill_value=self.fill_value,
)
.reshape(self._reordered_shape)
.transpose(order)
)
def todense(self):
"""
Convert this :obj:`GCXS` array to a dense :obj:`numpy.ndarray`. Note that
this may take a large amount of memory if the :obj:`GCXS` object's :code:`shape`
is large.
Returns
-------
numpy.ndarray
The converted dense array.
See Also
--------
DOK.todense : Equivalent :obj:`DOK` array method.
COO.todense : Equivalent :obj:`COO` array method.
scipy.sparse.coo_matrix.todense : Equivalent Scipy method.
"""
if self.compressed_axes is None:
out = np.full(self.shape, self.fill_value, self.dtype)
if len(self.indices) != 0:
out[self.indices] = self.data
else:
if len(self.data) != 0:
out[()] = self.data[0]
return out
return self.tocoo().todense()
def todok(self):
from .. import DOK
return DOK.from_coo(self.tocoo()) # probably a temporary solution
def to_scipy_sparse(self, accept_fv=None):
"""
Converts this :obj:`GCXS` object into a :obj:`scipy.sparse.csr_matrix` or `scipy.sparse.csc_matrix`.
Parameters
----------
accept_fv : scalar or list of scalar, optional
The list of accepted fill-values. The default accepts only zero.
Returns
-------
:obj:`scipy.sparse.csr_matrix` or `scipy.sparse.csc_matrix`
The converted Scipy sparse matrix.
Raises
------
ValueError
If the array is not two-dimensional.
ValueError
If all the array doesn't zero fill-values.
"""
import scipy.sparse
check_fill_value(self, accept_fv=accept_fv)
if self.ndim != 2:
raise ValueError("Can only convert a 2-dimensional array to a Scipy sparse matrix.")
if 0 in self.compressed_axes:
return scipy.sparse.csr_matrix((self.data, self.indices, self.indptr), shape=self.shape)
return scipy.sparse.csc_matrix((self.data, self.indices, self.indptr), shape=self.shape)
def asformat(self, format, **kwargs):
"""
Convert this sparse array to a given format.
Parameters
----------
format : str
A format string.
Returns
-------
out : SparseArray
The converted array.
Raises
------
NotImplementedError
If the format isn't supported.
"""
from .._utils import convert_format
format = convert_format(format)
ret = None
if format == "coo":
ret = self.tocoo()
elif format == "dok":
ret = self.todok()
elif format == "csr":
ret = CSR(self)
elif format == "csc":
ret = CSC(self)
elif format == "gcxs":
compressed_axes = kwargs.pop("compressed_axes", self.compressed_axes)
return self.change_compressed_axes(compressed_axes)
if len(kwargs) != 0:
raise TypeError(f"Invalid keyword arguments provided: {kwargs}")
if ret is None:
raise NotImplementedError(f"The given format is not supported: {format}")
return ret
def maybe_densify(self, max_size=1000, min_density=0.25):
"""
Converts this :obj:`GCXS` array to a :obj:`numpy.ndarray` if not too
costly.
Parameters
----------
max_size : int
Maximum number of elements in output
min_density : float
Minimum density of output
Returns
-------
numpy.ndarray
The dense array.
See Also
--------
sparse.GCXS.todense: Converts to Numpy function without checking the cost.
sparse.COO.maybe_densify: The equivalent COO function.
Raises
-------
ValueError
If the returned array would be too large.
"""
if self.size > max_size and self.density < min_density:
raise ValueError("Operation would require converting large sparse array to dense")
return self.todense()
def flatten(self, order="C"):
"""
Returns a new :obj:`GCXS` array that is a flattened version of this array.
Returns
-------
GCXS
The flattened output array.
Notes
-----
The :code:`order` parameter is provided just for compatibility with
Numpy and isn't actually supported.
"""
if order not in {"C", None}:
raise NotImplementedError("The `order` parameter is not supported.")
return self.reshape(-1)
def reshape(self, shape, order="C", compressed_axes=None):
"""
Returns a new :obj:`GCXS` array that is a reshaped version of this array.
Parameters
----------
shape : tuple[int]
The desired shape of the output array.
compressed_axes : Iterable[int], optional
The axes to compress to store the array. Finds the most efficient storage
by default.
Returns
-------
GCXS
The reshaped output array.
See Also
--------
numpy.ndarray.reshape : The equivalent Numpy function.
sparse.COO.reshape : The equivalent COO function.
Notes
-----
The :code:`order` parameter is provided just for compatibility with
Numpy and isn't actually supported.
"""
shape = tuple(shape) if isinstance(shape, Iterable) else (shape,)
if order not in {"C", None}:
raise NotImplementedError("The 'order' parameter is not supported")
if any(d == -1 for d in shape):
extra = int(self.size / np.prod([d for d in shape if d != -1]))
shape = tuple([d if d != -1 else extra for d in shape])
if self.shape == shape:
return self
if self.size != reduce(operator.mul, shape, 1):
raise ValueError(f"cannot reshape array of size {self.size} into shape {shape}")
if len(shape) == 0:
return self.tocoo().reshape(shape).asformat("gcxs")
if compressed_axes is None:
if len(shape) == self.ndim:
compressed_axes = self.compressed_axes
elif len(shape) == 1:
compressed_axes = None
else:
compressed_axes = (np.argmin(shape),)
if self.ndim == 1:
arg = _1d_reshape(self, shape, compressed_axes)
else:
arg = _transpose(self, shape, np.arange(self.ndim), compressed_axes)
return GCXS(
arg,
shape=tuple(shape),
compressed_axes=compressed_axes,
fill_value=self.fill_value,
)
@property
def compressed_axes(self):
return self._compressed_axes
def transpose(self, axes=None, compressed_axes=None):
"""
Returns a new array which has the order of the axes switched.
Parameters
----------
axes : Iterable[int], optional
The new order of the axes compared to the previous one. Reverses the axes
by default.
compressed_axes : Iterable[int], optional
The axes to compress to store the array. Finds the most efficient storage
by default.
Returns
-------
GCXS
The new array with the axes in the desired order.
See Also
--------
:obj:`GCXS.T` : A quick property to reverse the order of the axes.
numpy.ndarray.transpose : Numpy equivalent function.
"""
if axes is None:
axes = list(reversed(range(self.ndim)))
# Normalize all axes indices to positive values
axes = normalize_axis(axes, self.ndim)
if len(np.unique(axes)) < len(axes):
raise ValueError("repeated axis in transpose")
if not len(axes) == self.ndim:
raise ValueError("axes don't match array")
axes = tuple(axes)
if axes == tuple(range(self.ndim)):
return self
if self.ndim == 2:
return self._2d_transpose()
shape = tuple(self.shape[ax] for ax in axes)
if compressed_axes is None:
compressed_axes = (np.argmin(shape),)
arg = _transpose(self, shape, axes, compressed_axes, transpose=True)
return GCXS(
arg,
shape=shape,
compressed_axes=compressed_axes,
fill_value=self.fill_value,
)
def _2d_transpose(self):
"""
A function for performing constant-time transposes on 2d GCXS arrays.
Returns
-------
GCXS
The new transposed array with the opposite compressed axes as the input.
See Also
--------
scipy.sparse.csr_matrix.transpose : Scipy equivalent function.
scipy.sparse.csc_matrix.transpose : Scipy equivalent function.
numpy.ndarray.transpose : Numpy equivalent function.
"""
if self.ndim != 2:
raise ValueError(f"cannot perform 2d transpose on array with dimension {self.ndim}")
compressed_axes = [(self.compressed_axes[0] + 1) % 2]
shape = self.shape[::-1]
return GCXS(
(self.data, self.indices, self.indptr),
shape=shape,
compressed_axes=compressed_axes,
fill_value=self.fill_value,
)
def dot(self, other):
"""
Performs the equivalent of :code:`x.dot(y)` for :obj:`GCXS`.
Parameters
----------
other : Union[GCXS, COO, numpy.ndarray, scipy.sparse.spmatrix]
The second operand of the dot product operation.
Returns
-------
{GCXS, numpy.ndarray}
The result of the dot product. If the result turns out to be dense,
then a dense array is returned, otherwise, a sparse array.
Raises
------
ValueError
If all arguments don't have zero fill-values.
See Also
--------
dot : Equivalent function for two arguments.
:obj:`numpy.dot` : Numpy equivalent function.
scipy.sparse.csr_matrix.dot : Scipy equivalent function.
"""
from .._common import dot
return dot(self, other)
def __matmul__(self, other):
from .._common import matmul
try:
return matmul(self, other)
except NotImplementedError:
return NotImplemented
def __rmatmul__(self, other):
from .._common import matmul
try:
return matmul(other, self)
except NotImplementedError:
return NotImplemented
def _prune(self):
"""
Prunes data so that if any fill-values are present, they are removed
from both indices and data.
Examples
--------
>>> coords = np.array([[0, 1, 2, 3]])
>>> data = np.array([1, 0, 1, 2])
>>> s = COO(coords, data).asformat("gcxs")
>>> s._prune()
>>> s.nnz
3
"""
mask = ~equivalent(self.data, self.fill_value)
self.data = self.data[mask]
if len(self.indptr):
coords = np.stack((uncompress_dimension(self.indptr), self.indices))
coords = coords[:, mask]
self.indices = coords[1]
row_size = self._compressed_shape[0]
indptr = np.empty(row_size + 1, dtype=self.indptr.dtype)
indptr[0] = 0
np.cumsum(np.bincount(coords[0], minlength=row_size), out=indptr[1:])
self.indptr = indptr
else:
self.indices = self.indices[mask]
def isinf(self):
return self.tocoo().isinf().asformat("gcxs", compressed_axes=self.compressed_axes)
def isnan(self):
return self.tocoo().isnan().asformat("gcxs", compressed_axes=self.compressed_axes)
class _Compressed2d(GCXS):
class_compressed_axes: tuple[int]
def __init__(self, arg, shape=None, compressed_axes=None, prune=False, fill_value=0):
if not hasattr(arg, "shape") and shape is None:
raise ValueError("missing `shape` argument")
if shape is not None and hasattr(arg, "shape"):
raise NotImplementedError("Cannot change shape in constructor")
nd = len(shape if shape is not None else arg.shape)
if nd != 2:
raise ValueError(f"{type(self).__name__} must be 2-d, passed {nd}-d shape.")
super().__init__(
arg,
shape=shape,
compressed_axes=compressed_axes,
prune=prune,
fill_value=fill_value,
)
def __str__(self):
summary = (
f"<{type(self).__name__}: shape={self.shape}, dtype={self.dtype}, nnz={self.nnz}, "
f"fill_value={self.fill_value}>"
)
return self._str_impl(summary)
__repr__ = __str__
@property
def ndim(self) -> int:
return 2
@classmethod
def from_numpy(cls, x, fill_value=0, idx_dtype=None):
coo = COO.from_numpy(x, fill_value=fill_value, idx_dtype=idx_dtype)
return cls.from_coo(coo, cls.class_compressed_axes, idx_dtype)
class CSR(_Compressed2d):
"""
The CSR or CRS scheme stores a n-dimensional array using n+1 one-dimensional arrays.
The 3 arrays are same as GCRS. The remaining n-2 arrays are for storing the indices of
the non-zero values of the sparse matrix. CSR is simply the transpose of CSC.
Sparse supports 2-D CSR.
"""
class_compressed_axes: tuple[int] = (0,)
def __init__(self, arg, shape=None, compressed_axes=class_compressed_axes, prune=False, fill_value=0):
if compressed_axes != self.class_compressed_axes:
raise ValueError(f"CSR only accepts rows as compressed axis but got: {compressed_axes}")
super().__init__(arg, shape=shape, compressed_axes=compressed_axes, fill_value=fill_value)
@classmethod
def from_scipy_sparse(cls, x, /, *, fill_value=None):
x = x.asformat("csr", copy=False)
return cls((x.data, x.indices, x.indptr), shape=x.shape, fill_value=fill_value)
def transpose(self, axes: None = None, copy: bool = False) -> Union["CSC", "CSR"]:
axes = normalize_axis(axes, self.ndim)
if axes not in [(0, 1), (1, 0), None]:
raise ValueError(f"Invalid transpose axes: {axes}")
if copy:
self = self.copy()
if axes == (0, 1):
return self
return CSC((self.data, self.indices, self.indptr), self.shape[::-1])
class CSC(_Compressed2d):
"""
The CSC or CCS scheme stores a n-dimensional array using n+1 one-dimensional arrays.
The 3 arrays are same as GCCS. The remaining n-2 arrays are for storing the indices of
the non-zero values of the sparse matrix. CSC is simply the transpose of CSR.
Sparse supports 2-D CSC.
"""
class_compressed_axes: tuple[int] = (1,)
def __init__(self, arg, shape=None, compressed_axes=class_compressed_axes, prune=False, fill_value=0):
if compressed_axes != self.class_compressed_axes:
raise ValueError(f"CSC only accepts columns as compressed axis but got: {compressed_axes}")
super().__init__(arg, shape=shape, compressed_axes=compressed_axes, fill_value=fill_value)
@classmethod
def from_scipy_sparse(cls, x, /, *, fill_value=None):
x = x.asformat("csc", copy=False)
return cls((x.data, x.indices, x.indptr), shape=x.shape, fill_value=fill_value)
def transpose(self, axes: None = None, copy: bool = False) -> Union["CSC", "CSR"]:
axes = normalize_axis(axes, self.ndim)
if axes not in [(0, 1), (1, 0), None]:
raise ValueError(f"Invalid transpose axes: {axes}")
if copy:
self = self.copy()
if axes == (0, 1):
return self
return CSR((self.data, self.indices, self.indptr), self.shape[::-1])
|