File: common.py

package info (click to toggle)
python-sparse 0.16.0a9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,948 kB
  • sloc: python: 9,959; makefile: 8; sh: 3
file content (1559 lines) | stat: -rw-r--r-- 44,290 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
import operator
import warnings
from collections.abc import Iterable
from functools import reduce
from typing import Any, NamedTuple

import numba

import numpy as np

from .._sparse_array import SparseArray
from .._utils import (
    can_store,
    check_consistent_fill_value,
    check_zero_fill_value,
    is_unsigned_dtype,
    isscalar,
    normalize_axis,
)


def asCOO(x, name="asCOO", check=True):
    """
    Convert the input to :obj:`COO`. Passes through :obj:`COO` objects as-is.

    Parameters
    ----------
    x : Union[SparseArray, scipy.sparse.spmatrix, numpy.ndarray]
        The input array to convert.
    name : str, optional
        The name of the operation to use in the exception.
    check : bool, optional
        Whether to check for a dense input.

    Returns
    -------
    COO
        The converted :obj:`COO` array.

    Raises
    ------
    ValueError
        If ``check`` is true and a dense input is supplied.
    """
    from .._common import _is_sparse
    from .core import COO

    if check and not _is_sparse(x):
        raise ValueError(f"Performing this operation would produce a dense result: {name}")

    if not isinstance(x, COO):
        x = COO(x)

    return x


def linear_loc(coords, shape):
    if shape == () and len(coords) == 0:
        # `np.ravel_multi_index` is not aware of arrays, so cannot produce a
        # sensible result here (https://github.com/numpy/numpy/issues/15690).
        # Since `coords` is an array and not a sequence, we know the correct
        # dimensions.
        return np.zeros(coords.shape[1:], dtype=np.intp)

    return np.ravel_multi_index(coords, shape)


def kron(a, b):
    """Kronecker product of 2 sparse arrays.

    Parameters
    ----------
    a, b : SparseArray, scipy.sparse.spmatrix, or np.ndarray
        The arrays over which to compute the Kronecker product.

    Returns
    -------
    res : COO
        The kronecker product

    Raises
    ------
    ValueError
        If all arguments are dense or arguments have nonzero fill-values.

    Examples
    --------
    >>> from sparse import eye
    >>> a = eye(3, dtype="i8")
    >>> b = np.array([1, 2, 3], dtype="i8")
    >>> res = kron(a, b)
    >>> res.todense()  # doctest: +SKIP
    array([[1, 2, 3, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 1, 2, 3, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 1, 2, 3]], dtype=int64)
    """
    from .._common import _is_sparse
    from .._umath import _cartesian_product
    from .core import COO

    check_zero_fill_value(a, b)

    a_sparse = _is_sparse(a)
    b_sparse = _is_sparse(b)
    a_ndim = np.ndim(a)
    b_ndim = np.ndim(b)

    if not (a_sparse or b_sparse):
        raise ValueError("Performing this operation would produce a dense result: kron")

    if a_ndim == 0 or b_ndim == 0:
        return a * b

    a = asCOO(a, check=False)
    b = asCOO(b, check=False)

    # Match dimensions
    max_dim = max(a.ndim, b.ndim)
    a = a.reshape((1,) * (max_dim - a.ndim) + a.shape)
    b = b.reshape((1,) * (max_dim - b.ndim) + b.shape)

    a_idx, b_idx = _cartesian_product(np.arange(a.nnz), np.arange(b.nnz))

    a_expanded_coords = a.coords[:, a_idx]
    b_expanded_coords = b.coords[:, b_idx]
    o_coords = a_expanded_coords * np.asarray(b.shape)[:, None] + b_expanded_coords
    o_data = a.data[a_idx] * b.data[b_idx]
    o_shape = tuple(i * j for i, j in zip(a.shape, b.shape, strict=True))

    return COO(o_coords, o_data, shape=o_shape, has_duplicates=False)


def concatenate(arrays, axis=0):
    """
    Concatenate the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[SparseArray]
        The input arrays to concatenate.
    axis : int, optional
        The axis along which to concatenate the input arrays. The default is zero.

    Returns
    -------
    COO
        The output concatenated array.

    Raises
    ------
    ValueError
        If all elements of :code:`arrays` don't have the same fill-value.

    See Also
    --------
    numpy.concatenate : NumPy equivalent function
    """
    from .core import COO

    check_consistent_fill_value(arrays)

    if axis is None:
        axis = 0
        arrays = [x.flatten() for x in arrays]

    arrays = [x if isinstance(x, COO) else COO(x) for x in arrays]
    axis = normalize_axis(axis, arrays[0].ndim)
    assert all(x.shape[ax] == arrays[0].shape[ax] for x in arrays for ax in set(range(arrays[0].ndim)) - {axis})
    nnz = 0
    dim = sum(x.shape[axis] for x in arrays)
    shape = list(arrays[0].shape)
    shape[axis] = dim

    data = np.concatenate([x.data for x in arrays])
    coords = np.concatenate([x.coords for x in arrays], axis=1)

    if not can_store(coords.dtype, max(shape)):
        coords = coords.astype(np.min_scalar_type(max(shape)))
    dim = 0
    for x in arrays:
        if dim:
            coords[axis, nnz : x.nnz + nnz] += dim
        dim += x.shape[axis]
        nnz += x.nnz

    return COO(
        coords,
        data,
        shape=shape,
        has_duplicates=False,
        sorted=(axis == 0),
        fill_value=arrays[0].fill_value,
    )


def stack(arrays, axis=0):
    """
    Stack the input arrays along the given dimension.

    Parameters
    ----------
    arrays : Iterable[SparseArray]
        The input arrays to stack.
    axis : int, optional
        The axis along which to stack the input arrays.

    Returns
    -------
    COO
        The output stacked array.

    Raises
    ------
    ValueError
        If all elements of :code:`arrays` don't have the same fill-value.

    See Also
    --------
    numpy.stack : NumPy equivalent function
    """
    from .core import COO

    check_consistent_fill_value(arrays)

    assert len({x.shape for x in arrays}) == 1
    arrays = [x if isinstance(x, COO) else COO(x) for x in arrays]
    axis = normalize_axis(axis, arrays[0].ndim + 1)
    data = np.concatenate([x.data for x in arrays])
    coords = np.concatenate([x.coords for x in arrays], axis=1)
    shape = list(arrays[0].shape)
    shape.insert(axis, len(arrays))

    nnz = 0
    new = np.empty(shape=(coords.shape[1],), dtype=np.intp)
    for dim, x in enumerate(arrays):
        new[nnz : x.nnz + nnz] = dim
        nnz += x.nnz

    coords = [coords[i] for i in range(coords.shape[0])]
    coords.insert(axis, new)
    coords = np.stack(coords, axis=0)

    return COO(
        coords,
        data,
        shape=shape,
        has_duplicates=False,
        sorted=(axis == 0),
        fill_value=arrays[0].fill_value,
    )


def triu(x, k=0):
    """
    Returns an array with all elements below the k-th diagonal set to zero.

    Parameters
    ----------
    x : COO
        The input array.
    k : int, optional
        The diagonal below which elements are set to zero. The default is
        zero, which corresponds to the main diagonal.

    Returns
    -------
    COO
        The output upper-triangular matrix.

    Raises
    ------
    ValueError
        If :code:`x` doesn't have zero fill-values.

    See Also
    --------
    numpy.triu : NumPy equivalent function
    """
    from .core import COO

    check_zero_fill_value(x)

    if not x.ndim >= 2:
        raise NotImplementedError("sparse.triu is not implemented for scalars or 1-D arrays.")

    mask = x.coords[-2] + k <= x.coords[-1]

    coords = x.coords[:, mask]
    data = x.data[mask]

    return COO(coords, data, shape=x.shape, has_duplicates=False, sorted=True)


def tril(x, k=0):
    """
    Returns an array with all elements above the k-th diagonal set to zero.

    Parameters
    ----------
    x : COO
        The input array.
    k : int, optional
        The diagonal above which elements are set to zero. The default is
        zero, which corresponds to the main diagonal.

    Returns
    -------
    COO
        The output lower-triangular matrix.

    Raises
    ------
    ValueError
        If :code:`x` doesn't have zero fill-values.

    See Also
    --------
    numpy.tril : NumPy equivalent function
    """
    from .core import COO

    check_zero_fill_value(x)

    if not x.ndim >= 2:
        raise NotImplementedError("sparse.tril is not implemented for scalars or 1-D arrays.")

    mask = x.coords[-2] + k >= x.coords[-1]

    coords = x.coords[:, mask]
    data = x.data[mask]

    return COO(coords, data, shape=x.shape, has_duplicates=False, sorted=True)


def nansum(x, axis=None, keepdims=False, dtype=None, out=None):
    """
    Performs a ``NaN`` skipping sum operation along the given axes. Uses all axes by default.

    Parameters
    ----------
    x : SparseArray
        The array to perform the reduction on.
    axis : Union[int, Iterable[int]], optional
        The axes along which to sum. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    COO
        The reduced output sparse array.

    See Also
    --------
    :obj:`COO.sum` : Function without ``NaN`` skipping.
    numpy.nansum : Equivalent Numpy function.
    """
    assert out is None
    x = asCOO(x, name="nansum")
    return nanreduce(x, np.add, axis=axis, keepdims=keepdims, dtype=dtype)


def nanmean(x, axis=None, keepdims=False, dtype=None, out=None):
    """
    Performs a ``NaN`` skipping mean operation along the given axes. Uses all axes by default.

    Parameters
    ----------
    x : SparseArray
        The array to perform the reduction on.
    axis : Union[int, Iterable[int]], optional
        The axes along which to compute the mean. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    COO
        The reduced output sparse array.

    See Also
    --------
    :obj:`COO.mean` : Function without ``NaN`` skipping.
    numpy.nanmean : Equivalent Numpy function.
    """
    assert out is None
    x = asCOO(x, name="nanmean")

    if not (np.issubdtype(x.dtype, np.floating) or np.issubdtype(x.dtype, np.complexfloating)):
        return x.mean(axis=axis, keepdims=keepdims, dtype=dtype)

    mask = np.isnan(x)
    x2 = where(mask, 0, x)

    # Count the number non-nan elements along axis
    nancount = mask.sum(axis=axis, dtype="i8", keepdims=keepdims)
    if axis is None:
        axis = tuple(range(x.ndim))
    elif not isinstance(axis, tuple):
        axis = (axis,)
    den = reduce(operator.mul, (x.shape[i] for i in axis), 1)
    den -= nancount

    if (den == 0).any():
        warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=1)

    num = np.sum(x2, axis=axis, dtype=dtype, keepdims=keepdims)

    with np.errstate(invalid="ignore", divide="ignore"):
        if num.ndim:
            return np.true_divide(num, den, casting="unsafe")
        return (num / den).astype(dtype if dtype is not None else x.dtype)


def nanmax(x, axis=None, keepdims=False, dtype=None, out=None):
    """
    Maximize along the given axes, skipping ``NaN`` values. Uses all axes by default.

    Parameters
    ----------
    x : SparseArray
        The array to perform the reduction on.
    axis : Union[int, Iterable[int]], optional
        The axes along which to maximize. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    COO
        The reduced output sparse array.

    See Also
    --------
    :obj:`COO.max` : Function without ``NaN`` skipping.
    numpy.nanmax : Equivalent Numpy function.
    """
    assert out is None
    x = asCOO(x, name="nanmax")

    ar = x.reduce(np.fmax, axis=axis, keepdims=keepdims, dtype=dtype)

    if (isscalar(ar) and np.isnan(ar)) or np.isnan(ar.data).any():
        warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=1)

    return ar


def nanmin(x, axis=None, keepdims=False, dtype=None, out=None):
    """
    Minimize along the given axes, skipping ``NaN`` values. Uses all axes by default.

    Parameters
    ----------
    x : SparseArray
        The array to perform the reduction on.
    axis : Union[int, Iterable[int]], optional
        The axes along which to minimize. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    COO
        The reduced output sparse array.

    See Also
    --------
    :obj:`COO.min` : Function without ``NaN`` skipping.
    numpy.nanmin : Equivalent Numpy function.
    """
    assert out is None
    x = asCOO(x, name="nanmin")

    ar = x.reduce(np.fmin, axis=axis, keepdims=keepdims, dtype=dtype)

    if (isscalar(ar) and np.isnan(ar)) or np.isnan(ar.data).any():
        warnings.warn("All-NaN slice encountered", RuntimeWarning, stacklevel=1)

    return ar


def nanprod(x, axis=None, keepdims=False, dtype=None, out=None):
    """
    Performs a product operation along the given axes, skipping ``NaN`` values.
    Uses all axes by default.

    Parameters
    ----------
    x : SparseArray
        The array to perform the reduction on.
    axis : Union[int, Iterable[int]], optional
        The axes along which to multiply. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    dtype : numpy.dtype
        The data type of the output array.

    Returns
    -------
    COO
        The reduced output sparse array.

    See Also
    --------
    :obj:`COO.prod` : Function without ``NaN`` skipping.
    numpy.nanprod : Equivalent Numpy function.
    """
    assert out is None
    x = asCOO(x)
    return nanreduce(x, np.multiply, axis=axis, keepdims=keepdims, dtype=dtype)


def where(condition, x=None, y=None):
    """
    Select values from either ``x`` or ``y`` depending on ``condition``.
    If ``x`` and ``y`` are not given, returns indices where ``condition``
    is nonzero.

    Performs the equivalent of :obj:`numpy.where`.

    Parameters
    ----------
    condition : SparseArray
        The condition based on which to select values from
        either ``x`` or ``y``.
    x : SparseArray, optional
        The array to select values from if ``condition`` is nonzero.
    y : SparseArray, optional
        The array to select values from if ``condition`` is zero.

    Returns
    -------
    COO
        The output array with selected values if ``x`` and ``y`` are given;
        else where the array is nonzero.

    Raises
    ------
    ValueError
        If the operation would produce a dense result; or exactly one of
        ``x`` and ``y`` are given.

    See Also
    --------
    numpy.where : Equivalent Numpy function.
    """
    from .._umath import elemwise

    x_given = x is not None
    y_given = y is not None

    if not (x_given or y_given):
        check_zero_fill_value(condition)
        condition = asCOO(condition, name=str(np.where))
        return tuple(condition.coords)

    if x_given != y_given:
        raise ValueError("either both or neither of x and y should be given")

    return elemwise(np.where, condition, x, y)


def argwhere(a):
    """
    Find the indices of array elements that are non-zero, grouped by element.

    Parameters
    ----------
    a : array_like
        Input data.

    Returns
    -------
    index_array : numpy.ndarray

    See Also
    --------
    :obj:`where`, :obj:`COO.nonzero`

    Examples
    --------
    >>> import sparse
    >>> x = sparse.COO(np.arange(6).reshape((2, 3)))
    >>> sparse.argwhere(x > 1)
    array([[0, 2],
           [1, 0],
           [1, 1],
           [1, 2]])
    """
    return np.transpose(a.nonzero())


def argmax(x, /, *, axis=None, keepdims=False):
    """
    Returns the indices of the maximum values along a specified axis.
    When the maximum value occurs multiple times, only the indices
    corresponding to the first occurrence are returned.

    Parameters
    ----------
    x : SparseArray
        Input array. The fill value must be ``0.0`` and all non-zero values
        must be greater than ``0.0``.
    axis : int, optional
        Axis along which to search. If ``None``, the function must return
        the index of the maximum value of the flattened array. Default: ``None``.
    keepdims : bool, optional
        If ``True``, the reduced axes (dimensions) must be included in the result
        as singleton dimensions, and, accordingly, the result must be compatible
        with the input array. Otherwise, if ``False``, the reduced axes (dimensions)
        must not be included in the result. Default: ``False``.

    Returns
    -------
    out : numpy.ndarray
        If ``axis`` is ``None``, a zero-dimensional array containing the index of
        the first occurrence of the maximum value. Otherwise, a non-zero-dimensional
        array containing the indices of the maximum values.
    """
    return _arg_minmax_common(x, axis=axis, keepdims=keepdims, mode="max")


def argmin(x, /, *, axis=None, keepdims=False):
    """
    Returns the indices of the minimum values along a specified axis.
    When the minimum value occurs multiple times, only the indices
    corresponding to the first occurrence are returned.

    Parameters
    ----------
    x : SparseArray
        Input array. The fill value must be ``0.0`` and all non-zero values
        must be less than ``0.0``.
    axis : int, optional
        Axis along which to search. If ``None``, the function must return
        the index of the minimum value of the flattened array. Default: ``None``.
    keepdims : bool, optional
        If ``True``, the reduced axes (dimensions) must be included in the result
        as singleton dimensions, and, accordingly, the result must be compatible
        with the input array. Otherwise, if ``False``, the reduced axes (dimensions)
        must not be included in the result. Default: ``False``.

    Returns
    -------
    out : numpy.ndarray
        If ``axis`` is ``None``, a zero-dimensional array containing the index of
        the first occurrence of the minimum value. Otherwise, a non-zero-dimensional
        array containing the indices of the minimum values.
    """
    return _arg_minmax_common(x, axis=axis, keepdims=keepdims, mode="min")


def _replace_nan(array, value):
    """
    Replaces ``NaN``s in ``array`` with ``value``.

    Parameters
    ----------
    array : COO
        The input array.
    value : numpy.number
        The values to replace ``NaN`` with.

    Returns
    -------
    COO
        A copy of ``array`` with the ``NaN``s replaced.
    """
    if not np.issubdtype(array.dtype, np.floating):
        return array

    return where(np.isnan(array), value, array)


def nanreduce(x, method, identity=None, axis=None, keepdims=False, **kwargs):
    """
    Performs an ``NaN`` skipping reduction on this array. See the documentation
    on :obj:`COO.reduce` for examples.

    Parameters
    ----------
    x : COO
        The array to reduce.
    method : numpy.ufunc
        The method to use for performing the reduction.
    identity : numpy.number
        The identity value for this reduction. Inferred from ``method`` if not given.
        Note that some ``ufunc`` objects don't have this, so it may be necessary to give it.
    axis : Union[int, Iterable[int]], optional
        The axes along which to perform the reduction. Uses all axes by default.
    keepdims : bool, optional
        Whether or not to keep the dimensions of the original array.
    **kwargs : dict
        Any extra arguments to pass to the reduction operation.

    Returns
    -------
    COO
        The result of the reduction operation.

    Raises
    ------
    ValueError
        If reducing an all-zero axis would produce a nonzero result.

    See Also
    --------
    COO.reduce : Similar method without ``NaN`` skipping functionality.
    """
    arr = _replace_nan(x, method.identity if identity is None else identity)
    return arr.reduce(method, axis, keepdims, **kwargs)


def roll(a, shift, axis=None):
    """
    Shifts elements of an array along specified axis. Elements that roll beyond
    the last position are circulated and re-introduced at the first.

    Parameters
    ----------
    a : COO
        Input array
    shift : int or tuple of ints
        Number of index positions that elements are shifted. If a tuple is
        provided, then axis must be a tuple of the same size, and each of the
        given axes is shifted by the corresponding number. If an int while axis
        is a tuple of ints, then broadcasting is used so the same shift is
        applied to all axes.
    axis : int or tuple of ints, optional
        Axis or tuple specifying multiple axes. By default, the
        array is flattened before shifting, after which the original shape is
        restored.

    Returns
    -------
    res : ndarray
        Output array, with the same shape as a.
    """
    from .core import COO, as_coo

    a = as_coo(a)

    # roll flattened array
    if axis is None:
        return roll(a.reshape((-1,)), shift, 0).reshape(a.shape)

    # roll across specified axis
    # parse axis input, wrap in tuple
    axis = normalize_axis(axis, a.ndim)
    if not isinstance(axis, tuple):
        axis = (axis,)

    # make shift iterable
    if not isinstance(shift, Iterable):
        shift = (shift,)

    elif np.ndim(shift) > 1:
        raise ValueError("'shift' and 'axis' must be integers or 1D sequences.")

    # handle broadcasting
    if len(shift) == 1:
        shift = np.full(len(axis), shift)

    # check if dimensions are consistent
    if len(axis) != len(shift):
        raise ValueError("If 'shift' is a 1D sequence, 'axis' must have equal length.")

    if not can_store(a.coords.dtype, max(a.shape + shift)):
        raise ValueError(
            f"cannot roll with coords.dtype {a.coords.dtype} and shift {shift}. Try casting coords to a larger dtype."
        )

    # shift elements
    coords, data = np.copy(a.coords), np.copy(a.data)
    try:
        for sh, ax in zip(shift, axis, strict=True):
            coords[ax] += sh
            coords[ax] %= a.shape[ax]
    except TypeError as e:
        if is_unsigned_dtype(coords.dtype):
            raise ValueError(
                f"rolling with coords.dtype as {coords.dtype} is not safe. Try using a signed dtype."
            ) from e

    return COO(
        coords,
        data=data,
        shape=a.shape,
        has_duplicates=False,
        fill_value=a.fill_value,
    )


def diagonal(a, offset=0, axis1=0, axis2=1):
    """
    Extract diagonal from a COO array. The equivalent of :obj:`numpy.diagonal`.

    Parameters
    ----------
    a : COO
        The array to perform the operation on.
    offset : int, optional
        Offset of the diagonal from the main diagonal. Defaults to main diagonal (0).
    axis1 : int, optional
        First axis from which the diagonals should be taken.
        Defaults to first axis (0).
    axis2 : int, optional
        Second axis from which the diagonals should be taken.
        Defaults to second axis (1).

    Examples
    --------
    >>> import sparse
    >>> x = sparse.as_coo(np.arange(9).reshape(3, 3))
    >>> sparse.diagonal(x).todense()
    array([0, 4, 8])
    >>> sparse.diagonal(x, offset=1).todense()
    array([1, 5])

    >>> x = sparse.as_coo(np.arange(12).reshape((2, 3, 2)))
    >>> x_diag = sparse.diagonal(x, axis1=0, axis2=2)
    >>> x_diag.shape
    (3, 2)
    >>> x_diag.todense()
    array([[ 0,  7],
           [ 2,  9],
           [ 4, 11]])

    Returns
    -------
    out: COO
        The result of the operation.

    Raises
    ------
    ValueError
        If a.shape[axis1] != a.shape[axis2]

    See Also
    --------
    :obj:`numpy.diagonal` : NumPy equivalent function
    """
    from .core import COO

    if a.shape[axis1] != a.shape[axis2]:
        raise ValueError("a.shape[axis1] != a.shape[axis2]")

    diag_axes = [axis for axis in range(len(a.shape)) if axis != axis1 and axis != axis2] + [axis1]
    diag_shape = [a.shape[axis] for axis in diag_axes]
    diag_shape[-1] -= abs(offset)

    diag_idx = _diagonal_idx(a.coords, axis1, axis2, offset)

    diag_coords = [a.coords[axis][diag_idx] for axis in diag_axes]
    diag_data = a.data[diag_idx]

    return COO(diag_coords, diag_data, diag_shape)


def diagonalize(a, axis=0):
    """
    Diagonalize a COO array. The new dimension is appended at the end.

    .. WARNING:: :obj:`diagonalize` is not :obj:`numpy` compatible as there is no direct :obj:`numpy` equivalent. The
      API may change in the future.

    Parameters
    ----------
    a : Union[COO, np.ndarray, scipy.sparse.spmatrix]
        The array to diagonalize.
    axis : int, optional
        The axis to diagonalize. Defaults to first axis (0).

    Examples
    --------
    >>> import sparse
    >>> x = sparse.as_coo(np.arange(1, 4))
    >>> sparse.diagonalize(x).todense()
    array([[1, 0, 0],
           [0, 2, 0],
           [0, 0, 3]])

    >>> x = sparse.as_coo(np.arange(24).reshape((2, 3, 4)))
    >>> x_diag = sparse.diagonalize(x, axis=1)
    >>> x_diag.shape
    (2, 3, 4, 3)

    :obj:`diagonalize` is the inverse of :obj:`diagonal`

    >>> a = sparse.random((3, 3, 3, 3, 3), density=0.3)
    >>> a_diag = sparse.diagonalize(a, axis=2)
    >>> (sparse.diagonal(a_diag, axis1=2, axis2=5) == a.transpose([0, 1, 3, 4, 2])).all()
    True

    Returns
    -------
    out: COO
        The result of the operation.

    See Also
    --------
    :obj:`numpy.diag` : NumPy equivalent for 1D array
    """
    from .core import COO, as_coo

    a = as_coo(a)

    diag_shape = a.shape + (a.shape[axis],)
    diag_coords = np.vstack([a.coords, a.coords[axis]])

    return COO(diag_coords, a.data, diag_shape)


def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as sparse ``bool`` array.

    Parameters
    ----------
    x
        Input
    out, optional
        Output array

    Examples
    --------
    >>> import sparse
    >>> x = sparse.as_coo(np.array([np.inf]))
    >>> sparse.isposinf(x).todense()
    array([ True])

    See Also
    --------
    numpy.isposinf : The NumPy equivalent
    """
    from .core import elemwise

    return elemwise(lambda x, out=None, dtype=None: np.isposinf(x, out=out), x, out=out)


def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as sparse ``bool`` array.

    Parameters
    ----------
    x
        Input
    out, optional
        Output array

    Examples
    --------
    >>> import sparse
    >>> x = sparse.as_coo(np.array([-np.inf]))
    >>> sparse.isneginf(x).todense()
    array([ True])

    See Also
    --------
    numpy.isneginf : The NumPy equivalent
    """
    from .core import elemwise

    return elemwise(lambda x, out=None, dtype=None: np.isneginf(x, out=out), x, out=out)


def result_type(*arrays_and_dtypes):
    """Returns the type that results from applying the NumPy type promotion rules to the
    arguments.

    See Also
    --------
    numpy.result_type : The NumPy equivalent
    """
    return np.result_type(*(_as_result_type_arg(x) for x in arrays_and_dtypes))


def _as_result_type_arg(x):
    if not isinstance(x, SparseArray):
        return x
    if x.ndim > 0:
        return x.dtype
    # 0-dimensional arrays give different result_type outputs than their dtypes
    return x.todense()


@numba.jit(nopython=True, nogil=True)
def _diagonal_idx(coordlist, axis1, axis2, offset):
    """
    Utility function that returns all indices that correspond to a diagonal element.

    Parameters
    ----------
    coordlist : list of lists
        Coordinate indices.
    axis1, axis2 : int
        The axes of the diagonal.
    offset : int
        Offset of the diagonal from the main diagonal. Defaults to main diagonal (0).
    """
    return np.array([i for i in range(len(coordlist[axis1])) if coordlist[axis1][i] + offset == coordlist[axis2][i]])


def clip(a, a_min=None, a_max=None, out=None):
    """
    Clip (limit) the values in the array.

    Return an array whose values are limited to ``[min, max]``. One of min
    or max must be given.

    Parameters
    ----------
    a
    a_min : scalar or `SparseArray` or `None`
        Minimum value. If `None`, clipping is not performed on lower
        interval edge.
    a_max : scalar or `SparseArray` or `None`
        Maximum value. If `None`, clipping is not performed on upper
        interval edge.
    out : SparseArray, optional
        If provided, the results will be placed in this array. It may be
        the input array for in-place clipping. `out` must be of the right
        shape to hold the output. Its type is preserved.

    Returns
    -------
    clipped_array : SparseArray
        An array with the elements of `self`, but where values < `min` are
        replaced with `min`, and those > `max` with `max`.

    Examples
    --------
    >>> import sparse
    >>> x = sparse.COO.from_numpy([0, 0, 0, 1, 2, 3])
    >>> sparse.clip(x, a_min=1).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([1, 1, 1, 1, 2, 3])
    >>> sparse.clip(x, a_max=1).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([0, 0, 0, 1, 1, 1])
    >>> sparse.clip(x, a_min=1, a_max=2).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([1, 1, 1, 1, 2, 2])

    See Also
    --------
    numpy.clip : Equivalent NumPy function
    """
    a = asCOO(a, name="clip")
    return a.clip(a_min, a_max)


def expand_dims(x, /, *, axis=0):
    """
    Expands the shape of an array by inserting a new axis (dimension) of size
    one at the position specified by ``axis``.

    Parameters
    ----------
    a : COO
        Input COO array.
    axis : int
        Position in the expanded axes where the new axis is placed.

    Returns
    -------
    result : COO
        An expanded output COO array having the same data type as ``x``.

    Examples
    --------
    >>> import sparse
    >>> x = sparse.COO.from_numpy([[1, 0, 0, 0, 2, -3]])
    >>> x.shape
    (1, 6)
    >>> y1 = sparse.expand_dims(x, axis=1)
    >>> y1.shape
    (1, 1, 6)
    >>> y2 = sparse.expand_dims(x, axis=2)
    >>> y2.shape
    (1, 6, 1)

    """

    x = _validate_coo_input(x)

    if not isinstance(axis, int):
        raise IndexError(f"Invalid axis position: {axis}")

    axis = normalize_axis(axis, x.ndim + 1)

    new_coords = np.insert(x.coords, obj=axis, values=np.zeros(x.nnz, dtype=np.intp), axis=0)
    new_shape = list(x.shape)
    new_shape.insert(axis, 1)
    new_shape = tuple(new_shape)

    from .core import COO

    return COO(
        new_coords,
        x.data,
        shape=new_shape,
        fill_value=x.fill_value,
    )


def flip(x, /, *, axis=None):
    """
    Reverses the order of elements in an array along the given axis.

    The shape of the array is preserved.

    Parameters
    ----------
    a : COO
        Input COO array.
    axis : int or tuple of ints, optional
        Axis (or axes) along which to flip. If ``axis`` is ``None``, the function must
        flip all input array axes. If ``axis`` is negative, the function must count from
        the last dimension. If provided more than one axis, the function must flip only
        the specified axes. Default: ``None``.

    Returns
    -------
    result : COO
        An output array having the same data type and shape as ``x`` and whose elements,
        relative to ``x``, are reordered.

    """

    x = _validate_coo_input(x)

    if axis is None:
        axis = range(x.ndim)
    if not isinstance(axis, Iterable):
        axis = (axis,)

    new_coords = x.coords.copy()
    for ax in axis:
        new_coords[ax, :] = x.shape[ax] - 1 - x.coords[ax, :]

    from .core import COO

    return COO(
        new_coords,
        x.data,
        shape=x.shape,
        fill_value=x.fill_value,
    )


# Array API set functions


class UniqueCountsResult(NamedTuple):
    values: np.ndarray
    counts: np.ndarray


def unique_counts(x, /):
    """
    Returns the unique elements of an input array `x`, and the corresponding
    counts for each unique element in `x`.

    Parameters
    ----------
    x : COO
        Input COO array. It will be flattened if it is not already 1-D.

    Returns
    -------
    out : namedtuple
        The result containing:
        * values - The unique elements of an input array.
        * counts - The corresponding counts for each unique element.

    Raises
    ------
    ValueError
        If the input array is in a different format than COO.

    Examples
    --------
    >>> import sparse
    >>> x = sparse.COO.from_numpy([1, 0, 2, 1, 2, -3])
    >>> sparse.unique_counts(x)
    UniqueCountsResult(values=array([-3,  0,  1,  2]), counts=array([1, 1, 2, 2]))
    """

    x = _validate_coo_input(x)

    x = x.flatten()
    values, counts = np.unique(x.data, return_counts=True)
    if x.nnz < x.size:
        values = np.concatenate([[x.fill_value], values])
        counts = np.concatenate([[x.size - x.nnz], counts])
        sorted_indices = np.argsort(values)
        values[sorted_indices] = values.copy()
        counts[sorted_indices] = counts.copy()

    return UniqueCountsResult(values, counts)


def unique_values(x, /):
    """
    Returns the unique elements of an input array `x`.

    Parameters
    ----------
    x : COO
        Input COO array. It will be flattened if it is not already 1-D.

    Returns
    -------
    out : ndarray
        The unique elements of an input array.

    Raises
    ------
    ValueError
        If the input array is in a different format than COO.

    Examples
    --------
    >>> import sparse
    >>> x = sparse.COO.from_numpy([1, 0, 2, 1, 2, -3])
    >>> sparse.unique_values(x)
    array([-3, 0, 1, 2])
    """

    x = _validate_coo_input(x)

    x = x.flatten()
    values = np.unique(x.data)
    if x.nnz < x.size:
        values = np.sort(np.concatenate([[x.fill_value], values]))
    return values


def sort(x, /, *, axis=-1, descending=False, stable=False):
    """
    Returns a sorted copy of an input array ``x``.

    Parameters
    ----------
    x : SparseArray
        Input array. Should have a real-valued data type.
    axis : int
        Axis along which to sort. If set to ``-1``, the function must sort along
        the last axis. Default: ``-1``.
    descending : bool
        Sort order. If ``True``, the array must be sorted in descending order (by value).
        If ``False``, the array must be sorted in ascending order (by value).
        Default: ``False``.
    stable : bool
        Whether the sort is stable. Only ``False`` is supported currently.

    Returns
    -------
    out : COO
        A sorted array.

    Raises
    ------
    ValueError
        If the input array isn't and can't be converted to COO format.

    Examples
    --------
    >>> import sparse
    >>> x = sparse.COO.from_numpy([1, 0, 2, 0, 2, -3])
    >>> sparse.sort(x).todense()
    array([-3, 0, 0, 1, 2, 2])
    >>> sparse.sort(x, descending=True).todense()
    array([ 2, 2, 1, 0, 0, -3])

    """
    from .._common import moveaxis
    from .core import COO

    x = _validate_coo_input(x)

    if stable:
        raise ValueError("`stable=True` isn't currently supported.")

    original_ndim = x.ndim
    if x.ndim == 1:
        x = x[None, :]
        axis = -1

    x = moveaxis(x, source=axis, destination=-1)
    x_shape = x.shape
    x = x.reshape((-1, x_shape[-1]))

    new_coords, new_data = _sort_coo(x.coords, x.data, x.fill_value, sort_axis_len=x_shape[-1], descending=descending)

    x = COO(new_coords, new_data, x.shape, has_duplicates=False, sorted=True, fill_value=x.fill_value)

    x = x.reshape(x_shape[:-1] + (x_shape[-1],))
    x = moveaxis(x, source=-1, destination=axis)

    return x if original_ndim == x.ndim else x.squeeze()


def take(x, indices, /, *, axis=None):
    """
    Returns elements of an array along an axis.

    Parameters
    ----------
    x : SparseArray
        Input array.
    indices : ndarray
        Array indices. The array must be one-dimensional and have an integer data type.
    axis : int
        Axis over which to select values. If ``axis`` is negative, the function must
        determine the axis along which to select values by counting from the last dimension.
        For ``None``, the flattened input array is used. Default: ``None``.

    Returns
    -------
    out : COO
        A COO array with requested indices.

    Raises
    ------
    ValueError
        If the input array isn't and can't be converted to COO format.
    """

    x = _validate_coo_input(x)

    if axis is None:
        x = x.flatten()
        return x[indices]

    axis = normalize_axis(axis, x.ndim)
    full_index = (slice(None),) * axis + (indices, ...)
    return x[full_index]


def _validate_coo_input(x: Any):
    from .._common import _is_scipy_sparse_obj
    from .core import COO

    if _is_scipy_sparse_obj(x):
        x = COO.from_scipy_sparse(x)
    elif not isinstance(x, SparseArray):
        raise ValueError(f"Input must be an instance of SparseArray, but it's {type(x)}.")
    elif not isinstance(x, COO):
        x = x.asformat(COO)

    return x


@numba.jit(nopython=True, nogil=True)
def _sort_coo(
    coords: np.ndarray, data: np.ndarray, fill_value: float, sort_axis_len: int, descending: bool
) -> tuple[np.ndarray, np.ndarray]:
    assert coords.shape[0] == 2
    group_coords = coords[0, :]
    sort_coords = coords[1, :]

    data = data.copy()
    result_indices = np.empty_like(sort_coords)

    # We iterate through all groups and sort each one of them.
    # first and last index of a group is tracked.
    prev_group = -1
    group_first_idx = -1
    group_last_idx = -1
    # We add `-1` sentinel to know when the last group ends
    for idx, group in enumerate(np.append(group_coords, -1)):
        if group == prev_group:
            continue

        if prev_group != -1:
            group_last_idx = idx

            group_slice = slice(group_first_idx, group_last_idx)
            group_size = group_last_idx - group_first_idx

            # SORT VALUES
            if group_size > 1:
                # np.sort in numba doesn't support `np.sort`'s arguments so `stable`
                # keyword can't be supported.
                # https://numba.pydata.org/numba-doc/latest/reference/numpysupported.html#other-methods
                data[group_slice] = np.sort(data[group_slice])
                if descending:
                    data[group_slice] = data[group_slice][::-1]

            # SORT INDICES
            fill_value_count = sort_axis_len - group_size
            indices = np.arange(group_size)
            # find a place where fill_value would be
            for pos in range(group_size):
                if (not descending and fill_value < data[group_slice][pos]) or (
                    descending and fill_value > data[group_slice][pos]
                ):
                    indices[pos:] += fill_value_count
                    break
            result_indices[group_first_idx:group_last_idx] = indices

        prev_group = group
        group_first_idx = idx

    return np.vstack((group_coords, result_indices)), data


@numba.jit(nopython=True, nogil=True)
def _compute_minmax_args(
    coords: np.ndarray,
    data: np.ndarray,
    reduce_size: int,
    fill_value: float,
    max_mode_flag: bool,
) -> tuple[np.ndarray, np.ndarray]:
    assert coords.shape[0] == 2
    reduce_coords = coords[0, :]
    index_coords = coords[1, :]

    result_indices = np.unique(index_coords)
    result_data = []

    # we iterate through each trace
    for result_index in np.nditer(result_indices):
        mask = index_coords == result_index
        masked_reduce_coords = reduce_coords[mask]
        masked_data = data[mask]

        compared_data = operator.gt(masked_data, fill_value) if max_mode_flag else operator.lt(masked_data, fill_value)

        if np.any(compared_data) or len(masked_data) == reduce_size:
            # best value is a non-fill value
            best_arg = np.argmax(masked_data) if max_mode_flag else np.argmin(masked_data)
            result_data.append(masked_reduce_coords[best_arg])
        else:
            # best value is a fill value, find the first occurrence of it
            current_coord = np.array(-1, dtype=coords.dtype)
            found = False
            for idx, new_coord in enumerate(np.nditer(np.sort(masked_reduce_coords))):
                # there is at least one fill value between consecutive non-fill values
                if new_coord - current_coord > 1:
                    result_data.append(idx)
                    found = True
                    break
                current_coord = new_coord
            # get the first fill value after all non-fill values
            if not found:
                result_data.append(current_coord + 1)

    return (result_indices, np.array(result_data, dtype=np.intp))


def _arg_minmax_common(
    x: SparseArray,
    axis: int | None,
    keepdims: bool,
    mode: str,
):
    """
    Internal implementation for argmax and argmin functions.
    """
    assert mode in ("max", "min")
    max_mode_flag = mode == "max"

    x = _validate_coo_input(x)

    if not isinstance(axis, int | type(None)):
        raise ValueError(f"`axis` must be `int` or `None`, but it's: {type(axis)}.")
    if isinstance(axis, int) and axis >= x.ndim:
        raise ValueError(f"`axis={axis}` is out of bounds for array of dimension {x.ndim}.")
    if x.ndim == 0:
        raise ValueError("Input array must be at least 1-D, but it's 0-D.")

    # If `axis` is None then we need to flatten the input array and memorize
    # the original dimensionality for the final reshape operation.
    axis_none_original_ndim: int | None = None
    if axis is None:
        axis_none_original_ndim = x.ndim
        x = x.reshape(-1)[:, None]
        axis = 0

    # A 1-D array must have one more singleton dimension.
    if axis == 0 and x.ndim == 1:
        x = x[:, None]

    # We need to move `axis` to the front.
    new_transpose = list(range(x.ndim))
    new_transpose.insert(0, new_transpose.pop(axis))
    new_transpose = tuple(new_transpose)

    # And reshape it to 2-D (reduce axis, the rest of axes flattened)
    new_shape = list(x.shape)
    new_shape.insert(0, new_shape.pop(axis))
    new_shape = tuple(new_shape)

    x = x.transpose(new_transpose)
    x = x.reshape((new_shape[0], np.prod(new_shape[1:])))

    # Compute max/min arguments
    result_indices, result_data = _compute_minmax_args(
        x.coords.copy(),
        x.data.copy(),
        reduce_size=x.shape[0],
        fill_value=x.fill_value,
        max_mode_flag=max_mode_flag,
    )

    from .core import COO

    result = COO(result_indices, result_data, shape=(x.shape[1],), fill_value=0, prune=True)

    # Let's reshape the result to the original shape.
    result = result.reshape((1, *new_shape[1:]))
    new_transpose = list(range(result.ndim))
    new_transpose.insert(axis, new_transpose.pop(0))
    result = result.transpose(new_transpose)

    # If `axis=None` we need to reshape flattened array into original dimensionality.
    if axis_none_original_ndim is not None:
        result = result.reshape([1 for _ in range(axis_none_original_ndim)])

    return result if keepdims else result.squeeze()


def matrix_transpose(x, /):
    """
    Transposes a matrix or a stack of matrices.

    Parameters
    ----------
    x : SparseArray
        Input array.

    Returns
    -------
    out : COO
        Transposed COO array.

    Raises
    ------
    ValueError
        If the input array isn't and can't be converted to COO format, or if ``x.ndim < 2``.
    """
    if hasattr(x, "ndim") and x.ndim < 2:
        raise ValueError("`x.ndim >= 2` must hold.")
    x = _validate_coo_input(x)
    transpose_axes = list(range(x.ndim))
    transpose_axes[-2:] = transpose_axes[-2:][::-1]

    return x.transpose(transpose_axes)