1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
import operator
from functools import reduce
import numba
from numba.typed import List
import numpy as np
from .._coo.common import linear_loc
from .._utils import check_compressed_axes, get_out_dtype
@numba.jit(nopython=True, nogil=True)
def convert_to_flat(inds, shape, dtype):
"""
Converts the indices of either the compressed or uncompressed axes
into a linearized form. Prepares the inputs for compute_flat.
"""
shape_bins = transform_shape(np.asarray(shape))
increments = List()
for i in range(len(inds)):
increments.append((inds[i] * shape_bins[i]).astype(dtype))
operations = 1
for inc in increments[:-1]:
operations *= inc.shape[0]
if operations == 0:
return np.empty(0, dtype=dtype)
cols = increments[-1].repeat(operations).reshape((-1, operations)).T.flatten()
if len(increments) == 1:
return cols
return compute_flat(increments, cols, operations)
@numba.jit(nopython=True, nogil=True)
def compute_flat(increments, cols, operations): # pragma: no cover
"""
Iterates through indices and calculates the linearized
indices.
"""
start = 0
end = increments[-1].shape[0]
positions = np.zeros(len(increments) - 1, dtype=np.intp)
pos = len(increments) - 2
for _ in range(operations):
to_add = 0
for j in range(len(increments) - 1):
to_add += increments[j][positions[j]]
cols[start:end] += to_add
start += increments[-1].shape[0]
end += increments[-1].shape[0]
for j in range(pos, -1, -1):
positions[j] += 1
if positions[j] == increments[j].shape[0]:
positions[j] = 0
else:
break
return cols
@numba.jit(nopython=True, nogil=True)
def transform_shape(shape): # pragma: no cover
"""
turns a shape into the linearized increments that
it represents. For example, given (5,5,5), it returns
np.array([25,5,1]).
"""
shape_bins = np.empty(len(shape), dtype=np.intp)
shape_bins[-1] = 1
for i in range(len(shape) - 1):
shape_bins[i] = np.prod(shape[i + 1 :])
return shape_bins
@numba.jit(nopython=True, nogil=True)
def uncompress_dimension(indptr): # pragma: no cover
"""converts an index pointer array into an array of coordinates"""
uncompressed = np.empty(indptr[-1], dtype=indptr.dtype)
for i in range(len(indptr) - 1):
uncompressed[indptr[i] : indptr[i + 1]] = i
return uncompressed
@numba.jit(nopython=True, nogil=True)
def is_sorted(arr): # pragma: no cover
"""
function to check if an indexing array is sorted without repeats. If it is,
we can use the faster slicing algorithm.
"""
# numba doesn't recognize the new all(...) format
for i in range(len(arr) - 1): # noqa: SIM110
if arr[i + 1] <= arr[i]:
return False
return True
@numba.jit(nopython=True, nogil=True)
def _linearize(
x_indices,
shape,
new_axis_order,
new_reordered_shape,
new_compressed_shape,
new_linear,
new_coords,
): # pragma: no cover
for i, n in enumerate(x_indices):
current = unravel_index(n, shape)
current_t = current[new_axis_order]
new_linear[i] = ravel_multi_index(current_t, new_reordered_shape)
new_coords[:, i] = unravel_index(new_linear[i], new_compressed_shape)
def _1d_reshape(x, shape, compressed_axes):
check_compressed_axes(shape, compressed_axes)
new_size = np.prod(shape)
end_idx = np.searchsorted(x.indices, new_size, side="left")
# for resizeing in one dimension
if len(shape) == 1:
return (x.data[:end_idx], x.indices[:end_idx], [])
new_axis_order = list(compressed_axes)
new_axis_order.extend(np.setdiff1d(np.arange(len(shape)), compressed_axes))
new_axis_order = np.asarray(new_axis_order)
new_reordered_shape = np.array(shape)[new_axis_order]
axisptr = len(compressed_axes)
row_size = np.prod(new_reordered_shape[:axisptr])
col_size = np.prod(new_reordered_shape[axisptr:])
new_compressed_shape = np.array((row_size, col_size))
x_indices = x.indices[:end_idx]
new_nnz = x_indices.size
new_linear = np.empty(new_nnz, dtype=np.intp)
coords_dtype = get_out_dtype(x.indices, max(max(new_compressed_shape), x.nnz))
new_coords = np.empty((2, new_nnz), dtype=coords_dtype)
_linearize(
x_indices,
np.array(shape),
new_axis_order,
new_reordered_shape,
new_compressed_shape,
new_linear,
new_coords,
)
order = np.argsort(new_linear)
new_coords = new_coords[:, order]
indptr = np.empty(row_size + 1, dtype=coords_dtype)
indptr[0] = 0
np.cumsum(np.bincount(new_coords[0], minlength=row_size), out=indptr[1:])
indices = new_coords[1]
data = x.data[:end_idx][order]
return (data, indices, indptr)
def _resize(x, shape, compressed_axes):
from .compressed import GCXS
check_compressed_axes(shape, compressed_axes)
size = reduce(operator.mul, shape, 1)
if x.ndim == 1:
end_idx = np.searchsorted(x.indices, size, side="left")
indices = x.indices[:end_idx]
data = x.data[:end_idx]
out = GCXS((data, indices, []), shape=(size,), fill_value=x.fill_value)
return _1d_reshape(out, shape, compressed_axes)
uncompressed = uncompress_dimension(x.indptr)
coords = np.stack((uncompressed, x.indices))
linear = linear_loc(coords, x._compressed_shape)
sorted_axis_order = np.argsort(x._axis_order)
linear_dtype = get_out_dtype(x.indices, np.prod(shape))
c_linear = np.empty(x.nnz, dtype=linear_dtype)
_c_ordering(
linear,
c_linear,
np.asarray(x._reordered_shape),
np.asarray(sorted_axis_order),
np.asarray(x.shape),
)
order = np.argsort(c_linear, kind="mergesort")
data = x.data[order]
indices = c_linear[order]
end_idx = np.searchsorted(indices, size, side="left")
indices = indices[:end_idx]
data = data[:end_idx]
out = GCXS((data, indices, []), shape=(size,), fill_value=x.fill_value)
return _1d_reshape(out, shape, compressed_axes)
@numba.jit(nopython=True, nogil=True)
def _c_ordering(linear, c_linear, reordered_shape, sorted_axis_order, shape): # pragma: no cover
for i, n in enumerate(linear):
# c ordering
current_coords = unravel_index(n, reordered_shape)[sorted_axis_order]
c_linear[i] = ravel_multi_index(current_coords, shape)
def _transpose(x, shape, axes, compressed_axes, transpose=False):
"""
An algorithm for reshaping, resizing, changing compressed axes, and transposing.
"""
check_compressed_axes(shape, compressed_axes)
uncompressed = uncompress_dimension(x.indptr)
coords = np.stack((uncompressed, x.indices))
linear = linear_loc(coords, x._compressed_shape)
sorted_axis_order = np.argsort(x._axis_order)
if len(shape) == 1:
dtype = get_out_dtype(x.indices, shape[0])
c_linear = np.empty(x.nnz, dtype=dtype)
_c_ordering(
linear,
c_linear,
np.asarray(x._reordered_shape),
np.asarray(sorted_axis_order),
np.asarray(x.shape),
)
order = np.argsort(c_linear, kind="mergesort")
data = x.data[order]
indices = c_linear[order]
return (data, indices, [])
new_axis_order = list(compressed_axes)
new_axis_order.extend(np.setdiff1d(np.arange(len(shape)), compressed_axes))
new_linear = np.empty(x.nnz, dtype=np.intp)
new_reordered_shape = np.array(shape)[new_axis_order]
axisptr = len(compressed_axes)
row_size = np.prod(new_reordered_shape[:axisptr])
col_size = np.prod(new_reordered_shape[axisptr:])
new_compressed_shape = np.array((row_size, col_size))
coords_dtype = get_out_dtype(x.indices, max(max(new_compressed_shape), x.nnz))
new_coords = np.empty((2, x.nnz), dtype=coords_dtype)
_convert_coords(
linear,
np.asarray(x.shape),
np.asarray(x._reordered_shape),
sorted_axis_order,
np.asarray(axes),
np.asarray(shape),
np.asarray(new_axis_order),
new_reordered_shape,
new_linear,
new_coords,
new_compressed_shape,
transpose,
)
order = np.argsort(new_linear, kind="mergesort")
new_coords = new_coords[:, order]
if len(shape) == 1:
indptr = []
indices = coords[0, :]
else:
indptr = np.empty(row_size + 1, dtype=coords_dtype)
indptr[0] = 0
np.cumsum(np.bincount(new_coords[0], minlength=row_size), out=indptr[1:])
indices = new_coords[1]
data = x.data[order]
return (data, indices, indptr)
@numba.jit(nopython=True, nogil=True)
def unravel_index(n, shape): # pragma: no cover
"""
implements a subset of the functionality of np.unravel_index.
"""
out = np.zeros(len(shape), dtype=np.intp)
i = 1
while i < len(shape) and n > 0:
cur = np.prod(shape[i:])
out[i - 1] = n // cur
n -= out[i - 1] * cur
i += 1
out[-1] = n
return out
@numba.jit(nopython=True, nogil=True)
def ravel_multi_index(arr, shape): # pragma: no cover
"""
implements a subset of the functionality of np.ravel_multi_index.
"""
total = 0
for i, a in enumerate(arr[:-1], 1):
total += a * np.prod(shape[i:])
total += arr[-1]
return total
@numba.jit(nopython=True, nogil=True)
def _convert_coords(
linear,
old_shape,
reordered_shape,
sorted_axis_order,
axes,
shape,
new_axis_order,
new_reordered_shape,
new_linear,
new_coords,
new_compressed_shape,
transpose,
): # pragma: no cover
if transpose:
for i, n in enumerate(linear):
# c ordering
current_coords = unravel_index(n, reordered_shape)[sorted_axis_order]
# transpose
current_coords_t = current_coords[axes][new_axis_order]
new_linear[i] = ravel_multi_index(current_coords_t, new_reordered_shape)
# reshape
new_coords[:, i] = unravel_index(new_linear[i], new_compressed_shape)
else:
for i, n in enumerate(linear):
# c ordering
current_coords = unravel_index(n, reordered_shape)[sorted_axis_order]
# linearize
c_current = ravel_multi_index(current_coords, old_shape)
# compress
c_compressed = unravel_index(c_current, shape)
c_compressed = c_compressed[new_axis_order]
new_linear[i] = ravel_multi_index(c_compressed, new_reordered_shape)
# reshape
new_coords[:, i] = unravel_index(new_linear[i], new_compressed_shape)
|